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There are more than 7,000 rare diseases, some affecting 3,500 or fewer patients in the US.

Due to clinicians’ limited experience with such diseases and the heterogeneity of clinical pre-

sentations, approximately 70% of individuals seeking a diagnosis today remain undiagnosed.

Deep learning has demonstrated success in aiding the diagnosis of common diseases. How-

ever, existing approaches require labeled datasets with thousands of diagnosed patients per

disease. Here, we present SHEPHERD, a few shot learning approach for multi-faceted rare

disease diagnosis. SHEPHERD performs deep learning over a biomedical knowledge graph en-

riched with rare disease information to perform phenotype-driven diagnosis. Once trained,

we show that SHEPHERD can provide clinical insights about real-world patients. We eval-

uate SHEPHERD on a cohort of N = 465 patients representing 299 diseases (79% of genes

and 83% of diseases are represented in only a single patient) in the Undiagnosed Diseases

Network. SHEPHERD excels at several diagnostic facets: performing causal gene discovery

(causal genes are predicted at rank = 3.56 on average), retrieving “patients-like-me” with

the same causal gene or disease, and providing interpretable characterizations of novel dis-

ease presentations. We additionally examine SHEPHERD on two other real-world cohorts,

MyGene2 (N = 146) and Deciphering Developmental Disorders Study (N = 1,431). SHEP-

HERD demonstrates the potential of deep learning to accelerate rare disease diagnosis and

has implications for using deep learning on medical datasets with very few labels.
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Main
Rare diseases affect 300-400 million people worldwide, yet each disease has a very low preva-

lence, involving no more than 50 per 100,000 individuals [1–3]. Due to the low prevalence of

rare diseases, most front-line clinicians lack firsthand experience, resulting in numerous specialty

referrals and expensive clinical workups for patients across multiple years and institutions. Fur-

thermore, patients with the same disease can present with variable symptoms, disease severity, and

age of onset [4]. Such challenges make rare disease diagnosis extremely difficult; approximately

70% of individuals seeking a diagnosis remain undiagnosed, and the genes underlying up to 50%

of Mendelian conditions are unknown [5,6]. These diagnostic delays can lead to redundant testing

or unnecessary medical procedures, inappropriate or delayed disease management, and irreversible

disease progression if the time window for intervention is missed.

Machine-assisted diagnosis offers the opportunity to shorten diagnostic delays for rare dis-

ease patients. Several strategies have been developed to automatically analyze patients’ genetic

and phenotypic data to aid diagnosis. Genotype-based approaches focus on leveraging variant fre-

quency and predicted pathogenicity to identify disease-causing variants [7–9]. Phenotype-based

approaches prioritize genes by analyzing a patient’s facial image [10–15] or by comparing a pa-

tient’s set of phenotypic abnormalities to a knowledge base containing associations between phe-

notypes, genes, and diseases [16–20]. Other approaches combine genotype and phenotype-based

approaches through Bayesian reasoning [21, 22] or by training machine learning models to com-

bine multiple handcrafted features [23–28]. Automated diagnosis pipelines leveraging genotyping

and phenotyping methods have improved diagnostic yields across a range of rare diseases [29,30].

Advances in deep learning have considerably improved diagnostic accuracy in other clinical

areas [31–40], achieving near-expert clinical accuracy for common diseases [41–43]. These meth-

ods offer several benefits: they can automatically learn valuable features from patient cohort data

and integrate multimodal phenotypic and genomic data into a shared feature space. Despite the

promise of deep learning approaches, there have been limited attempts to leverage deep learning

methods to diagnose rare genetic conditions. While deep learning approaches exist for image-

based diagnosis [10,11], DeepPVP, which leverages a feedforward network trained on handcrafted

phenotypic and genotypic features, is the only one that operates over patient phenotype terms [44].

Deep learning methods for rare disease diagnosis are lacking because of the data scarcity problem.

Training deep learning models requires high-quality labeled data with thousands of diag-

nosed patients per disease. Yet, rare disease datasets are three orders of magnitude smaller. The
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low prevalence of rare diseases makes it difficult to obtain datasets of sufficient size for deep learn-

ing, even with manual expert curation. Training deep learning models on datasets with smaller

sample sizes can impact their generalizability. Due to each rare disease’s heterogeneity and low

prevalence, models are unlikely to have seen patients with the same (or similar) genetic disorders

during training. Deep learning approaches for rare disease diagnosis must be able to extrapolate

beyond the training distribution to novel genetic conditions and atypical disease presentations.

Deep learning approaches that leverage medical knowledge are needed to overcome the limitations

of traditional supervised deep learning methods in this limited data setting.

Here, we introduce SHEPHERD, a deep learning approach for multi-faceted diagnosis of pa-

tients with rare genetic conditions. SHEPHERD inputs patient phenotype terms and an optional list

of candidate genes and operates at multiple points throughout the rare disease diagnosis process

to perform causal gene discovery, retrieve “patients-like-me” with similar genetic and phenotypic

features, and provide interpretable names for novel disease presentations. To overcome the limita-

tions of supervised learning, SHEPHERD performs label-efficient training by (1) training primarily

on simulated rare disease patients and (2) incorporating medical knowledge of known phenotype,

gene, and disease associations via knowledge-guided deep learning. The simulated patients are

created using an adaptive simulation approach that generates realistic rare disease patients with

varying numbers of phenotype terms and candidate genes [45]. Knowledge-guided learning is

achieved by training a graph neural network to represent a patient (specifically, the patient’s pre-

senting phenotypic features) about other phenotypes, genes, and diseases. When a new patient

arrives, SHEPHERD produces a mathematical representation (i.e., embedding) of the patient in the

latent space such that the patient is embedded near the patient’s causal gene(s), disease, and other

patients with the same causal gene(s) or disease, and far from irrelevant genes and diseases and

other patients with different diseases. Using SHEPHERD’s embedding space optimized for rare dis-

ease diagnosis, SHEPHERD can nominate genes and diseases for every patient, even when no other

patients are known to be diagnosed with the same disease. Unlike existing methods that rely on

handcrafted features, SHEPHERD learns patient representations informed by medical knowledge

directly from patient phenotype terms to enable rare disease diagnosis with few (or zero) labeled

examples.

We evaluate SHEPHERD on an external cohort of patients in the Undiagnosed Diseases Net-

work (UDN) [46], a nationwide initiative with 12 clinical sites in the US tasked with diagnosing

patients with rare, difficult-to-diagnose genetic conditions. In addition to the multi-site UDN co-
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hort, our external evaluation includes a nationwide MyGene2 patient cohort. SHEPHERD performs

granular, phenotype-based causal gene discovery by ranking candidate genes from bioinformat-

ics pipelines. We find that SHEPHERD ranks the correct gene first in 40% of patients spanning

16 disease areas, improving diagnostic efficiency by at least twofold compared to a non-guided

baseline. In addition, SHEPHERD nominates the correct diagnosis for patients with atypical pre-

sentations or novel diseases, ranking the correct gene among the top five predictions for 77.8%

of those hard-to-diagnose patients. SHEPHERD excels in diagnosing patients with novel genetic

conditions, ranking up to 86% of patients the same as or better than domain-specific approaches.

By testing SHEPHERD on each disease area, clinical site, and year of diagnosis, we find that SHEP-

HERD has sustained performance over time and across diseases and clinical sites in the UDN.

Further, SHEPHERD generates patient representations that capture patient similarity (Adjusted Mu-

tual Information = 0.304) and enable retrieval of “patients-like-me” with similar genetic condi-

tions. Finally, SHEPHERD can provide interpretable characterizations of novel disease presenta-

tions. By describing novel diseases based on their similarity to known diseases, SHEPHERD can

point clinical researchers towards the most closely related diseases to investigate the novel disease

in depth. For each diagnostic task, we illustrate SHEPHERD’s capabilities on patients in the Undi-

agnosed Diseases Network and provide an interactive tool to explore SHEPHERD’s predictions at

https://huggingface.co/spaces/emilyalsentzer/SHEPHERD.

Results

Overview of the Undiagnosed Diseases Network patient cohort

We assemble a cohort of 465 patients in the Undiagnosed Diseases Network (UDN) with

molecular diagnoses. Most patients are diagnosed with a single causal gene that explains their

symptoms; 14 patients (3%) have two causal genes, and two patients (0.4%) have three causal

genes. Most patients in the UDN receive an extensive clinical workup and whole genome or exome

sequencing (Figure 1a). Sequencing data is analyzed with the involvement of clinicians and genetic

counselors to identify candidate genes that harbor variants likely to explain the patient’s symptoms.

Once one to five strong candidates are identified, causality is assessed by searching for genotype-

and phenotype-matched individuals in human and animal databases or by introducing candidates

into model organisms to determine in vivo impact [47].

Through this diagnostic process, patients are annotated with a set of Human Phenotype On-

tology (HPO) phenotype terms describing their clinical features and a set of candidate genes that
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may explain the patient’s syndrome. Clinical experts additionally annotate diagnosed patients with

an Online Mendelian Inheritance in Man (OMIM) identifier describing their disease (if available).

Each patient is characterized by 23.9 HPO terms on average (SD = 16.1; Figure 1c). The candidate

genes are patient-specific and include genes in which the patient has a mutation. For each patient,

the diagnostic process creates two sets of candidate gene lists. The lists contain genes considered

at two different phases in the UDN diagnosis pipeline (Figure 1a): VARIANT-FILTERED, a list

produced by performing initial variant-based filtering of candidate genes, and EXPERT-CURATED.

This list includes genes marked by clinical experts as strong candidates for the patient (Meth-

ods 2.1). The VARIANT-FILTERED gene lists are produced using Exomiser [24, 48], a variant-

based tool used in parallel to existing pipelines at three UDN sites [47]. The two candidate gene

lists contain 244.3 and 13.3 genes on average, respectively (SD = 244.0 and SD = 8.0; Figure 1c).

Each gene list is input to SHEPHERD to predict the causal gene (i.e., the gene harboring variants

that cause the patient’s disease) from both a long list of candidate genes derived from automated

filtering (i.e., VARIANT-FILTERED) and a short list of the strongest candidate genes that are more

challenging to prioritize (i.e., EXPERT-CURATED).

UDN patients have heterogeneous disease presentations: 378 unique genes and 299 unique

diseases are represented in the cohort, and 48% of phenotype terms, 79% of genes, and 83% of

diseases are represented in only a single patient (Figure 1d). This reinforces the need for machine

learning models that can learn from sparsely labeled datasets. 11.4% patients have a diagnosis in

common with at least one other patient. Patients with the same disease have only 67% of phenotype

terms in common on average (SD = 43%), and the closest shared ancestor (i.e., lowest common

ancestor) in Human Phenotype Ontology between their phenotype terms is 2.67 hops away on av-

erage (SD = 0.81). In addition, 7% of patients have novel genetic diseases, and only 28% of each

patient’s phenotypic features have any known association with the causal gene on average (SD =

21%). The assembled cohort of UDN patients has been evaluated at 12 clinical sites across the

United States (Figure 1e). While 75.9% of patients are under five years old, patients can present

to the UDN with suspected genetic diseases in their 40s or 50s (Figure 1f). Most patients present

with neurological symptoms but can exhibit cardiac, musculoskeletal, rheumatic, and many other

symptoms (Figure 1g). Due to the lag between starting the process at the UDN and receiving the

diagnosis, most patients included in the analysis were evaluated by UDN clinicians in 2016-2018

(Figure 1h). The phenotypic heterogeneity and presence of novel and atypical diseases pose a

challenge for diagnosis, requiring diagnostic technology that can accommodate previously unseen
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phenotypes, genes, and diseases and leverage knowledge beyond direct gene, phenotype, and dis-

ease associations (Supplementary Figure S1). The UDN patients represent a diverse, independent

cohort used exclusively for model evaluation. Importantly, these patients are not used to train

SHEPHERD.

Overview of SHEPHERD algorithm

SHEPHERD takes a set of patient’s phenotype terms and candidate disease(s) or candidate

gene(s) harboring causal variants as input and performs multi-faceted diagnosis of the patient to

identify causal genes, retrieve “patients-like-me” with the same causal gene or disease, and provide

interpretable characterizations of novel disease presentations (Figure 1b). SHEPHERD can integrate

into the rare disease diagnostic process workflow at multiple points: (1) to find similar patients

after the patient’s clinical workup, (2) to identify strong candidate causal genes after the initial

sequencing analysis or in conjunction with the clinical case review, and (3) to characterize the

patient’s disease and find similar patients for experimental or cohort validation after candidate

causal genes are identified (Figure 1a-b).

