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Key Points 
Question: How do clinical and neurobiological sources of variation in depression interact to give rise to 
population heterogeneity?  
Findings: In this cohort study, we identified statistically significant neurobiological profiles distinct to 
dissociable clinical features of depression and provide evidence for residual neurobiological heterogeneity after 
tightly controlling clinical variation, resulting in clusters with statistically significant differences in cognition.  
Meaning: These results provide insights into the complex etiological relationships between neurobiological and 
clinical variation in depression and inform future biotype research by highlighting the need to distinguish 
biotypes both clinically and neurobiologically. 
 
Abstract 
Importance  
Patients with depression vary from one-another in their clinical and neurobiological presentation, yet the 
relationship between clinical and neurobiological sources of variation is poorly understood. Determining 
sources of heterogeneity in depression is important to gain insights into its diverse and complex neural etiology. 
Objective 
This study aims to determine how clinical and neurobiological sources of variation in depression interact to give 
rise to population heterogeneity. Specifically, we aimed to test if depression heterogeneity is characterized by 
subgroups that differ both clinically and neurobiologically and/or whether multiple neurobiological profiles give 
rise to the same clinical presentation. 
Design 
Clinically dissociated groups were selected to isolate clinical characteristics of depression (symptoms of 
anhedonia, depressed mood, and somatic disturbance; severity indices of lifetime chronicity and acute 
impairment; and late onset). Residual neurobiological heterogeneity within each group was assessed using 
neurobiologically driven clustering.  
Setting 
This study utilizes population-based data from the UK Biobank over multiple imaging sites.  
Participants 
All depressed participants (N=6,121) met one of the three clinical criteria: ICD10 label for depressive 
episode(s), probable MDD status, one or more recorded depression episodes. Control participants (N=8,565) 
reported minimal depression scores and no history of depression. 
Exposure 
There are no interventions or exposures in this study. 
Main Outcomes and Measures 
This study used several clinical features, multimodal MRI, and outcome phenotypes. 
Results 
The six clinically dissociated subgroups (total N=1909, n male=771, mean[SD] age=62.64[7.78]; subgroups: 
211<n<576) had significantly larger (p<0.005, CI<[-0.260,-0.042]) neurobiological normative deviations than a 
comparison heterogeneous group (n=4210) and had distinct neurobiological profiles from each other. 
Imaging driven clustering within each clinically dissociated group identified two stable subtypes within the 
acute impairment group that differed significantly (p=0.003, CI:[-1.23,-0.345]) in cognitive ability, despite 
identical clinical profiles.  
Conclusions and Relevance 
The study identified distinct neurobiological profiles related to particular clinical depression features that may 
explain inconsistencies in the literature and sub-clusters within the acute impairment group with cognitive 
differences that were only differentiable by neurobiology. Our results provide evidence that multiple 
neurobiological profiles may give rise to the same clinical presentation, emphasizing the presence of complex 
interactions between clinical and neurobiological sources of heterogeneity.   
 
 
Study type: Cross-sectional study  
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Introduction 
Depression is one of the most common mental health disorders with a lifetime prevalence of 27%1. 

Despite its prevalence, depression often goes underdiagnosed (especially in middle and older age2), and 
treatment efficacy is poor such that only 30% of patients respond to the first line of treatment3. Multiple 
neuroimaging correlates of depression have been identified, including structural, diffusion, and resting state 
abnormalities in the frontal cortex, deep nuclear gray matter, and temporal and parietal regions4–6. However, 
these findings have suffered from inconsistencies between reported results5,7 and/or small magnitude of effect8. 
Several prominent studies have suggested that such inconsistencies are largely due to heterogeneity (i.e., 
variability among individuals in their clinical symptomatology and/or neurobiology)5,7,9–11. The goal of this 
work is to parse the heterogeneity of depression to determine more robust neuroimaging correlates and gain 
insight into depression etiology. 

Prior work to investigate heterogeneity in depression includes initiatives such as RDoC and HiTOP, 
which have defined transdiagnostic clinical commonalities such as RDoC’s Loss subconstruct12 and HiTOP’s 
Internalizing disorders13. Data-driven approaches have performed clustering on depression symptom scores to 
identify clinical subtypes14–19. Alternatively, other studies have focused on neurobiological sources of 
heterogeneity by performing data-driven clustering analyses on neuroimaging biomarkers20,21, albeit with 
challenges linked to overfitting22. Despite the valuable insights gained in these studies, the lack of convergence 
in observed depression subtypes across the emerging literature may suggest that the nature of depression 
heterogeneity is more complex and multifaceted than previously considered.  