SHEPHERD is a few shot geometric deep learning approach for rare disease diagnosis. Few-

shot learning, which can make predictions when very few (if any) labeled data points are available,

is central to rare disease diagnosis because of the low prevalence of each disease. Key to SHEP-

HERD’s ability to provide diagnostic prediction when zero or at most a few labeled (diagnosed)

patients per disease are available is to use a biomedical knowledge graphcontaining gene, pheno-

type, and disease relationships. SHEPHERD represents each patient as a subgraph of phenotype

terms in the knowledge graph (Methods 1). It leverages a graph neural network to jointly em-

bed each patient’s phenotype subgraph and candidate genes or diseases into a latent representation

space such that the generated embeddings are informed by the structure of the knowledge graph,

and patients are embedded nearby their causal gene(s), disease(s), and other similar patients (Fig-

ure 2a-b). Further, SHEPHERD uses an attention mechanism to aggregate each patient’s phenotype

terms to generate a patient embedding, which allows for inspection of the attention weights to

assess the contribution of each phenotypic feature to the prediction.

SHEPHERD is trained in a two-step process to learn embeddings of biomedical concepts and

patients with rare genetic diseases. First, SHEPHERD is pretrained via self-supervised learning to

embed genes, phenotypes, and diseases by predicting the relationships (structure) of the biomedical

knowledge graph (Figure 2a). This step produces compact embeddings that can be adapted for
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a range of analyses and are generalizable by accounting for complementarity between diseases.

Then, using the pretrained model as initialization, SHEPHERD is trained for multi-faceted diagnosis

of patients with rare diseases via a novel objective function (Figure 2b; Methods 3). We train

SHEPHERD in a disease-stratified manner (i.e., in which patients with the same disease are assigned

either to the training or validation set, but not both) to enable SHEPHERD to generalize to diseases

unseen during training.

Due to the scarcity of data for patients with rare diseases, we leverage simulated but realis-

tic rare disease patients for training SHEPHERD (Figure 2c). We train SHEPHERD on a cohort of

more than 40,000 synthetic rare disease patients representing over 2,000 rare diseases in Orphanet

(Methods 2.4). The simulated patients were generated using an approach designed to generate

realistic rare disease patients grounded in medical knowledge [45]. The synthetic cohort is essen-

tial for training SHEPHERD, as it is considerably larger, more diverse, and more representative of

phenotype and genotype heterogeneity than any real-world dataset of rare disease patients (Fig-

ure 2c) [45]. This dataset, together with knowledge-guided learning on the rare disease knowledge

graph, enables deep learning for rare disease diagnosis. A notable byproduct of training the model

on synthetic data is that SHEPHERD’s model can be publicly released without the risk of exposing

patient information [49]. After training, SHEPHERD can be further trained on real-world patient

cohorts or leveraged directly for rare disease diagnosis.

We leverage real patient data from three cohorts in this study (Figure 2d): (1) the UDN patient

cohort (Methods 2.1); (2) a cohort of 146 patients from MyGene2, an online portal through which

families with rare genetic conditions can share their health information to connect with clinicians

and other patients [50] (Methods 2.2); (3) a cohort of 1,431 patients derived from the Deciphering

Developmental Disorders Study, an initiative from the United Kingdom and Ireland designed to

diagnose patients with undiagnosed developmental disorders [51] (Methods 2.3). Results are

described in the following sections.

SHEPHERD can perform causal gene discovery

A critical step in rare disease diagnosis is identifying the gene(s) that are strong candidates

for causing the patient’s syndrome (Figure 1a). Given a patient’s set of phenotype terms and a

list of genes in which the patient has a mutation, SHEPHERD predicts genes that harbor variants

most likely to explain the patient’s presenting symptoms. SHEPHERD produces a score for each

candidate gene in the patient that fuses two complementary aspects of information: an embedding-
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based metric that captures the global network topology and a network-based metric computed

using knowledge graph distance that captures local network information (Methods 3.3). We use

SHEPHERD to prioritize genes found in both the EXPERT-CURATED and VARIANT-FILTERED can-

didate gene lists (Methods 2.1). In both instances, SHEPHERD performs granular prioritization by

refining lists of patients’ candidate genes output by bioinformatics pipelines. For this analysis,

we leverage patients from three cohorts: the simulated, MyGene2, and DDD cohorts are used for

training, and the UDN cohort is used for validation.

We report SHEPHERD’s performance in causal gene discovery as the average recall at k,

defined as the number of causal genes correctly predicted in the top k ranked genes on average

for all patients in the cohort. On the EXPERT-CURATED gene lists, SHEPHERD ranks the patient’s

causal gene first in 40% of UDN patients, achieving a recall of 0.69 when k = 3 and 0.85 when

k = 5 on average (Figure 3a). On the much longer VARIANT-FILTERED gene lists, SHEPHERD

achieves an average recall of 0.21, 0.38, and 0.48 for k = 1, 5, and 10, respectively (Figure 3d).

We find no significant difference in performance across UDN sites throughout the US, pa-

tients with varying presenting symptoms, and the year of evaluation by UDN clinicians (Figure

3b-c, Supplementary Figure S2a, Supplementary Figure S3a-c) on both the EXPERT-CURATED

and VARIANT-FILTERED gene lists. These results indicate that SHEPHERD can generalize across

clinical sites and diseases over time. Furthermore, we find that SHEPHERD’s performance does not

correlate with the number of annotated phenotype terms for each patient (Spearman’s p = 0.02

and p = -0.11 for EXPERT-CURATED and VARIANT-FILTERED lists respectively; Supplementary

Figure S2c and Supplementary Figure S3e). Finally, we evaluate SHEPHERD’s performance as a

function of the prevalence of the rare disease. We leverage the number of submissions to ClinVar as

a proxy for prevalence. We find that SHEPHERD’s performance does not strongly correlate with the

prevalence of the genetic condition (Spearman’s p = -0.17 and p = -0.16 for EXPERT-CURATED

and VARIANT-FILTERED lists respectively; Supplementary Figure S2d and Supplementary Fig-

ure S3f). SHEPHERD’s ability to generalize represents an important capability because rare disease

patients are heterogeneous, and developing separate predictive models that perform well for each

patient subgroup is not feasible due to the low prevalence of the disorders.

We evaluate SHEPHERD against ten baseline approaches (Methods 5.2). We select a network

science algorithm and two supervised machine learning approaches as benchmarks to quantify

the advantages of SHEPHERD’s graph neural network approach. We also identify six domain-

specific existing algorithms developed for causal gene discovery that leverage information the-
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ory (Phrank [16], PhenIX [24], and ERIC [25]), likelihood ratios (LIRICAL [21]), shallow graph

embeddings (CADA [19]), and information-theoretic and random walk methods (HiPhive [24]).

SHEPHERD performs comparably or significantly better than all benchmarking approaches on the

EXPERT-CURATED and VARIANT-FILTERED gene lists (Figure 3a,d). SHEPHERD is comparable

only to HiPhive, implemented in Exomiser and LIRICAL, two of the most widely used tools in

the rare disease diagnosis community. SHEPHERD significantly outperforms the other domain-

specific approaches in retrieving the causal gene first by up to 23.5% and 7.7% of patients on

the EXPERT-CURATED and VARIANT-FILTERED gene lists, respectively, and outperforms the ma-

chine learning approaches by at least 28.4% and 20.0% of patients on the EXPERT-CURATED and

VARIANT-FILTERED gene lists, respectively.

SHEPHERD’s strong performance demonstrates that SHEPHERD can complement existing

variant-based approaches for gene prioritization while leveraging the extensive knowledge sources

of gene-phenotype associations. Using SHEPHERD, clinicians would need to evaluate 1,026 genes

from the EXPERT-CURATED lists or 18,005 genes from the VARIANT-FILTERED lists to arrive at

the causal gene for all 465 UDN patients. In contrast, with non-guided ranking, clinicians would

need to evaluate a total of 2,231 EXPERT-CURATED genes or 27,727 VARIANT-FILTERED genes,

suggesting that SHEPHERD has the potential to improve diagnostic efficiency by 2.2-times and 1.5-

times, respectively. Compared to the best domain-specific approaches, LIRICAL and HiPhive,

SHEPHERD reduces the number of genes clinicians need to consider by 97 (8.6%) and 5,495

(23.3%) on the EXPERT-CURATED and VARIANT-FILTERED gene lists, respectively (LIRICAL),

and by 1,878 (9.4%) on the VARIANT-FILTERED gene list (HiPhive).

SHEPHERD can diagnose patients with atypical and novel genetic diseases

Patients in the UDN have atypical or novel disease presentations, which makes them chal-

lenging to diagnose because there are no direct associations between patients’ genes, symptoms,

and the correct diagnosis. Consequently, the lack of direct linkage between patients’ phenotypic

features and the correct diagnosis (causal genes) means that a lookup against medical knowledge

bases is ineffective for diagnosis. We find that SHEPHERD can identify the causal gene even when

the patient’s presenting phenotypic abnormalities are multiple hops away from the gene causing

the disease in the knowledge graph. For 77.8% of patients whose phenotype terms are far away

from their causal genes in the knowledge graph (i.e., more than two hops away), SHEPHERD iden-

tifies the correct causal gene among its top five predictions from the EXPERT-CURATED gene list.
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No strong correlation exists between SHEPHERD’s performance and the distance between the pa-

tient’s phenotype terms and causal gene (Supplementary Figure S2b, Supplementary Figure S3d;

R2 = 0.102, Spearman’s p = 0.37 and R2 = 0.0004, Spearman’s p = 0.12 for the EXPERT-

CURATED and VARIANT-FILTERED gene lists, respectively).

We evaluate SHEPHERD against the domain-specific models in four hard-to-diagnose scenar-

ios (Figure 3e). We identify patients from the UDN whose causal genes lack known associations

with phenotype terms or diseases in the literature (based on our rare disease knowledge graph) and

who have been identified by UDN experts as having novel disease genes or novel diseases. SHEP-

HERD achieves win rates (i.e., ranks the causal gene the same or higher) of up to 82% and 83%

for patients whose causal genes have no known phenotype or disease associations, respectively, on

the EXPERT-CURATED gene lists. On the VARIANT-FILTERED gene lists, the win rates are up to

80% and 74%, respectively. SHEPHERD achieves win rates of up to 67% and 83% for patients with

a novel disease or novel disease gene, respectively, according to UDN experts on the EXPERT-

CURATED gene lists, and up to 86% on the VARIANT-FILTERED gene lists. The only subset of

patients for which a baseline performs slightly better than SHEPHERD consists of patients with

novel disease genes, according to human experts in the UDN. In all other scenarios, SHEPHERD

outperforms all baseline approaches, demonstrating SHEPHERD’s ability to diagnose patients with

atypical and novel genetic diseases.

We further demonstrate the use of SHEPHERD for patients diagnosed with atypical presenta-

tion of a known disease or a novel syndrome through two case studies on patients from the UDN.

Patient UDN-P1 (Figure 4a; SHEPHERD Tool Tab 1, Patient UDN-P1) received a diagnosis for

POLR3-related leukodystrophy three years after acceptance into the UDN. While the involvement

of gene POLR3A with leukodystrophy (MIM:607694) is known, the patient’s case was challenging

due to her atypical clinical presentation. Several of her presenting clinical features, including lack

of tear production, premature adrenarche, laryngeal cleft, hearing loss, and high blood pressure,

are not typical of leukodystrophy. Further, only 28.3% (13 out of 46) of the patient’s phenotype

terms are directly linked to POLR3A in the knowledge graph, and the patient phenotype terms are

1.98 hops away from the causal gene in the knowledge graph on average. The POLR3A gene is

associated with five other diseases, and 93.7% (192 out of 205) of phenotype terms directly linked

to POLR3A are not found in the patient, further complicating the diagnosis. Despite this atypical

disease presentation, SHEPHERD identifies the patient’s causal gene in the top 1 out of 17 and 86

candidate genes in the EXPERT-CURATED and VARIANT-FILTERED gene lists, respectively. Strik-
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ingly, SHEPHERD can disambiguate diseases by optimally up- and down-weighting phenotypic

features using an attention mechanism and correctly down-weights phenotypic features that are

atypical of leukodystrophy.

SHEPHERD can also identify strong candidate genes for patients with novel uncharacterized

syndromes. Patient UDN-P2 (Figure 4b; SHEPHERD Tool Tab 1, Patient UDN-P2) was accepted

into the UDN with congenital hypotonia and developmental delay. While no diagnosis was iden-

tified in the primary genomic and clinical evaluation, the patient was diagnosed three years later

with a novel PRKAR1B-related neurodevelopmental disorder. The PRKAR1B gene is not asso-

ciated with known diseases. None of the 21 phenotype terms directly linked to PRKAR1B are

found in the patient, and the average shortest path length from the patient’s phenotype terms to the

causal gene is 2.4. Nevertheless, SHEPHERD identifies the suspected causal gene among the top

3 in the EXPERT-CURATED candidate list and the top 4 in the VARIANT-FILTERED candidate list,

illustrating how SHEPHERD can assist in recognizing novel genetic diseases.

SHEPHERD learns meaningful patient representations that capture patient similarity

Another critical consideration for rare disease diagnosis is finding patients that share the

same disease or causal gene, commonly referred to as “patients-like-me” [52] (Figure 1a). Starting

from a set of patient phenotype terms, SHEPHERD flags other patients in the cohort with similar

genetic diseases suitable for follow-up diagnostic analysis. Concretely, SHEPHERD finds similar

patients through a deep embedding scorer optimized to represent patients with the same causal

genes or disease as nearby points in the embedding space. For this analysis, we leverage patients

from three cohorts: the simulated cohort is used for training, and the UDN and MyGene2 cohorts

are used for validation.

SHEPHERD represents each patient as a point in the embedding space colored by the disease

category of their diagnosed disease (Figure 5). The categories correspond to the 33 disease cat-

egories outlined in Orphanet (Methods 2). Robust clustering of patients by disease area (AMI =

0.304; p-value < 0.01) shows that SHEPHERD generates the embedding space that meaningfully

captures patient relationships that can directly answer “patients-like-me” queries. Remarkably,

even though SHEPHERD is trained on simulated patients, it generalizes to real-world UDN and

MyGene2 cohorts, revealing disease-enriched regions in the embedding space where real-world

patients are positioned nearby simulated patients with the same disease area (Supplementary Fig-

ure S4).
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To further evaluate patient embeddings, we compare embedding distances between patients

diagnosed with either the same or different disease (i.e., comparing diagonal vs. off-diagonal en-

tries, Figure 5b). We find that distances between patients of the same category are significantly

smaller than between patients of different categories (p-value < 1 × 10−10 across all disease

categories; Mann-Whitney test), which indicates that SHEPHERD captures the similarity between

patients with similar disease presentations. We also observe several distinct clusters of disease

categories in the embedding space (Figure 5b; Supplementary Figure S6). For example, patients

with neoplastic diseases and gastroenterologic diseases cluster together. Similarly, patients with

hematologic and hepatic diseases and patients with odontologic and renal diseases cluster together

in the embedding space. These clusters represent real co-occurrences of symptoms in disease

presentations. For instance, patients with odontologic diseases, atypical dentin dysplasia, and

orofaciodigital syndrome I, have both orofacial and renal disease presentations. Atypical dentin

dysplasia is caused by a mutation in SMOC2, a matricellular protein involved in both craniofacial

development and kidney fibrosis [53, 54]. Orofaciodigital syndrome I is caused by a mutation in

OFD1, which is involved in organogenesis and plays a vital role in the normal growth of orofacial

and kidney tissues [55, 56]. These relationships reflect that diseases often involve multiple organ

systems and indicate that the embedding space can capture the relationship between patients with

similar symptoms even when their diagnoses differ.

SHEPHERD can identify “patients-like-me” with similar genetic diseases

We next examine SHEPHERD’s ability to identify “patients-like-me” from a large cohort of

rare disease patients. We either rank all simulated, UDN, and MyGene2 patients (UDN-P3 and

UDN-P4 cases) or all UDN and MyGene2 patients (UDN-P5 and UDN-P6 cases; Figure 5c;

SHEPHERD Tool Tab 2) to identify patients most similar to the query UDN patient. We locate

each query patient and all similar patients with the same causal gene in SHEPHERD’s embedding

space and find that patients with the same causal gene are embedded nearby. In all four patient

cases, SHEPHERD retrieves patients with the same causal gene and disease as the query patient

among the top 5 predictions. Patients ranked above the patient with the same causal gene have

very similar disease presentations to the query patient. For UDN-P4 and UDN-P5, the patients

have a variant of the same disease caused by a different gene (Figure 5c). For UDN-P6, patients

with Coffin-Siris syndrome 8 (ranked first) and GATAD2B-associated syndrome (ranked second)

both exhibit impaired intellectual development, hypotonia, feeding difficulties, and hypertelorism,
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among other phenotypic abnormalities. For UDN-P3, patients with X-linked intellectual disability

due to GRIA3 (ranked first) and Coffin-Lowry syndrome (ranked second) share impaired intellec-

tual development, seizures, scoliosis, and other phenotypic abnormalities.

The most similar patients identified by SHEPHERD do not necessarily have the most phe-

notype terms in common with the query patient. This reflects SHEPHERD’s ability to capture

phenotypic similarity rather than just calculating a direct overlap in phenotype terms, typical of

some information-theoretic approaches used in practice. In particular, patients that share the same

causal gene have two to four phenotype terms in common. Only 10.0%, 9.0%, 26.6%, and 7.7% of

the phenotype terms found in query patients UDN-P3, UDN-P4, UDN-P5, and UDN-P6 are also

found in the most similar genotype-matched individual respectively. In contrast, patients with the

most phenotype terms in common with the query are ranked at positions 366, 463, 41, and 16,

respectively. For example, one patient shares 10 phenotype terms with UDN-P6, which is 38.5%

of UDN-P6’s phenotypes, yet has a different causal gene and is ranked 16th. This capability of

SHEPHERD to consider indirect, deep associations between genes and phenotypic features makes

SHEPHERD highly complementary to graph theoretic techniques and statistical tests that can only

score direct associations, which can be ineffective for poorly characterized diseases.

We next quantify SHEPHERD’s ability to identify “patients-like-me” for each UDN patient

from all patients in the real-world MyGene2 cohort. As before, we evaluate the average recall at k,

here defined as the number of MyGene2 patients with the same causal gene as the query correctly

predicted in the top-k ranked patients on average for all UDN patients in the cohort. SHEPHERD

ranks a patient with the same causal gene first in 11.5% of UDN patients, achieving a recall of 0.31,

0.43, 0.49, and 0.53 for k = 5, 10, 25, and 50, respectively (Figure 5a). We compare SHEPHERD to

Phrank, an alternative approach that can calculate phenotypic similarity. Phrank uses information

theory to calculate the similarity between two sets of phenotype terms based on shared ancestors in

the Human Phenotype Ontology. We find that SHEPHERD performs significantly better than Phrank

in identifying “patients-like-me” (Mann-Whitney p = 0.04). SHEPHERD ranks a patient with the

same causal gene first for 7.4% more patients and reduces the number of patients that clinicians

need to consider by 703 (17.2%) compared to Phrank.

Finally, we evaluate whether SHEPHERD embeds patients with the same disease (rather than

gene) closer to each other than to patients with different diseases. Again, we compare UDN pa-

tients to MyGene2 patients. We find that embedding distances between patients diagnosed with

the same disease are significantly smaller compared to patients with different diseases (p-value
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= 2.42 × 10−8; Kolmogorov-Smirnov test; Supplementary Figure S5), further strengthening the

evidence that SHEPHERD can capture similarities between different diseases with similar present-

ing symptoms, but can nevertheless differentiate patients that have the same diagnosed disease.

SHEPHERD provides an interpretable characterization of novel diseases

In addition to supporting causal gene discovery and patients-like-me identification, SHEP-

HERD can help characterize novel clinical presentations through our current knowledge of rare

diseases (Figure 1a). Given a patient’s set of HPO phenotype terms, SHEPHERD provides an in-

terpretable summary of the patient’s disease based on its similarity to each disease in the KG.

SHEPHERD produces a ranked list of all diseases using the embedding similarity between each

disease and the patient’s phenotype terms, which are then summarized to generate a distribution of

similarities to disease categories. More concretely, SHEPHERD learns an embedding space in which

the similarity between a patient and a disease is inversely proportional to the embedding distance

between the patient and their diagnosed disease (Figure 6a). Aggregating SHEPHERD-generated

similarities of individual diseases by their disease category enables interpretable characterization

of the patient’s disease. For example, a patient’s presenting syndrome may be w1% similar to rare

neurologic diseases, w2% similar to rare bone diseases, w3% similar to rare developmental defects

during embryogenesis, etc. SHEPHERD can leverage gene-phenotype-disease associations to gen-

erate granular descriptions of a patient’s disease. For this analysis, we leverage patients from two

cohorts: the simulated cohort is used for training, and the UDN cohort is used for validation.

We observe that SHEPHERD learns to embed patients near diseases of the same category;

on average, 45.7% of the top 10 ranked diseases with a known disease category belong to the

same category as the patient’s disease, which is nearly three times more than random expectation

alone (16.4%). To evaluate SHEPHERD’s ability to provide interpretable disease names for patients

with known rare diseases, we first calculate the similarity between UDN patients and all diseases.

This allows us to assess whether the patients are most similar to diseases that share the same

disease category as the patient’s disease (Figure 6a). Concretely, for each patient, we stratify

patients by their primary disease category and calculate the average similarity of a patient to all

disease nodes under each disease category. As expected, we find that patients tend to be most

similar to diseases of the same disease category as their own. For example, patients with a rare

bone disease are predicted to be most similar to diseases under the category of rare bone disease

(13.0% similarity), followed by rare developmental defects during embryogenesis (10.2%), rare
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inborn errors of metabolism (9.6%), and rare odontology diseases (8.2%). Similarly, patients with

a disease categorized as a rare developmental defect during embryogenesis, a rare inborn error

of metabolism, or a rare neurologic disease tend to be most similar to other diseases of the same

category.

We examine two patients in depth to interrogate SHEPHERD’s predictive capabilities for char-

acterizing known rare diseases: UDN-P7 and UDN-P8. Patient UDN-P7 (Figure 6b; SHEPHERD

Tool Tab 3, Patient UDN-P7) received a diagnosis for limb-girdle muscular dystrophy 3 (sarco-

glycanopathy; MIM:608099) due to variants in SGCA. SHEPHERD compares the patient’s clinical

presentation to diseases across 19 disease categories and finds that the patient is most similar to

rare neurologic diseases, as expected. From SHEPHERD’s predictions, two of the top five most

similar diseases are other types of AR limb-girdle muscular dystrophy, and all five are related to

muscular dystrophy. We compare SHEPHERD to a simple phenotypic search of the patient’s HPO

terms to generate a distribution of similarities to disease categories. This phenotype search ap-

proach can correctly identify the patient’s disease as a rare neurologic disease but cannot produce

disease-level rankings. Patient UDN-P8 (Figure 6b; SHEPHERD Tool Tab 3, Patient UDN-P8) was

diagnosed four years after acceptance to the UDN with the bone disease spondyloepimetaphyseal

dysplasia caused by a mutation in RPL13. Again, SHEPHERD can ascertain the patient’s symptoms

are similar to other bone diseases; all top 5 ranked disorders are rare bone diseases with overlap-

ping phenotype terms found in the query patient. In contrast, the phenotype search approach does

not identify UDN-P8’s disease as a rare bone disease; rather, it predicts that the patient has a dis-

ease due to a rare developmental defect during embryogenesis. These findings on our case studies

of two patients with known rare diseases suggest that SHEPHERD can produce correct and granular

hypotheses about a patient’s rare disorder.

We also investigate SHEPHERD’s hypotheses for two patients with novel genetic diseases,

UDN-P9 and UDN-P10. UDN-P9 (Figure 6b; SHEPHERD Tool Tab 3, Patient UDN-P9) was di-

agnosed with ATP5PO-related Leigh syndrome caused by a novel mutation in ATP5PO, a gene

previously unassociated with any disease [57]. As Leigh syndrome is a metabolic disorder with

neuropathological features, SHEPHERD correctly identifies UDN-P9’s disease is most similar to

diseases under the categories of rare inborn errors of metabolism and rare neurological diseases.

In contrast, the phenotype search method incorrectly predicts a tie between a disorder due to a

rare inborn error of metabolism and a rare neoplastic disease, failing to label the patient’s disease

as a neurological disorder. Three of the top five diseases—combined oxidative phosphorylation
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deficiency 39 (MIM:618397; ranked by SHEPHERD as #1), pyruvate dehydrogenase E3-binding

protein deficiency (MIM:245349; ranked by SHEPHERD as #3), and combined oxidative phospho-

rylation defect type 26 (MIM:616672; ranked by SHEPHERD as #5)—are mitochondrial diseases

affecting the same pathway as ATP5PO and result in a defect in the aerobic energy production.