Heterogeneity is often implicitly or explicitly conceptualized as the presence of discrete subtypes within 
the overall population. Each subtype is thought to be characterized by a specific set of clinical features which 
arise from a specific set of neurobiological features, which we refer to as a one-to-one brain-symptom mapping 
(Fig. 1A). In this conceptualization, the same subtypes could be derived by investigating either the 
neurobiological or clinical features in isolation. Alternatively, it is possible that a specific set of clinical features 
may arise from multiple different neurobiological patterns in different individuals, which we refer to as many-
to-one brain-symptom mapping (Fig. 1B; previously described as equifinality23). Note that one-to-one mapping 
may be multivariate in nature, such that a set of symptoms may be linked to a complex neurobiological pattern. 
In this study, we develop a novel two-stage framework to test one-to-one and many-to-one theories of 
depression heterogeneity. Notably, one-to-one and many-to-one mappings are not mutually exclusive, some 
mappings between brain and symptoms can be one-to-one and others can be many-to-one.  

The goal of this study is to test one-to-one and many-to-one theories of depression heterogeneity by 
disentangling clinical and neurobiological sources of heterogeneity in depression. Specifically, we dissociate 
clinical features of depression that are typically highly collinear, which enables the investigation of potentially 
distinct neurobiological correlates of distinct clinical facets that jointly comprise depression. Based on prior 
suggestions that heterogeneity reduces effect sizes, we hypothesize that normative deviation magnitudes will be 
larger in resulting clinically dissociated groups relative to a heterogeneous comparison group. We furthermore 
hypothesized that clinically dissociated groups would be characterized by distinct neuroimaging profiles, in line 
with the one-to-one theory of depression heterogeneity. We then parse residual neurobiological heterogeneity 
within groups to investigate the presence of many-to-one mapping. We hypothesized that some clinically 
dissociated groups may contain stable and clinically relevant neurobiological subclusters (despite tightly 
controlling clinical heterogeneity), in line with the many-to-one theory of depression heterogeneity.  
 
 
Methods 

Dataset: This study utilizes data from the UK Biobank25–27. Depressed individuals were selected if they met 
at least one of three diagnostic criteria: i) an ICD10 label for F32 (depressive episode) or F33 (recurrent 
depressive episode; UKB variable ID 41270), and/or ii) probable MDD status as defined by 28 (UKB variable 
ID 20124 | 20125), and/ or iii) one or more recorded episodes of depression (UKB variable ID 4598 | 4631). 
Participants were placed in one of six dissociated clinical groups (anhedonia, low mood, somatic, chronic, late 
onset, acute impairment) or in the heterogeneous comparison group based on their self-response on the Recent 
Depressive Symptoms questionnaire (RDS)8, age of onset, and number of episodes (see Supplementary 
Methods, Table S1, and Table S2). Notably, the clinically dissociated groups were explicitly chosen to isolate 
clinical features along three axes of clinical variation (symptomatology, severity, age of onset), which enables 
the investigation of differential neurobiological profiles. These clinically dissociated groups were not intended 
to comprehensively map all individual variation in depression. Indeed, most individuals with depression present 
a multifaceted (rather than isolated) clinical profile and are grouped in the ‘heterogeneous group’, which is 
therefore representative of traditional depression study cohorts. Demographic information for the clinically 
dissociated groups is reported in Table S3.  

Imaging features: We investigated 90 multimodal imaging features that have previously been associated 
with depression in an older cohort6, especially in relation to the clinical features of interest (see Supplementary 
methods). For each imaging feature, normative modeling was used to estimate the normative deviation for all 
participants in the combined depressed groups (N=6,121) relative to healthy controls (N=8,565; see 
Supplementary methods for details and Fig. S1 for normative modeling accuracy measures).  
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Statistical comparison of normative deviations across clinically dissociated groups: If heterogeneity led 
to decreased effect sizes in previous work, then clinically dissociated groups should be characterized by 
stronger neuroimaging normative deviations compared to a heterogeneous comparison group. To determine the 
imaging features that were significantly different between clinically dissociated groups, we applied two-sided 
one-way ANOVA with false discovery rate (FDR) multiple comparison correction over 90 imaging features. A 
two-sided t-test against 0 was performed for each imaging feature for each clinically dissociated group to assess 
their individual (rather than comparative) imaging profiles.  