These diseases’ causal genes co-localize with ATP5PO [58–61]. Combined oxidative phosphory-

lation deficiency 39 and combined oxidative phosphorylation defect type 26 are associated with

neurological presentations of mitochondrial disease, including hypotonia, seizures, and features of

Leigh syndrome [62]. The remaining two most similar diseases (ranked by SHEPHERD as #2 and

#4) are rare neurologic diseases with phenotype terms identical to UDN-P9’s. The causal gene,

CNP, for the second-ranked disease, hypomyelinating leukodystropy-20 (MIM:619071), is three

hops away from ATP5PO in the physical protein interaction network [63,64], suggesting that they

may be functionally related [65–67] or operate together [68, 69] to mediate phenotypic features

associated with UDN-P9’s disease and hypomyelinating leukodystropy-20.

Patient UDN-P10 (Figure 6b; SHEPHERD Tool Tab 3, Patient UDN-P10), is characterized by

SHEPHERD as most similar to diseases under the categories of rare inborn errors of metabolism,

rare hepatic disease, rare gastroenterological disease, and rare endocrine disease. These top cat-

egories are aligned with many of the patient’s symptoms, particularly duodenal atresia, intestinal

malrotation, pancreatic exocrine insufficiency, liver disease, and developmental delay. In contrast,

the phenotype search approach predicts that the patient’s disease is most similar to diseases due

to rare developmental defects during embryogenesis. Three of the top five most similar individ-

ual diseases from SHEPHERD’s outputs—Methylmalonic acidemia with homocystinuria type cblF

(MIM:277380; ranked by SHEPHERD as #1), Neonatal hemochromatosis (MIM:231100; ranked

by SHEPHERD as #2), and ALG8-CDG (MIM:608104; ranked by SHEPHERD as #4)—are also due

to inborn errors of metabolism, and the diseases are associated with phenotypes that are similar to

those seen in the patient, including abnormalities in liver and gastrointestinal function and devel-

opmental delay. Notably, the rare respiratory disease category is the third lowest-ranked category.

UDN clinicians hypothesized that the patient’s GLYR1 variants cause a mislocalization of the cystic

fibrosis conductance regulator (CFTR), which is associated with cystic fibrosis. While the patient

has gastrointestinal and pancreatic symptoms similar to those in cystic fibrosis, the patient does

not have any of the pulmonary features classic for that condition. Such granularity in SHEPHERD’s

predictions is a reflection of SHEPHERD’s ability to differentiate between diseases despite partially

overlapping phenotypes and causal genes sharing the same pathway.
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Discussion
We present SHEPHERD, a deep learning approach for multi-faceted rare disease diagnosis. SHEP-

HERD overcomes limitations of supervised deep learning by (1) incorporating biomedical knowl-

edge into the model via geometric deep learning on a knowledge graph, (2) leveraging label-

efficient learning to align patients with genes and phenotypes, and (3) training on a large dataset

of simulated rare disease patients in a disease-stratified manner. SHEPHERD generalizes across

phenotype terms, genes, and diseases and performs well on patients with heterogeneous clini-

cal presentations and novel genetic conditions (Supplementary Figure S1). Further, the model

leverages an attention mechanism to generate phenotype-based patient embeddings; the attention

weights can be inspected to provide insights into the contribution of each phenotype term to the

patient-specific prediction. As shown in the evaluations on external multi-site patient cohorts with

heterogeneous disease presentations, SHEPHERD supports generalizable multi-faceted diagnosis of

rare genetic diseases.

A unique feature of SHEPHERD is its ability to generate clinico-genetic representations of

patients with rare genetic diseases. SHEPHERD represents patient phenotype terms as subgraphs

and candidate genes and diseases as nodes in the knowledge graph. The graph neural network

then generates embeddings by considering direct and indirect gene-phenotype-disease associa-

tions that are multiple hops away from each other in the knowledge graph. While many existing

approaches rely exclusively on known phenotype-gene-disease associations [16, 18], leveraging

indirect associations is essential for diagnosing patients with novel or atypical genetic conditions

(Supplementary Figure S2b, Supplementary Figure S3d). Further, subgraphs provide a flexible

mathematical definition for modeling sets of the patient phenotype terms. Rather than modeling

each phenotype term individually [19], SHEPHERD encodes patients as a structured object (i.e. a

subgraph) and considers the co-occurrence of phenotypic features when diagnosing rare diseases.

This joint modeling of patient phenotypic features is essential for identifying genetic mutations

with pleiotropic effects [70–72].

SHEPHERD demonstrates that models trained on simulated patient datasets apply to real-

world clinical applications. While simulated data is increasingly used to augment training datasets

for improving robustness and generalizability [49,73–77], here we primarily use simulated patients

to train SHEPHERD. Simulated data are not just an additional asset, but a critical necessity for train-

ing deep learning models to generate predictions on rare diseases with scarce labeled diagnoses.

The synthetic patients are generated by a simulator [45] based on clinico-genetic knowledge. Train-
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ing on simulated data mitigates concerns regarding privacy breaches, in which specific individuals

can be identified from the training data [78, 79]. Hence, a fully trained SHEPHERD model can be

publicly released without privacy concerns.

There are several extensions to this work. Our method relies on a knowledge graph of dis-

ease, gene, and phenotype associations. Other sources of information, such as variant-level in-

formation or databases of model organism phenotype-gene associations, can be incorporated as

well [80]. SHEPHERD’s knowledge graph includes gene-phenotype-disease associations and can

be extended to include information from research literature [26]. SHEPHERD’s phenotype-based

approach can also be combined with variant-based prioritization approaches, such as those used in

Exomiser [24], for even stronger causal gene discovery performance. The graph neural network un-

derlying SHEPHERD can be extensible to multi-modal data types. For example, gene co-expression

data or textual descriptions of diseases can be incorporated as node features. While efforts like

the UDN are critical for establishing diagnoses for rare disease patients, they alone cannot address

the rare disease burden. Approaches like SHEPHERD can help identify and diagnose rare disease

patients using claims data, electronic health records, and other data types. SHEPHERD’s ability

to characterize a patient’s clinical presentation can be used to identify sub-specialists who should

review the patient’s case for the diagnostic recommendation.

Our study has a few limitations. First, continually updating the knowledge graph with gene-

phenotype-disease associations can improve SHEPHERD’s performance. To this end, the knowl-

edge graph curation and processing approaches are fully reproducible, and the graph can be auto-

matically updated as new data become available [81]. Second, the still-undiagnosed UDN patients

may be more challenging than the already-diagnosed ones SHEPHERD was tested on. There are

two categories of still-undiagnosed patients: patients admitted to the UDN years ago who have yet

to receive a diagnosis due to sequencing limitations (e.g., hard-to-detect variant types such as short

tandem repeats or structural variants, missing second variants in recessive disorders, variants that

lie in difficult-to-sequence regions or are masked due to biases in the human reference genome and

ancestral genomes [82]), and patients recently admitted to the UDN. SHEPHERD can be evaluated

on the still-undiagnosed patients whose causal variants will be detectable by deep whole genome

sequencing. The lack of an observed drop in SHEPHERD’s performance for recently diagnosed

patients suggests that data leakage (i.e., information about older diagnoses being incorporated into

the knowledge graph) has not occurred, evidently avoiding the bias that would otherwise cause

overfitting of the model to the training data.
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SHEPHERD shows the utility and impact of deep learning for diagnosing rare disease patients.

While other deep learning-powered diagnostic systems focus on common diseases for which large

labeled datasets exist, this study shows how deep learning can be used for rare diseases. Diagnostic

process requires collaborations among bioinformaticians, clinicians, and genetic counselors. Re-

viewing a single case can take many hours of a many-person team over days or weeks. SHEPHERD

can substantially reduce the number of genes that human experts need to consider to provide a

molecular diagnosis and identify patients with similar genetic conditions, even before they have

undergone genetic sequencing. Deep learning-based diagnostic strategies like SHEPHERD create

new opportunities to shorten the diagnostic odyssey for rare diseases.
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Data availability. All data used in the paper, including the rare disease knowledge graph, simu-

lated, MyGene2, and DDD cohorts, and the final and intermediate results of the analyses are shared

with the research community at https://zitniklab.hms.harvard.edu/projects/SHEPHERD. While the

UDN dataset cannot be released due to privacy concerns, anonymized UDN data has been de-

posited in dbGaP (accession phs001232) and PhenomeCentral. Phenotypes and causal variants and

genes related to UDN diagnoses are also shared publicly in ClinVar at https://www.ncbi.nlm.nih.

gov/clinvar/submitters/505999. The UDN study is approved by the NIH IRB Protocol 15HG0130.

All patients accepted to the UDN provide written informed consent to share their data across the

UDN.

Code availability. Python implementation of the methodology developed and used in the study

is available via the project website at https://zitniklab.hms.harvard.edu/projects/SHEPHERD. The

code to reproduce results, documentation, and examples are at https://github.com/mims-harvard/

SHEPHERD. We provide an interactive tool to explore SHEPHERD’s at https://huggingface.co/

spaces/emilyalsentzer/SHEPHERD.
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Figure 1: Overview of SHEPHERD in the rare disease diagnosis pipeline. (a) After years of failed diagnostic attempts,
once a patient is accepted to the UDN, they receive a thorough clinical workup and genetic sequencing, and their case is
analyzed in an iterative process to identify the candidate genes likely to explain the patient’s symptoms. SHEPHERD can be
used throughout the diagnostic process: after the clinical workup to find similar patients, after the sequencing analysis to iden-
tify strong candidate genes, and after the case review to further prioritize candidate genes, characterize the patient’s disease,
and/or validate candidate genes by finding phenotype and genotype-matched patients. (b) SHEPHERD takes in as input the
patient’s set of phenotype terms and leverages an external rare disease knowledge graph to perform multi-faceted rare disease
diagnosis. SHEPHERD can optionally consider a list of candidate genes (either variant-filtered or expert-curated) or external
patient cohort(s), depending on the prediction task of interest (e.g., causal gene discovery, patients-like-me identification).
For simplicity, the knowledge graph is depicted using three shapes: circles as genes, squares as phenotypes, and pentagons
as diseases; refer to Methods for all node types. (c) Number of HPO phenotype terms and candidate genes in each of the two
candidate gene lists across patients in our UDN cohort. (d) Overlap of phenotype terms, genes, and diseases across patients.
Most phenotype terms, genes, and diseases are found in only a single UDN patient. (e-h) Number of patients in each (e) UDN
clinical site, (f) age category, (g) primary presenting symptom, and (h) evaluation year.
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Figure 2: SHEPHERD architecture, training, and generalizability. (a-b) SHEPHERD is trained in a two-step process.
(a) First, the model is pretrained to embed the biomedical knowledge in the knowledge graph. (b) Then, the pretrained model
is applied to the task of rare disease diagnosis. Patient information is overlaid on the knowledge graph, and SHEPHERD
generates an embedding for the patient phenotype terms and each candidate gene, disease, or patient. The model is trained
via a loss function that encourages patient embeddings to be close to the embeddings of their causal gene or disease or
other patients with the same gene or disease. (c) SHEPHERD is trained on a large cohort of simulated patients (pink). It can
be further trained on real-world patients (blue) and then evaluated on an independent cohort of real-world patients (green).
Alternatively, SHEPHERD can directly be evaluated on real-world patients (green) without any additional training. (d) We
leverage real patient data derived from three distinct cohorts: the Undiagnosed Diseases Network (UDN; N = 465), MyGene2
(N = 146), and Deciphering Developmental Disorders Study (DDD; N = 1, 431). For simplicity, the KG is depicted using
three shapes: circles as genes, squares as phenotypes, and pentagons as diseases; refer to Methods for all node types.
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Figure 3: SHEPHERD performs generalizable causal gene discovery. (a) Performance of SHEPHERD, four domain-specific
approaches, three traditional machine learning / network science baselines, and a random baseline. The performance metric
is average recall at k for k = 1, 3, and 5. Error bars denote standard deviation over models trained with 5 random seeds.
(b-c) Performance of SHEPHERD in ranking causal genes stratified by (b) clinical sites and (c) primary presenting symptoms.
Each boxplot shows the median and interquartile range of the rank of the causal gene. Whiskers extend to ±1.5 × IQR. (d)
Performance of SHEPHERD, six domain-specific approaches, three traditional machine learning / network science baselines,
and a random baseline. The performance metric is average recall at k for k = 1, 5, 10, 25, and 50. Error bars denote standard
deviation over models trained with 5 random seeds. (e-f) Performance of SHEPHERD against domain-specific algorithms in
four extremely hard-to-diagnose scenarios on (e) EXPERT-CURATED and (f) VARIANT-FILTERED gene lists. Shown is the win
rate, the proportion of patients where SHEPHERD performs the same as or better than the benchmark algorithms.
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Figure 4: Causal gene discovery case studies for patients with novel genetic conditions. SHEPHERD identifies the causal
gene even in atypical or novel disease presentations. Each patient case study, shown in (a) and (b), includes the subset of the
knowledge graph containing all nodes in the shortest path between the patient’s phenotype terms, causal gene, and disease;
a table of the patient’s phenotype terms and attention weights learned by SHEPHERD; and bar plots of scores SHEPHERD
assigned to each candidate gene in the EXPERT-CURATED and VARIANT-FILTERED lists. The top and bottom 5 ranked genes
in the VARIANT-FILTERED list are shown. The causal gene is highlighted in orange. The direct phenotypic neighbors of the
causal gene are emphasized. In patient UDN-P1’s network, the patient’s causal gene is directly connected to the disease in
the knowledge graph. In patient UDN-P2’s network, there is no disease node because the patient has a novel uncharacterized
syndrome. All panels, except those labeled as a “Patient Card” (colored box with the information provided by the UDN),
depict SHEPHERD’s predictions or analyses performed on outputs of SHEPHERD.
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Figure 5: SHEPHERD identifies patients-like-me from simulated, UDN, and MyGene2 cohorts. (a) Performance of
SHEPHERD in retrieving MyGene2 patients with the same causal gene as a UDN patient (n=75 UDN patients with at least
one matching patient in the MyGene2 cohort). SHEPHERD is benchmarked against Phrank, a domain-specific algorithm. The
performance metric is average recall at k for k = 1, 5, 10, 25 and 50. (b) Heatmap of the average distance between the
phenotype embeddings of pairs of patients across disease categories. Darker colors indicate smaller distances and lighter
colors indicate larger distances between patients of each pair of disease categories. (c) Two-dimensional UMAP plot of
SHEPHERD’s embedding space of all simulated (circle), UDN (up-facing triangle), and MyGene2 (down-facing triangle)
patients colored by their Orphanet disease category. Each of the four case studies consists of a zoomed-in UMAP displaying
the query patient (star) and all patients with the same causal gene as the query (colored circles) and a table containing
information regarding the top five most similar patients retrieved by SHEPHERD. Patients are bolded in the table if they share
the same causal gene. All panels, except those labeled as a “Patient Card” (colored box with the information provided by the
UDN), depict SHEPHERD’s predictions or analyses performed on outputs of SHEPHERD.
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Figure 6: SHEPHERD performs novel disease characterization. (a) Bar plots of the similarity between UDN patients and
diseases found in each disease category. We group UDN patients by the disease category of their true disease and show plots
for all categories with at least 5 patients. The bars that do not correspond to the disease category of each patient’s true disease
are colored gray. (b) The column for each of the four case studies contains: the percent similarity distributions of the patient’s
phenotype terms to diseases in each disease category based on a phenotype search via the KG (top) or SHEPHERD (bottom),
a table of the five most similar diseases according to SHEPHERD, and a table of the patient’s five phenotypic features that are
most highly attended by SHEPHERD.
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Online Methods
The Methods section is structured as follows: 1) description of our rare disease knowledge graph,

2) description of our rare disease patient cohorts, 3) summary of our algorithmic approach for rare

disease diagnosis, 4) details regarding model training, and 5) descriptions of our statistical analysis

and evaluation setup.

1 Rare Disease Knowledge Graph Construction
We create a comprehensive knowledge graph (KG) for rare disease diagnosis. We start with

PrimeKG [81] and adapt it to the rare disease diagnostic setting by removing drug-specific entities

and relations and incorporating additional sources of the gene, phenotype, and disease relation-

ships. The resulting rare disease KG contains seven node types (i.e., phenotype, protein, disease,

pathway, molecular function (MF), cellular component (CC), and biological process (BP)) and 15

unique relation types (i.e., phenotype-protein, disease-phenotype(-) (indicating that disease does not

have phenotype), disease-phenotype(+) (indicating that disease has phenotype), protein-pathway,

disease-protein, protein-MF, protein-CC, protein-BP, BP-BP, MF-MF, CC-CC, phenotype-phenotype,

protein-protein, disease-disease, pathway-pathway).

1.1 Data Sources and Harmonization

Relationships are extracted from the following data sources: Gene Ontology (GO) [83], Reac-

tome pathway knowledgebase [84], DisGeNET [85], NCBI [86], Human Phenotype Ontology

(HPO) [87], MONDO disease ontology [88], and Orphanet [89]. PrimeKG contains disease-

protein relationships from DisGeNET, and we include additional disease-protein and disease-

phenotype relationships from Orphanet if they are not already present in the KG. All phenotype

terms are mapped to the Human Phenotype Ontology, all genes/proteins are mapped to Ensembl

identifiers, and all diseases are mapped to MONDO identifiers. When a concept is represented

in the HPO and MONDO ontologies, we remove the MONDO identifier. This differs from the

original PrimeKG preprocessing, where conflicting identifiers are mapped to MONDO IDs. We

perform all other preprocessing as in the original PrimeKG knowledge graph. For additional in-

formation about each data source and the harmonization process, refer to PrimeKG [81].
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1.2 Knowledge Graph Pre-processing

We enforce homophily between genes and phenotypes by computing the triadic closure between

gene-disease and disease-phenotype edges [90,91]. We extract the largest connected component to

ensure the KG is fully connected. The largest connected component retains 99.91% of the nodes

and 99.99% of the edges from the knowledge graph. Finally, we add reverse edges to ensure the

KG is represented as an undirected graph during model training.

1.3 Final Knowledge Graph Statistics

The final knowledge graph contains 105,220 nodes and 1,095,469 edges. Tables 1-2 outline the

number of nodes and edges by node type and relation type, respectively.

Table 1: Statistics about nodes in the rare disease knowledge graph. Reported is the number of nodes by node
type. MF: molecular function, CC: cellular component, BP: biological process.

NODE TYPE COUNT AVERAGE DEGREE VOCABULARY

PHENOTYPE 15,874 49.5± 190.6 HUMAN PHENOTYPE ONTOLOGY [87]
DISEASE 21,233 17.1± 37.4 MONDO [88]
PROTEIN 21,610 74.2± 119.8 ENSEMBL [92]
PATHWAY 2,516 19.0± 29.9 REACTOME [84]
MF 11,169 8.7± 127.4 GENE ONTOLOGY [83]
CC 4,176 22.3± 197.2 GENE ONTOLOGY [83]
BP 28,642 8.7± 28.1 GENE ONTOLOGY [83]

2 Rare Disease Patient Cohorts
We use four distinct rare disease patient cohorts for training and evaluating SHEPHERD: UDN (Sec-

tion 2.1), a real-world cohort of hard-to-diagnose patients in the Undiagnosed Diseases Network,

MYGENE2 (Section 2.2), a publicly available real-world cohort of patients with rare genetic con-

ditions who have opted to share their information on the MyGene2 Portal, DDD (Section 2.3), a

publicly available aggregated summary of real pediatric patients with severe developmental dis-

orders in the Deciphering Developmental Disorders study, and SIMULATED (Section 2.4), a large

diverse and realistic simulated patient cohort representing 2,134 unique rare diseases in Orphanet.

The diseases found in each cohort are in Supplemental Table 1.

For every patient cohort, we categorize each patient’s causal disease according to the 33 dis-

ease categories outlined in Orphanet. We map all diseases to Orphanet and leverage the Orphanet
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Table 2: Statistics about the edges in the rare disease knowledge graph. Reported is the number of edges by
relation type. HPO: Human Phenotype Ontology.

RELATION TYPE COUNT SOURCES

PHENOTYPE-PHENOTYPE 21,925 HPO [87]
PHENOTYPE-PROTEIN 10,518 HPO [87], MONDO [88], ORPHANET [89]
DISEASE-DISEASE 35,167 DISGENET [85], MONDO [88], ORPHANET [89]
DISEASE-PHENOTYPE(−) 1,483 HPO [87], DISGENET [85], MONDO [88], ORPHANET [89]
DISEASE-PHENOTYPE(+) 204,779 HPO [87], DISGENET [85], MONDO [88], ORPHANET [89]
DISEASE-PROTEIN 86,299 DISGENET [85], MONDO [88], ORPHANET [89]
PROTEIN-PROTEIN 321,075 MENCHE et al. [93], BIOGRID [94], STRING [95], LUCK et al. [69]
PROTEIN-PATHWAY 42,646 REACTOME [84]
PATHWAY-PATHWAY 2,535 REACTOME [84]
PROTEIN-MF 69,530 GENE ONTOLOGY [83]
PROTEIN-CC 83,402 GENE ONTOLOGY [83]
PROTEIN-BP 144,805 GENE ONTOLOGY [83]
MF-MF 13,574 GENE ONTOLOGY [83]
CC-CC 4,845 GENE ONTOLOGY [83]
BP-BP 52,886 GENE ONTOLOGY [83]

linearisation process (http://www.orphadata.org/cgi-bin/rare free.html) to assign each disease to a

single disease category based on a series of rules that consider the most severely affected body

system and the specialists most likely to be involved in treatment.

2.1 Patients in the Undiagnosed Diseases Network

Undiagnosed Diseases Network. The Undiagnosed Diseases Network (UDN) is a nationwide

research study supported by the National Institutes of Health Common Fund, which aims to bring

together clinical and research experts around the United States to diagnose patients with rare ge-

netic conditions [96]. The UDN consists of 12 clinical sites across the United States that eval-

uate patients, a sequencing core, a model organism screening center, a central biorepository, a

metabolomics core, and a coordinating center. Patients are admitted to the UDN if they have

objective findings, and clinical testing has failed to produce a diagnosis. Most admitted patients

receive exome or whole genome sequencing and an extensive clinical workup. The Undiagnosed

Diseases Network study is approved by the National Institutes of Health institutional review board

(IRB), which serves as the central IRB for the study (Protocol 15HG0130). All patients accepted

to the UDN provide written informed consent to share their data across the UDN as part of a
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network-wide informed consent process.

Constructing patient subgraphs. Deep phenotyping of patients during the clinical workup is a

central component of the UDN process. Clinicians annotate each patient with a set of terms from

the Human Phenotype Ontology (HPO) using PhenoTips, a tool integrated into the electronic health

record that allows for structured phenotyping of patient symptoms [97]. We discard 406 unique

prenatal phenotype terms related to the mother’s pregnancy and use all remaining phenotype terms

to construct patient subgraphs. Each patient subgraph is formed from the phenotype nodes in

the rare disease knowledge graph that describe the patient’s symptoms (Methods 3). We construct

phenotype subgraphs for the 465 UDN patients with annotated phenotype terms who have received

a molecular diagnosis as of January 5, 2022.

Obtaining EXPERT-CURATED candidate gene lists. Genomic samples for each patient are se-

quenced at Baylor Genetics or Hudson Alpha. We construct an EXPERT-CURATED candidate gene

list for each patient from the patient’s sequencing data. Importantly, these gene lists are unique to

each patient. The EXPERT-CURATED candidate gene list for each patient includes the union of both

(1) disease-associated and other clinically-relevant genes listed on the patient’s clinical sequencing

reports from Baylor or Hudson Alpha per the UDN protocol and American College of Medical

Genetics and Genomics (ACMG) guidelines [29, 98, 99] and (2) genes that were prioritized by

UDN clinical teams who handled the patient’s case. The genes in this list represent the strongest

candidates identified by the UDN sequencing core or the clinical team. In addition, the list often in-

cludes known disease-causing genes, genes with suspected pathogenic variants, or genes expressed

in tissues relevant to the patient’s clinical presentation. While the EXPERT-CURATED gene list con-

tains the strongest candidates, the list nevertheless requires further filtering to identify the ultimate

causal gene(s) that explain the patient’s condition. We exclude patients whose candidate gene lists

have fewer than five candidate genes for the causal gene discovery task. The cohort contains 278

patients with at least five EXPERT-CURATED candidate genes.