ANOVA stability tests: We assessed the stability of the significant group difference replicating this 
analysis in a modest held-out dataset collected from UK Biobank participants released since the completion of 
the main analyses. Furthermore, we developed a null distribution of ANOVA F-statistics by randomly 
permuting participant labels (1000 permutations). To test for the impact of the larger heterogeneous group 
sample size, we subsampled the heterogeneous group down to N=300 (average sample size across the clinically 
dissociated groups) across 1000 bootstraps. Follow up details can be found in the Supplement. 

Data-driven clustering within clinically dissociated groups: Within each clinically dissociated group, 
clustering based on the 90 imaging features was performed to test for the possibility of many-to-one mapping 
(Fig. 1B). We did not perform clustering in the heterogeneous group because the goal of the clustering analysis 
was to assess the presence of residual neurobiological heterogeneity in clinically dissociated groups. The data-
driven clustering pipeline comprised of feature reduction, cluster number estimation, cluster stability testing, 
and null comparison (see Supplementary methods for details). 

Cluster differentiation: To determine if the clusters were clinically valuable, we investigated whether any 
clusters significantly differed on the following depression-relevant phenotypes: cognitive ability (quantified 
using the PCA weights calculated in 29), Neuroticism (see Table S2), and Townsend socioeconomic deprivation 
index. We conducted unpaired t-tests between the clusters within each clinically dissociated group, using false 
discovery rate correction for the 6 comparisons. Cognitive ability was selected as it is associated with 
depression in older adults 30. Neuroticism was selected as it is a strong correlate of depression, indicative of 
“trait-like” depression31. Socioeconomic deprivation was chosen as it is an important modulator of depression32.  
 
 
Results 

Parse clinical heterogeneity  
First we validated the clinically dissociated groups by assessing their longitudinal stability 

(F(5,2108)=32.14, p<0.008; Fig S2) and by verifying the groups differed in other depression related scores like 
the Generalized Anxiety Disorder  and Neuroticism questionnaires (F(6,6120)=46.6, pFDR=4.2e-120; 
F(6,6120)=99.8, pFDR=3.6e-56 respectively; Fig. S3 and Table S4). To determine what imaging features the 
combined depressed group differs from controls on, a t-test against 0 was performed for all 90 imaging 
normative deviations (Fig. S4).  

We hypothesized that the clinically dissociated groups are characterized by stronger neuroimaging 
normative deviations compared to a heterogeneous comparison group, in line with the one-to-one theory of 
heterogeneity and in support of the suggestion that heterogeneity leads to decreased effect sizes in the literature. 
ANOVA-based group comparisons revealed 10 out of 90 imaging features that showed significant group 
differences after correction for multiple comparisons (F(6,6212)>3.97 pFDR<0.0046; Fig. 3A-C). Tukey’s post-
hoc analysis revealed that effects were driven predominantly by differences between the somatic, late onset, 
acute impairment, and heterogenous groups (Table S5). All ANOVA results achieved significance compared to 
a null distribution derived from random groupings (Fig. S5) and replicated in a modest held-out sample (Fig. 
S6; held-out demographics Table S6). Notably, the deviations for the heterogeneous group were significantly 
smaller (closer to zero in magnitude of deviation from controls) compared to at least one clinically dissociated 
group in all features, which was robust against subsampling to control for sample size effects (Fig. S7). These 
findings support the suggestion that heterogeneity contributed to reduced effect sizes in previous studies. 

 Investigating the group difference results in greater granularity. The acute impairment group differed from 
at least one other group with more negative normative deviations in most imaging features (superiorfrontal CT 
and insula, amygdala, posterior cingulate gyrus, precentral gyrus, and frontal orbital GMV). The late onset 
group differed from at least one other group in four imaging features (Fig. 3A-B) with more positive normative 
deviations than all the other groups in the amygdala and precentral gyrus GMV. The low mood group differed 
significantly from at least one other group in two imaging features, including positive normative deviations in 
posterior cingulate gyrus GMV. The somatic group differed significantly from at least one other group in six 
imaging features, including the precentral cortex, PCC, frontal orbital cortex, and amygdala. These findings 
reveal distinct neurobiological correlates of distinct clinical facets that jointly comprise depression. 