Obtaining VARIANT-FILTERED candidate gene lists. As part of the UDN analysis pipeline, the

UDN performs the whole genome and exome sequencing for a patient and their immediate family

members. Here, we use the patients’ whole genome sequencing (WGS) data, which are aligned to

the GRCh38.p13/hg38 human genome build and have undergone variant calling via the Genome

Analysis Toolkit (GATK) best practices workflow [47]. Please refer to [47] for more details about
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the computational workflow across UDN sites. Access to the UDN patients’ WGS data allows us

to construct for each patient a VARIANT-FILTERED candidate gene list consisting of genes that have

at least one variant and that have been prioritized by a variant-level prioritization algorithm. We

leverage the Exomiser algorithm, which considers variant frequency, predicted pathogenicity, and

(if family members’ sequencing data are available) mode of inheritance [100]. While Exomiser can

leverage known associations between genes and phenotypic features, we do not use it to construct

our VARIANT-FILTERED candidate gene lists.

We analyze the patients’ variant-called WGS data (i.e. variant call format, or VCF) us-

ing Exomiser under the following inheritance modes: autosomal dominant, autosomal recessive

homozygous alternate, autosomal recessive compound heterozygous, X dominant, X recessive ho-

mozygous alternative, X recessive compound heterozygous, and mitochondrial. Their respective

cutoff values (i.e. the maximum minor allele frequency in percent (%) permitted for an allele to

be considered a causative candidate under that mode of inheritance) are 0.1, 0.1, 2.0, 0.1, 0.1,

2.0, and 0.2. We remove variants with non-coding effects (i.e. 5’ and 3’ UTR exon/intron variants,

non-coding transcript exon/intron variants, coding transcript intron variants, up-/down-stream gene

variants, intergenic variants, and regulatory region variants). We use the following pathogenicity

sources, POLYPHEN, MUTATION TASTER, and SIFT. We apply a frequency filter to remove

variants with a frequency of at least 0.5% according to the variant frequency databases used. All

variant frequency databases are used, as recommended by the Exomiser manual. We retain non-

pathogenic variants in the output gene list. As with the EXPERT-CURATED gene lists, we filter out

patients who do not have at least five candidate genes in their VARIANT-FILTERED gene list. The

cohort includes 229 patients with at least five VARIANT-FILTERED candidate genes.

Preprocessing disease labels. Diagnosed patients in the UDN are labeled with a disease iden-

tifier from the Online Mendelian Inheritance in Man (OMIM) database [101] when the patient

is diagnosed with a known genetic disease. We map the OMIM disease identifiers to MONDO

identifiers [88] using the MONDO ontology crosswalk to identify the diseases in the rare disease

knowledge graph (Section 1).

Dataset statistics. The final UDN cohort contains 465 patients representing 319 MONDO diseases

and 378 unique causal genes. The EXPERT-CURATED and VARIANT-FILTERED candidate gene lists

contain 244.3 and 13.3 genes on average, respectively (SD = 244.0 and SD = 8.0). Patients have
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23.9 HPO phenotype terms on average (SD = 16.1).

2.2 Patients in the MyGene2 Portal

We assemble another cohort of real-world rare disease patients participating in the MyGene2 ex-

change [50]. MyGene2, developed by the University of Washington, is a portal through which

families with rare genetic conditions can share their health information to connect with other fam-

ilies, clinicians, and researchers. MyGene2 contains information about 2,106 genes and the HPO

phenotype terms of patients with gene mutations. MyGene2 is a member of the MatchMaker Ex-

change, a federated network designed to enable clinicians to find phenotype and genotype matches

for rare disease patients [102]. The UDN leverages the MatchMaker exchange to validate patients’

candidate genes by finding genotype-matched individuals.

Dataset preprocessing and patient subgraph construction. We retrieved data containing the

sets of phenotype terms and candidate genes for rare disease patients on MyGene2 as of May 7,

2022. We filter the patients only to include patients labeled with an OMIM disease identifier. This

limits the cohort to patients who are likely already diagnosed. As with the other cohorts, we map

all genes to Ensembl identifiers, diseases to MONDO identifiers, and construct patient subgraphs

from the set of positive HPO terms associated with each patient.

Dataset statistics. The final MyGene2 cohort contains 146 patients representing 55 MONDO

diseases and 48 unique causal genes. Patients have 7.9 HPO phenotype terms on average (SD =

6.6). There are 14 unique causal genes and 12 diseases in the MyGene2 and UDN cohorts.

2.3 Patients derived from the Deciphering Developmental Disorders Study

We construct another dataset of rare disease patients using aggregated gene and phenotypic infor-

mation from patients in the Deciphering Developmental Disorders Study. This initiative recruited

nearly 14,000 children with severe undiagnosed developmental disorders from the United King-

dom and Ireland [51].

Dataset preprocessing and patient subgraph construction. We retrieved data containing the

sets of phenotype terms and associated genes from DECIPHER (https://www.deciphergenomics.

org/ddd/ddgenes) on May 10, 2023. We remove genes where the evidence supporting a causal

role for the gene is either limited or moderate, and we use the remaining genes and associated
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phenotype term sets to construct the patient cohort. We map all genes to Ensembl identifiers,

diseases to MONDO identifiers, and build patient subgraphs from the set of HPO terms associated

with each patient. Non-causal candidate genes for each patient are constructed by sampling genes

in the knowledge graph neighboring the patient’s phenotype terms or causal gene.

Dataset statistics. The final DDD-derived cohort contains 1,431 patients, representing 1,237

MONDO diseases and 1,282 unique causal genes. Patients have 20.5 HPO phenotype terms on

average (SD = 19.2). There are 158 unique causal genes and 93 diseases found in the DDD and

UDN cohorts.

2.4 Simulated Patients with Rare Mendelian Disorders

We leverage simulated but realistic rare disease patients for training SHEPHERD [45]. The sim-

ulated patients closely resemble real-world patients found in the UDN. Each simulated patient is

represented by an age range, a set of positive phenotypic features they exhibit, a set of negative

phenotypic features they do not exhibit, and a set of challenging candidate genes that may cause

the presenting symptoms. The patients are generated using a simulation framework that jointly

samples candidate genes and phenotype terms.

Generating realistic simulated rare disease patients. To generate patients with rare Mendelian

disorders, we adopt the pipeline described in [45]. Briefly, the simulation pipeline has two stages:

phenotype and candidate gene generation. First, each patient is initialized with a set of phenotype

terms associated with a genetic disorder characterized in the rare genetic disease database Or-

phanet [89]. To reflect the imprecision of real-world diagnostic evaluations, the initial phenotype

terms undergo phenotype dropout and corruption (i.e., phenotype terms are randomly removed or

replaced with more general phenotype terms), and additional “noisy” phenotype terms that are

unrelated to the patient’s disease are sampled from a large medical insurance claims database and

added to the phenotype set. Next, candidate genes are sampled from “distractor” gene categories

that do not cause the patient’s disease yet would be plausible candidates during the diagnostic pro-

cess. The challenging distractor genes and some of their associated phenotype terms are added. For

additional details about the simulation process and validation of simulated patients, refer to [45].

To standardize across all patient cohorts, we ensure all genes are mapped to Ensembl identifiers,

all diseases are mapped to MONDO identifiers, and we construct patient subgraphs from the phe-

notype terms associated with each patient.
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Dataset statistics. There are 42,624 simulated patients representing 2,132 unique Mendelian dis-

orders and 2,396 unique causal genes in the simulated patient dataset. Each patient is characterized

by an average of 18.4 positive phenotype terms (SD = 7.7) and 14.0 candidate genes (SD = 3.5).

Of the 378 unique causal genes and 319 unique MONDO diseases found in patients in the UDN

cohort, 220 and 109 are represented in the simulated patient cohort, respectively. Furthermore,

81.8% of the phenotype terms found across UDN patients are also found in the simulated patient

cohort, and 29.7% of a single UDN patient’s phenotype terms are found in the most similar simu-

lated patient on average. This indicates that the simulated patients have utility in training models

that can apply to real-world UDN patients but also emphasizes the need for developing models that

can generalize to genes, diseases, and phenotype terms unseen at train time.

3 Few shot Learning Framework for Rare Disease Diagnosis
We develop SHEPHERD, a geometric deep learning approach that leverages few shot capability

and external biomedical knowledge for multi-faceted diagnosis of rare diseases. SHEPHERD learns

to co-embed diseases, phenotypes, and genes for generating multi-modal representations of rare

disease patients. As such, it performs multi-faceted diagnosis, addressing the following challenges

of rare disease diagnosis:

• Causal Gene Discovery: Each patient Ti in the dataset has Pi phenotype terms and Gi

candidate genes. The task is to identify the causal gene(s) Gc
i ∈ Gi, harboring the variants

that explain the patient’s presenting symptoms.

• Identification of Similar Patients: Given a cohort of rare disease patients C, the goal is

to identify patients from the cohort similar to the query patient Ti (i.e., patients that share a

disease or causal gene). Mathematically, for each patient Ti, the task is to identify the set of

patients Sc
i = {Tj ∈ C|Gc

i ∩Gc
j 6= ∅}. We leverage each patient’s set of phenotype terms Pi

to perform patient matching.

• Characterization of Novel Diseases: The goal is to characterize novel diseases according

to their similarity to a set of known genetic diseases D. We input the set of phenotype terms

Pi for each patient Ti and provide interpretable names for the patient’s presenting syndrome.

Notation. Let G denote a heterogeneous knowledge graph comprised of a set of nodes V and a

set of edges E. Each edge is defined by a triplet (u, r, v) where u is the source node, v is the
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target node and r ∈ R denotes the relationship between u and v. Each patient i is represented

on the graph as a patient subgraph induced by a set of phenotype nodes Pi where Pi ⊆ V . The

patient subgraph can contain any number of phenotype terms and multiple connected components

throughout G. Each patient may also have a set of candidate genes Gi ⊆ V .

3.1 Encoding Biomedical Knowledge

The first step in SHEPHERD is to encode biomedical relationships in the rare disease knowledge

graph (KG). We pretrain SHEPHERD on millions of biomedical entity pairs across all entity and

relation types in the KG to capture the topology of the KG. To this end, we use a graph attention

network (GAT) [103], a type of graph neural network (GNN) model to generate embeddings xv for

every node v in the KG. Specifically, the choice of a graph attention network is necessary to achieve

semantically-relevant mixing of biomedical entities in the embedding space; that is, to encourage

distinct node types (e.g. genes, diseases, and phenotypes) to be positioned near each other in the

embedding space. Like most GNNs, GAT models can be formulated as message-passing networks,

in which messages are propagated to a node v from all of the nodes in its neighborhood Nv. The

messages are aggregated and combined with the previous layer’s representation of v to produce

v’s representation for the current layer. Concretely, each layer l in SHEPHERD’s GNN encoder

involves the following steps:

Step 1: Propagate neural messages: We define the message m
(l)
v,k for each node v as:

m
(l)
v,k = W

(l)
k h(l−1)

v (1)

where k represents the attention head, W is a relation-specific trainable weight matrix, and hv is

the embedding of node v in the (l − 1)-th hidden layer.

Step 2: Aggregate messages from local neighborhoods: We leverage the local neigh-

borhood to generate a representation of each node v. Specifically, we aggregate messages of its

neighboring nodes u ∈ Nv using an attention mechanism to generate a
(l)
v,k:

a
(l)
v,k =

∑
u∈Nv

α
(l)
v,u,k ·m

(l)
u,k (2)

where αv,u,k is the normalized attention weight on an edge from node v to node u computed by the

k-th attention mechanism.
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Step 3: Update node embeddings: To transform the messages into an order-invariant hid-

den representation h
(l)
v , we apply a nonlinearity function σ and concatenate all of the aggregated

messages as follows:

h(l)
v =

Kn

k=1

σ
(
a
(l)
v,k

)
(3)

In the final layer, we perform averaging instead of concatenation. We define the final embed-

ding for each node v after L layers of neural message passing as xv = h
(L)
v .

Objective function. We frame pretraining as a binary classification task. SHEPHERD learns to

perform link prediction (i.e. predict whether a relationship exists between a pair of nodes for a

given relation type). Formally, we compute the likelihood of an edge existing between node u and

node v with relation r given their node embeddings xu and xv using a DistMult decoder [104]:

LPSIM(u, r, v) = ACT(xT
uWrxv) (4)

where Wr is a relation-specific trainable weight matrix and ACT is a nonlinear function (here,

tanh). SHEPHERD is pretrained via a hinge loss objective. For any pair of nodes u and v connected

by relation r, the loss function is defined as:

LLP =
1

|E|
∑

(u,r,v)∈E

max(0,∆− LPSIM(u, r, v) + LPSIM(u, r, v−)), (5)

where u and v are source and target nodes, v− is a target node representing a negative example

that is not linked to u in the KG, LPSIM returns the score indicative of the knowledge relationship

existing between u and v, and ∆ is a margin, which is set to 1 throughout all experiments in this

study. For each triplet, (u, r, v) in the KG, its contribution to the value of the loss function is 0

if the difference between the LPSIM’s score for the triplet and the LPSIM’s score for a negative

example is at least as large as the margin.

3.2 Generating Rare Disease Patient Representations

We apply the pretrained SHEPHERD model to our multi-faceted rare disease diagnosis tasks. Start-

ing with the pretrained GNN model, we learn patient embeddings that encode each patient’s phe-

notype subgraph. Depending on the diagnostic task, we also learn embeddings for each patient’s

candidate genes, diseases, or other patients. Concretely, for every patient Ti, we generate an ag-
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gregated representation of all phenotype terms p ∈ Pi in the phenotype subgraph via a transformer

encoder and an attention-weighted average of the individual phenotype embeddings:

xPi
=
∑
p∈Pi

α · xp, where α =
exp(xp · a)∑

p∈Pi
exp(xp · a)

(6)

where α denotes the attention weights, xp denotes the embedding for phenotype term p, and a is

a trainable vector initialized via Xavier [105]. The aggregated phenotype representation xPi
, each

candidate gene node embedding xg, and each candidate disease node embedding xd are pushed

through two nonlinear layers to produce the embeddings zPi
, zg, and zd, respectively, as:

zPi
= f(f(xPi

·W1 + b1)W2 + b2) (7)

zg = f(f(xg ·W1 + b1)W2 + b2) (8)

zd = f(f(xd ·W1 + b1)W2 + b2) (9)

where f is a nonlinear function (here, leaky ReLU), and W1, W2, b1, and b2 are trainable weights.

The embeddings, zPi
, zg, and zd, are each d-dimensional, where the output dimension d is deter-

mined via hyperparameter search (Section 4.4).

Finally, each candidate gene’s embedding zg may be augmented with the embeddings of the

K most similar genes. First, an aggregated embedding ẑg of the K genes with the highest number

of shared phenotype terms as gene g is generated:

ẑg =
K∑

h=1

sim(g, h)∑K
i=1 sim(g, i)

∗ zh where sim(g, h) = |Pg ∩ Ph|. (10)

The original gene embedding is then updated via a gating mechanism as follows:

zg = (1− θg) · zg + θg · ẑg, (11)

where θg controls the contribution of the original gene embedding for gene g. We set θg = ω ∗
exp(−ω ∗ |Ng|) + 0.2 where ω is a hyperparameter for the contribution of the augmented gene

embedding, and |Ng| is the node degree for gene g to preferentially update the embeddings for

genes with lower degree (i.e., genes that are not as well-characterized) [106].
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This approach is motivated by the observation that novel diseases or disease genes can have

limited prior research or understanding, resulting in scarce neighbors in the knowledge graph. Due

to this sparsity, the nodes’ embeddings are of lower quality. For example, in an extreme case, a

gene node without any connections to the rest of the knowledge graph would have a randomly

initialized embedding. As such, we leverage information about shared phenotypic neighbors to

augment these low-information gene nodes.

3.3 Discovering Causal Genes

SHEPHERD can prioritize candidate genes to assist clinicians in finding the causal gene(s) harbor-

ing the variants that best explain a patient’s presenting symptoms. Candidate genes for each patient

are scored by measuring the similarity SIM(P, g) between a candidate gene g and a patient’s set

of phenotype terms P . SHEPHERD is optimized such that the candidate gene embedded near the

patient’s set of phenotype terms in the embedding space indicates that the gene will likely cause

the patient’s symptoms. SIM(P, g) consists of two components, EMBSIM(P, g) and SPLSIM(P, g).

It is designed such that EMBSIM(P, g) captures global network topology (i.e., by leveraging SHEP-

HERD’s low-dimensional embedding space) and SPLSIM(P, g) captures local network information

(i.e., by calculating shortest path length distances). This approach is grounded in the observation

that, while methods that learn global network topology yield higher overall performance than local

methods considering only local network information, the latter tends to rank true candidate genes

higher when provided a short list of candidate genes [107].

Embedding-based similarity. We calculate EMBSIM, an embedding-based similarity between ag-

gregated embeddings of phenotype terms P and an embedding of the candidate gene g as follows:

EMBSIM(P, g) = ACT(zTPWzg) (12)

where ACT is a nonlinear function (here, tanh). EMBSIM values range between [−1, 1].

Network-based similarity. We calculate the shortest path length (SPL) similarity between aggre-

gated phenotype terms P and candidate gene g as follows:

SPLSIM(P, g) = NORM(AGGp∈P (−d(p, g))), (13)

where P is the patient’s phenotype terms and g is a candidate gene, AGG is some aggregation
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function (e.g. mean), NORM(x) = 2(x−max(x))
max(x)−min(x)

− 1 is a normalization function to scale the values

in the range [−1, 1], and d(p, g) is the minimum number of hops between p and g in the KG.

Overall similarity. The final score between a patient’s phenotype terms P and candidate gene g

is defined as:

SIM(P, g) = η · EMBSIM(P, g) + (1− η) · SPLSIM(P, g) (14)

where η is a hyperparameter ranging from [0, 1] that represents the amount of weight to place on

EMBSIM versus SPLSIM in the final gene prioritization scoring. SIM values range between [−1, 1].

Objective function. We leverage a multi-similarity loss to encourage patient phenotype embed-

dings to be near their causal gene embedding and far away from the incorrect candidate gene

embeddings. The multi-similarity loss is defined as follows [108]:

LG =
1

N

N∑
i=1

 1

α
log(1 +

∑
g∈Gc

i

exp(−α(SIM(Pi, g)− γ))) +
1

β
log(1 +

∑
g∈Gd

i

exp(β(SIM(Pi, g)− γ)))

 ,

where N is the number of patients, α, β, and γ are hyperparameters, and SIM(Pi, g) denotes the

similarity between the aggregated phenotype embedding for patient i and the gene embedding of

either the patient’s causal gene (g ∈ Gc) or distractor gene (g ∈ Gd) (Section 3.3). The optimized

embedding space encodes patient information such that similarity between a patient’s phenotype

terms and candidate genes (i.e., how likely it is that a given gene explains the patient’s symptoms)

is inversely proportional to the distance between the patient embedding and the embedding of the

candidate gene.

3.4 Finding Similar Patients

SHEPHERD can find similar patients from a cohort of rare disease patients. This is important

for identifying molecular diagnoses and validating already prioritized candidate genes. To match

rare disease patients, SHEPHERD first learns a task-specific similarity function that captures the

similarity between two patients. This training process produces an embedding space in which the

similarity between two patients is inversely proportional to the distance between the two patient

embeddings. The embedding space can be used at inference time to answer “patients-like-me”

queries. We define the similarity between two patients i and j as the L2 distance between their
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aggregated phenotype embeddings zPi
and zPj

:

SIM(Pi, Pj) = −‖zPi
− zPj

‖22. (15)

Importantly, when calculating patient similarity, we do not include any genotype information for

the patients. This makes the model applicable in settings where the patient’s genome has not been

sequenced or when the analysis results are still pending.

Objective function. SHEPHERD is trained to capture patient similarity using the neighborhood

component analysis loss:

LPH =
−1

|Bp|
∑
Pi∈Bp

log


∑

Pj∈Bp\Pi;Pj∈Sc
i

exp(SIM(Pi, Pj))∑
Pj∈Bp\Pi

exp(SIM(Pi, Pj))

 , (16)

where Bp is a batch of patients sampled from the training set and Sc
i is the set of patients with

the same causal gene as patient Pi. Optimizing the NCA loss [109] minimizes the distances be-

tween patient embeddings with the same causal gene and maximizes the distances between patient

embeddings with different causal genes.

3.5 Estimating Patient-Disease Similarity

Finally, SHEPHERD can characterize a clinical presentation based on existing knowledge about

other rare and common diseases. We analogously perform novel disease characterization by learn-

ing an embedding space such that the similarity between a patient and a disease (i.e. how likely

it is that a patient has that disease) is inversely proportional to the distance between the patient

embedding and the disease embedding. We define the similarity between a patient’s phenotype

terms P and disease d as the L2 distance between the aggregated phenotype embedding and the

disease embedding:

SIM(P, d) = −‖zd − zP‖22 (17)

Objective function. To optimize patient phenotype embeddings to be near their correct disease(s),
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we leverage a multi-modal version of the NCA loss, defined as:

LD =
−1

|Bp|
∑
Pi∈Bp

log


∑

dj∈Bd;dj∈Dc
i

exp(SIM(Pi, dj))∑
dj∈Bd

exp(SIM(Pi, dj))

 (18)

where Bp and Bd are batches of patients and candidate diseases, respectively, that are sampled

from the training set, Pi corresponds to the phenotype term set for patient i, and Dc
i is the set of

correct diseases for patient i. While |Dc
i | = 1 for most patients in our cohorts, several patients with

multiple diseases exist.

4 Training SHEPHERD Models
We first describe our approach for training SHEPHERD to perform multi-faceted diagnoses. We

provide details about negative sampling strategies, patient-driven sampling, and disease-split train-

ing on simulated patient data. We conclude with details regarding hyperparameter tuning and

implementation in Pytorch.

4.1 Overall Objective Function

We train SHEPHERD in two stages. First, we train the model to learn to capture the relationships

between biomedical entities in the rare disease knowledge graph (Section 3.1). Then, we simul-

taneously train the model to perform patient-centric rare disease tasks and continue predicting

knowledge relationships in the KG (Section 3.2-3.4). Concretely, the model is jointly trained to

achieve two distinct objectives: (1) to capture the relationships in the underlying knowledge graph

and (2) to match a patient’s presenting symptoms with the patient’s causal gene(s), disease(s), or

other similar patients. We model these objectives with two separate loss functions, the pretraining

link prediction loss, LLP, and a diagnosis loss, LDX ∈ {LG, LD, LPH}, which aligns patient phe-

notype terms to genes, diseases, or other patient phenotypes respectively. The overall loss is as

follows:

L = λLDX + (1− λ)LLP (19)

where λ is a hyperparameter controlling the weight of each loss. Whereas during pretraining,

we train the model to capture generalizable biomedical knowledge by performing link prediction

for all relation types, during fine-tuning, we focus on predicting gene, phenotype, and disease

relations, which are most important for rare diseases. Training the model to perform link prediction
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enables the model to generalize to phenotypes and genes unseen in the training data.

4.2 Negative Sampling

To learn a meaningful representation space, we need negative examples (i.e. edges that do not

exist in the KG or candidate genes, diseases, or other patients that are not associated with a given

patient). The following outlines the negative sampling strategies used for pretraining and each of

the three rare disease diagnosis tasks.

Link prediction. We construct negative examples of triplets (u, r, v−) that do not exist in the KG

by perturbing the target nodes while preserving the types of the source and target nodes and edge

relation. For example, given a positive example of a triplet where the node and relation types are

(protein, has phenotype, phenotype), a negative example is obtained by shuffling all phenotype

nodes in the batch, thereby maintaining the node and relation types of the positive example.

Causal gene discovery. Negative examples are constructed by taking the union of the candidate

genes for all patients in a given batch. As noted in Section 2.1 to 2.4, each patient has a list of

candidate genes that have been shortlisted as the most probable genes to cause the patient’s symp-

toms, and identifying the true causal gene(s) among them is especially challenging. We ensure

that these “hard” candidate genes are included in the candidate list for each patient during training,

as using such “hard” examples tends to improve the efficiency of training [110]. Furthermore, to

maximize the number and frequency of candidate genes seen during train time, we up-sample a

subset of candidate genes that are under-represented across all patients. Concretely, we count the

frequencies of candidate genes in the prior and current batches, select the k most infrequently seen

candidate genes (i.e. the k rarest candidate genes) in training batches, and add them to each pa-

tient’s candidate gene list. Note that we only prioritize the “hard” candidate genes for each patient

at inference time without any up-sampling.

Novel disease characterization. Negative examples include all diseases that do not explain the

patient’s symptoms. First, we randomly sample 1,000 diseases from all diseases in the KG to serve

as negative examples for each batch. Then, we calculate a patient’s similarity to all disease nodes

in the KG at inference time.