 
Neurobiological heterogeneity 
We next investigated the potential presence of the many-to-one theory by assessing residual neurobiological 

heterogeneity within clinically dissociated groups. Our findings revealed that a 2-cluster solution was the 
optimal k in most bootstraps (cluster imaging profiles in Fig. S8; bootstraps in Fig. S9). The presence of stable 
participant clusters within clinically dissociated groups suggests the presence of some residual neurobiological 
variation even within groups that are highly clinically dissociated.  
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On visual inspection, the clusters were relatively continuous in nature (consistent with previous work22,24) 
and it is therefore important to determine the stability of the cluster assignments22. ARIs were above 0.6 for all 
clinically dissociated groups except for the low mood group, and all ARIs exceeded a null calculated from 
permuted data (Fig. 4A).  

We furthermore tested the clinical utility of our data-driven clusters using depression-relevant phenotypes of 
cognitive score, trait neuroticism, and socioeconomic deprivation. The clusters in the acute impairment groups 
significantly differed in cognitive score after correction for multiple comparisons (T(200)=-3.5, pFDR=0.003; 
Fig. 4B & Table S7). In post hoc analysis, we determined specifically that the fluid intelligence measure 
(included in the composite cognition measure) significantly differed between the acute impairment clusters 
(T(527)=0.02, pFDR=0.004). The first cluster was characterized by reduced FA, GMV, and CT and had lower 
cognitive scores as compared to the second cluster, despite the clusters not differing significantly in age, sex, or 
depression score (pFDR>0.186). These findings are consistent with prior work24, and with hypothesized 
relationships between depression and cognition33. No significant cluster differences were observed for 
Neuroticism or the Townsend Deprivation Index post multiple comparisons correction (Table S7). 
 
 
Discussion 

In this study we determined how clinical and neurobiological sources of variation in depression interact 
to give rise to the heterogeneity that is observed across the clinical population. Our results provide evidence to 
support the presence of both one-to-one and many-to-one heterogeneity in depression, emphasizing the presence 
of complex interactions between clinical and neurobiological sources of variation. Specifically, our findings 
revealed larger magnitude of neuroimaging normative deviations within clinically dissociated groups compared 
to a ‘typical’ heterogeneous comparison group, which is in line with the one-to-one theory of heterogeneity and 
points to the impact of heterogeneity in prior studies as an obfuscating factor. At the same time, we revealed 
evidence for residual neurobiological clusters that differed in cognitive ability within the acute impairment 
group, in line with the many-to-one theory of heterogeneity. To our knowledge, this is the first study to 
explicitly assess the presence of many-to-one mapping after tightly controlling for clinical heterogeneity, 
indicating that multiple distinct neurobiological mechanisms may give rise to the same clinical presentation for 
some clinical features. Moving beyond traditional subtyping approaches for depression heterogeneity, our novel 
hierarchical framework allowed us to dissociate neurobiologically distinct profiles for individual clinical 
features of depression and tease out residual neurobiological heterogeneity after tightly controlling clinical 
variation. Importantly, the resulting insights into the interactions between clinical and neurobiological sources 
of depression heterogeneity provide a strong foundation for future research into depression biotypes by 
highlighting the importance of concurrently modeling multiple axes of variation to distinguish biotypes based 
on both clinically and neurobiologically variables. 