Identifying similar patients. Negative examples are simply all of the patients in the batch who do
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not have the same causal gene as the patient. We construct batches to ensure at least two positive

examples (i.e., patients with the same gene) for each patient in the batch. All remaining patients

serve as negative examples. At inference time, we calculate a patient’s similarity to all patients in

the cohort.

4.3 Disease-Split Training on Simulated and Publicly Available Patients

We train our model primarily on the simulated patient dataset. Training on simulated data of-

fers several benefits: the simulated cohort is larger and more diverse than any real-world patient

dataset, the trained models can be released without the risk of exposing any patient information,

and the models can be evaluated on an independent real-world cohort to test how well a model

can generalize to patients unseen during training. Further, and most importantly, we achieve gen-

eralizability to real-world cohorts by splitting patients into train and validation sets according to

disease. Concretely, we split the list of diseases represented by the simulated patient cohort into

train and validation. Then, we assign patients to train or validation sets such that patients with the

same disease are either entirely in the training or fully in the validation set. As a result, the model

is optimized so that its parameters are broadly transferable to patients with different diseases. The

resulting train and validation cohorts contain 36,224 and 6,400 patients, respectively.

For the causal gene discovery task, we perform additional training on patients from the My-

Gene2 and DDD cohorts. These additional cohorts constitute 3.6% of the training data. Unlike the

UDN cohort, the MyGene2 and DDD cohorts do not have candidate genes for each patient. There-

fore, we construct candidate gene lists by sampling 20 genes that are neighbors of each patient’s

causal gene or phenotypes in the rare disease knowledge graph.

4.4 Additional Training Details

Node pretraining data split. Edges in the knowledge graph are randomly split into train (80%),

validation (10%), and test sets (10%). Note that the forward and reverse edges of the same pair of

nodes are maintained in the same data split to prevent data leakage.

Patient-driven sampling. We design a new approach for batch sampling that enables the model

to perform patient gene prioritization while maintaining the topology of the KG. We first sample

m patients and add their associated phenotypes and genes to the batch. Then, we add n nodes

randomly sampled from the genes, phenotypes, and disease nodes in the KG. This allows for
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inductive generalization by maintaining the topology of nodes not found in the training data.

Normalization. To help optimize model performance and convergence, we apply two normaliza-

tion strategies to SHEPHERD. Specifically, we use LayerNorm [111] immediately after each con-

volutional layer and BatchNorm [112] following a nonlinear activation layer (here, leaky ReLU).

Hyperparameter tuning. We leverage Weights and Biases [113] to select optimal hyperparam-

eters via a random search over the hyperparameter space. We first choose pretraining hyperpa-

rameters to optimize the micro F1 score on the pretraining validation set. The pretraining vali-

dation set consists of a set of edges that exist in the knowledge graph and a set of edges gener-

ated via negative sampling that does not exist (Section 4.2). Hyperparameters were selected via

random search from the following values: learning rate ∈ [0.0001, 0.0005, 0.001, 0.005], weight

decay ∈ [0, 0.005, 0.0005], dropout ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], and the number of GAT at-

tention heads ∈ [2, 4]. We also perform a search over the dimension of the network layers: in-

put size ∈ [2048, 4096], hidden size ∈ [256, 512, 1024], and output size ∈ [64, 128]. We then

freeze the pretraining hyperparameters and perform a hyperparameter search independently for

each rare disease task. We select task-specific hyperparameters to optimize the mean reciprocal

rank of the correct genes, diseases, or patients on the disease-split simulated validation set. Im-

portantly, the validation set containing simulated patients is entirely independent of the evaluation

dataset, which includes patients from the Undiagnosed Diseases Network. We consider the fol-

lowing hyperparameters: learning rate ∈ [0.00001, 0.00005, 0.0001, 0.0005, 0.001], λ ∈ [0.1, 0.9],

η ∈ [0.1, 0.9], k most infrequently seen genes ∈ [64, 128, 192], number of transformer layers for

the phenotype encoder ∈ [0, 3, 6], number of heads in the transformer layers ∈ [4, 8, 16], con-

tribution of the augmented gene embedding ω ∈ [0.1, 0.9], number of K most similar genes

to augment the gene embedding ∈ [1, 2, 3, 4, 5], and number of nodes n to sample per batch in

∈ [100, 200, 300, 400]. The code for hyperparameter selection and the optimal hyperparameters

can be found at https://github.com/mims-harvard/SHEPHERD.

Implementation. We implement SHEPHERD using Pytorch (Version 1.8.0) [114], Pytorch Light-

ning (Version 1.4.5) [115], and Pytorch Geometric (Version 1.7.2) [116]. We leverage the Weights

and Biases [113] platform for hyperparameter tuning and model training visualization, and we cre-

ate interactive demos of the model using Gradio [117]. Models are trained on a single NVIDIA

Quadro RTX8000 GPU.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2024. ; https://doi.org/10.1101/2022.12.07.22283238doi: medRxiv preprint 

https://github.com/mims-harvard/SHEPHERD
https://doi.org/10.1101/2022.12.07.22283238
http://creativecommons.org/licenses/by/4.0/


5 Further Details on Statistical Analysis
We describe the evaluation setup, baseline models, and statistical tests used to evaluate SHEPHERD.

5.1 Performance Stratified by Patient and Site Characteristics

We evaluate the trained model on the cohort of real-world UDN patients who have received a

molecular diagnosis (Section 2.1). We measure the mean reciprocal rank of all of the patients’

causal genes and calculate the percentage of causal genes that appear in the top k ranked genes

for k ∈ {1, 3, 5} for the EXPERT-CURATED candidate gene lists and k ∈ {1, 5, 10, 25, 50} for

the longer VARIANT-FILTERED candidate gene lists. We analyze the performance across each of

the UDN clinical sites, disease categories, and evaluation years. We also assess the correlation

between model performance and the number of patient phenotype terms, the distance between the

causal gene and phenotype terms in the KG, and the prevalence of the genetic conditions in the

population. We leverage the number of ClinVar submissions for the causal gene as a proxy for

prevalence.

5.2 Comparison to Alternative Approaches

We compare SHEPHERD to several diverse approaches for causal gene discovery. The first cate-

gory includes network science or machine learning methods that enable us to assess the utility of

SHEPHERD’s graph neural network approach and the use of simulated patients: (1) mean shortest

graph distance, a network-science approach that prioritizes genes according to their average short-

est path in the KG to all of a patient’s phenotype terms; (2) supervised graph embedding, a logistic

regression approach that frames prioritization as a binary prediction task for each candidate gene

and represents each patient-gene option as the concatenation of the candidate gene’s pretrained

node embedding and the patient’s averaged phenotype node embeddings; and (3) supervised PCA

embedding, a logistic regression approach similar to (2) that, instead of the KG node embeddings,

utilizes a PCA-transformed shortest path length matrix from gene nodes to gene, phenotype, and

disease nodes.

We also compare SHEPHERD to six phenotype-based methods designed for causal gene dis-

covery. Three are information-theoretic approaches that compare patient phenotype terms to ei-

ther the phenotype terms associated with each candidate gene (ERIC, which is implemented in

XRare [25]) or to the phenotype terms of all the diseases related to a candidate gene (Phrank [16]

and PhenIX, which is implemented in Exomiser [24]). In the latter two approaches, each can-
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didate gene is prioritized according to the highest similarity score across all associated diseases.

LYRICAL is an approach that uses a likelihood ratio framework to estimate the extent to which

patients’ phenotypes and genotypes are consistent across all known diseases [21]. CADA is a

shallow network embedding-based approach that frames the task as link prediction between phe-

notype and gene nodes [19]. HiPhive is an approach implemented in Exomiser that leverages

ontologies from humans and model organisms to assess phenotypic similarity. When phenotypic

data is unavailable for a candidate, HiPhive employs a random walk approach on a protein-protein

interaction network to establish connections between the candidate and other genes with similar

phenotypes [24]. These baselines constitute a diverse set of methodological approaches for rare

disease diagnosis. LIRICAL, XRare, and Exomiser are the strongest performing approaches in

a prior comparison of gene prioritization tools [118], and Exomiser is currently in use at multi-

ple UDN sites [47]. Finally, we compare to a non-guided baseline, Random, which represents

performance without prioritizing candidate genes.

When possible, we leverage publicly available code and our KG to implement each causal

gene discovery benchmark to elucidate whether performance differences were due to the algorith-

mic approach rather than a different or more up-to-date underlying knowledge base. In instances

where we are unable to leverage our KG (i.e., for LIRICAL, HiPhive, and PhenIX), we leverage

input data that includes only the gene-phenotype-disease associations that were present at the time

when our rare disease KG was constructed to enable a fairer comparison. We use code from https:

//bitbucket.org/bejerano/phrank and https://github.com/Chengyao-Peng/CADA to run Phrank and

CADA, respectively, using our rare disease KG. We run Exomiser v13.0.1 (released Nov 23, 2021)

using their time-stamped input data from https://github.com/exomiser/Exomiser/tree/13.0.1. We

run Exomiser with two different phenotype similarity options, PhenIX and HiPhive, and we lever-

age the GENE PHENO SCORE for prioritization. We re-implement the ERIC phenotype similarity

score used in XRare; direct gene-phenotype edges and indirect gene–disease-phenotype paths from

our KG are used to construct the phenotype terms associated with each candidate gene. We run

LIRICAL with the “orphanet” data flag using code from https://github.com/TheJacksonLaboratory/

LIRICAL by supplying both a VCF file and positive and negative (i.e., that the patient did not ex-

hibit) phenotype terms. Notably, all baselines except for LIRICAL leverage Exomiser to generate

the VARIANT-FILTERED candidate genes for each patient before phenotype-based prioritization. In

contrast, LIRICAL performs its variant-based filtering using the provided VCF files.

We also compare SHEPHERD to approaches that can be used to identify similar patients.
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The information theoretic approach Phrank can be leveraged to calculate the semantic similarity

between two sets of patient phenotype terms based on the information content of their shared phe-

notype ancestors in the Human Phenotype Ontology [16]. SET BASED calculates distance between

two sets of phenotype terms Pi and Pj using Jaccard distance, defined as J = 1− |Pi∩Pj |
|Pi∪Pj | .

We further compare SHEPHERD to a network-based phenotype search approach for novel

disease characterization. For each patient phenotype, we identify its associated diseases based on

our KG (i.e., direct disease neighbors of each phenotype node) and retrieve the disease category of

the diseases. The percent similarity of the patient’s disease presentation to each disease category is

computed as the percentage of the associated diseases in that category. These similarities become

the KG-derived interpretable name for the patient’s novel disease presentation.

5.3 Assessing Statistical Significance

We perform a one-sided Wilcoxon signed-rank test to assess whether there is a significant differ-

ence in causal gene performance between SHEPHERD and baseline methods. After confirming that

the data is not normally distributed, we evaluate whether there is a statistically significant differ-

ence in SHEPHERD’s performance across sites, evaluation years, and primary presenting symptoms

using a Kruskal-Wallis H-test. In the knowledge graph, we calculate the Spearman correlation

coefficient to measure the correlation between causal gene rank and the distance between a pa-

tient’s phenotype terms and causal gene. To assess whether patients cluster by disease category,

we perform K-means clustering with k set to the number of disease categories, and we evaluate

the clusters according to an adjusted mutual information score from scikit-learn, which is

designed to consider clusters of different sizes. We assess the significance of the resulting clus-

tering via a permutation test with 100 random permutations of the true cluster labels. We perform

a Mann-Whitney test to measure the difference in distances in embedding space for patients with

the same versus different disease categories. Finally, we perform the two-sample Kolmogorov-

Smirnov test to assess whether the distribution of embedding distances for patients with the same

disease is identical to that for patients with different diseases.

5.4 Visualization of Learned Embeddings

We visualize embeddings learned via SHEPHERD in a Uniform Manifold Approximation and Pro-

jection (UMAP) plot [119]. We use the umap-learn Python package [120] and perform a grid

search over the n neighbors, min dist, and spread UMAP parameters. We select parame-
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ters that maintain global structure in the main panel of Figure 5a and Figure 6a.

5.5 Visualization of Patient Neighborhoods in the Knowledge Graph

To visualize the local neighborhood of patients’ disease, phenotype, and gene nodes (Figure 4),

we calculate the shortest paths between patient-relevant nodes and extract all nodes in those short-

est paths. We visualize the resulting patient neighborhoods using Gephi 0.9.4 [121]. We apply

Fruchterman Reingold, Noverlap, and Label Adjust layouts and manual adjustment to organize the

nodes so they do not overlap.
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