Our findings revealed that each isolated clinical depression feature was associated with distinct 
neuroimaging correlates (Fig. 3). Importantly, these results provide symptom-level insights into the 
neurobiological etiology of depression. Some clinically dissociated groups showed imaging feature profiles in 
line with prior findings, whereas other groups were characterized by unexpected imaging profiles. For example, 
our findings reveal reduced gray matter volume in the bilateral amygdala and posterior cingulate gyrus in the 
acutely impaired group and multiple symptom groups, consistent with prior work34,35. Furthermore, we showed 
that somatic disturbance was associated with reduced gray matter volume in the primary motor cortex, in line 
with previous research36,37. The late onset group, however, was unexpectedly characterized by positive 
normative deviations (i.e., preserved/increased gray matter volume relative to controls; Fig. 3A). This finding is 
in the opposite direction of prior work linking late onset depression with gray matter atrophy38,39, which is 
sometimes posited as inherent to late onset etiology40. However some research has shown that remittance in late 
onset depression was associated with relatively larger gray matter volume41,42. As our late onset group 
deliberately contains individuals who are currently not high in depression symptoms to achieve the desired 
dissociation of clinical features, our findings do not support the assertion that gray matter atrophy is inherent to 
late onset etiology, but are instead consistent with prior literature pointing to larger gray matter volume as a 
protective mechanism linked to remission43. Potential mechanisms for increased gray matter include protective 
neuroplasticity inducing effects of antidepressant medication44 with increased duration of exposure occurring 
during treatment of multiple depressive episodes. These findings showcase the value of dissociating clinical 
features to tease apart discrepancies in the literature and inform possible mechanisms.  

More broadly, our results showed larger magnitudes of neuroimaging normative deviations in many of 
the clinically dissociated groups as compared to the comparison heterogeneous group, which supports the 
suggestion that heterogeneity is leading to smaller effect sizes8–10. In the age of population neuroimaging 
datasets, this finding points to the value of carefully parsing clinical heterogeneity to investigate one-to-one 
brain-symptom mapping and identify robust neuroimaging correlates.  

Moving beyond one-to-one brain-symptom mapping, our results revealed the presence of residual 
neurobiological heterogeneity within the acute impairment clinically disassociated group. Using a unique 
hierarchical approach, we found stable neuroimaging-driven participant clusters that differed on cognitive 
ability in the acute impairment group, which indicates the presence of many-to-one mapping for this clinical 
feature. Importantly, the resulting clusters differed in cognition (specifically fluid intelligence), which was not 
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explained by other clinical features such as depression severity or symptoms, socioeconomic deprivation, age, 
or sex. Specifically, one cluster was characterized by relatively impaired neurobiology and impaired cognitive 
ability, whereas the second cluster was characterized by relatively protective imaging features and preserved 
cognitive ability (e.g., similar to healthy controls). As such, the latter cluster may represent a cognitively 
resilient group despite matched symptoms of depression. The relationship between depression and reduced 
cognitive ability is well-established24,33,45, but the impact of depression severity (aka acute impairment) on 
cognitive ability is unclear due to inconsistent findings46,47. Our work provides insight into the potential reason 
for these inconsistent findings.  

The current study, while aided by rich data of the UK Biobank, had some limitations. We decided to 
tightly control the clinically dissociated groups to isolate individual clinical features, which was important to 
gain insights into sources of heterogeneity and to identify distinct neuroimaging patterns. However, the specific 
inclusions/exclusion criteria of our clinically dissociated groups focus on relatively atypical individuals because 
most individuals with depression have a more mixed clinical presentation. Future work may investigate the 
neuroimaging correlates of homogeneous groups with a more mixed clinical presentation to test whether the 
one-to-one brain-symptom mapping model extends to more complex and multivariate clinical profiles. The 
UKB does not perform structured clinical interview to confirm depression diagnosis, although we used 
alternative diagnostic criteria in line with prior work8. Nevertheless, follow-up work in clinical cohorts would 
be of interest. Additionally, this study focused on interactions between clinical and neurobiological 
heterogeneity, but future work may want to extend our approach into other sources of heterogeneity such as 
genetic variation48. Future efforts are also needed to further validate the neurobiological clusters identified in 
this work. The number of participants with complete data on clinically relevant phenotypes for differentiation 
was relatively small, which limited the number of phenotypes we could use for differentiation.   

In summary, our results provide insights into the symptom-level neurobiological etiology of depression 
and provides evidence for both one-to-one and many-to-one models of heterogeneity. Our findings provide 
insights into distinct symptom-level neural correlates within the broader construct of depression that may 
explain discrepancies in the literature and shed light on possible mechanisms. Taken together, our results 
suggest the importance for future studies to account for clinical and neurobiological heterogeneity when trying 
to understand depression etiology and neurobiological mechanisms.  
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