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Abstract 

Flow cytometry is a commonly used diagnostic technique for haematological malignancies. The gold 

standard method for analysis of flow cytometry data is manual gating, which is time consuming and 

requires a highly skilled operator, generating a bottleneck in the workflow and potentially increasing 

time to diagnose malignancy. For nearly 20 years attempts have been made at replacing manual 

analysis with automated algorithms, however these are not deemed accurate enough for clinical 

practice. Clustering methods have been the focus of previous automated attempts, though supervised 

methods have been shown to be more accurate and require less manual intervention. Tree-based 

classification algorithms make decisions using an analogous process to manual gating. One hundred 

and fifty-two flow cytometry files were generated from peripheral blood samples of patients with 

suspected haematological malignancies. A trained operator labelled events in these files as one of 

nine cell types. CART, Random Forest and XGBoost were trained on the labelled dataset and the 

performance was evaluated against previously published clustering methods. Classification algorithms 

showed higher mean F1 scores than clustering methods. There was no significant difference between 

CART, Random Forest and XGBoost mean F1 scores, and all three algorithms showed mean prediction 

times per sample of less than 25 seconds. Tree-based methods struggled to differentiate B cell 

subtypes, which show similar phenotypic signatures and present an area for future improvement. This 

work demonstrates the effectiveness of tree-based classification algorithms for flow cytometry 

analysis. Overall, CART may offer a solution to automated flow cytometry analysis for the purpose of 

haematological malignancies due to showing high agreement with manual analysis, and short 

prediction and training times. 
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Introduction 

Around 327,800 people in the UK, and 3.1 million people worldwide, have been diagnosed with 

cancer-related haematological malignancies [1,2]. Flow cytometry (FC) is a commonly used diagnostic 

technique for such disorders [3]. Cells from a liquid sample (such as blood) are stained with 

fluorochrome-conjugated antibodies which bind to surface and intracellular markers. The markers 

and/ or cells of interest will determine the antibody panel used for staining. Cells are sequentially 

passed through a laser and fluorescent light signals of the excited fluorochromes are measured, as 

well as the side and front scatter which indicate cell size and internal complexity, respectively. Marker 

expression is proportional to the measured emitted photons once the variable emission profiles of the 

applied fluorescent dyes are considered [4]. This allows cells to be identified based on marker 

expression, for example, it is known the majority of normal B cells express CD45, CD19 and CD20, 

though in Chronic lymphocytic leukaemia (CLL), malignant B cells additionally express CD5 and CD23 

[5,6]. This allows for the identification of malignant cell populations, enabling diagnosis and 

monitoring of disease [4,7,8]. 

The gold standard FC data analysis technique for the diagnosis of haematological malignancies is a 

process called “manual gating”. Manual gating involves visual inspection of “events”, individual 

records of each cell, viewed in one- or two-dimensional plots and the partitioning of known events 

into sub-populations in a hierarchical manner by drawing “gates” using a software interface [8]. 

Summary statistics are then reported, such as the percentage that the identified sub-populations 

make up of a wider population, the absolute counts of events in a sub-population, and the median 

fluorescence intensity (MFI) of a fluorochrome of a sub-population [9]. This allows for the formation 

of a composite phenotype of a sample, based on the pattern of antigen expression, which can be 

compared to World Health Organization classification guidance to indicate disease type [10]. This 

report, as well as the reports generated from other diagnostic tests, will be examined by a clinician 

who will form a diagnosis [7]. Manual gating is an inefficient, time-consuming process, with the 

operators’ bias potentially influencing results [11,12]. The process creates a bottleneck in the FC 

workflow and potentially increases the time it takes to diagnose malignancy [13]. Yet, early detection 

of cancer is likely the most effective strategy for reducing mortality rates [14]. Therefore, automated 

analysis of FC data for the diagnosis of haematological malignancies, which has the potential to be 

faster and less biased than current strategies, could provide both medical and economic benefit. 

For nearly 20 years, a plethora of attempts have been made at replacing manual gating systems with 

automated algorithms [15,16]. However, these have not become widely adopted in clinical practice, 

with a recent survey indicating that 80% of FC clinical laboratories worldwide “never” or “rarely” use 
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automated FC analysis software and only 2% “usually“ use it [17]. The key reason being that even the 

most advanced automated systems currently available fail to meet several needs of clinical 

laboratories, not least, the systems are not deemed accurate enough [18].  

Some successful attempts have been made at classifying FC samples by diagnosis, where the model 

input is the FC data generated from a single patient’s sample and the output is a diagnosis for the 

patient [19–22] . However, methods which classify each event within an FC sample, where the model 

input is the FC data from a single event and the output is the label of that event e.g. “B cell”, likely fit 

into the current diagnostic pipeline more effectively, reducing barriers to adoption and increasing the 

likelihood of these methods being integrated in clinical practice. This is because, although performing 

diagnosis may be straightforward based on the results of FC analysis with some analysis software even 

suggesting a diagnosis, performing diagnosis is the duty of clinicians, not the laboratory staff who 

perform FC testing [23,24]. 

Past attempts at automated FC analysis have focused on the use of clustering algorithms to group 

similar events into sub-populations [15]. Some of these attempts have gained substantial interest and 

have been subject to several benchmarking and comparison studies [8,25]. There are several 

advantages to clustering approaches. Firstly, labelling a dataset to be used for training classification 

algorithms requires knowledge of the identity of each event within a sample, whereas clustering can 

be used to identify novel sub-populations which were previously unknown [17]. Secondly, clustering 

algorithms can be applied to any FC sample, regardless of how data was obtained. In contrast, 

classification methods typically require the unseen data to possess the same input features the model 

was trained using, meaning that a trained classifier could only be used on unseen data generated using 

the same antibody panel, reducing its utility [26]. Furthermore, the labelling of datasets required as 

training data for classification algorithms is time consuming and expensive [27] 

Despite their somewhat limited use in the field thus far, classification algorithms which label each 

event in a sample possess properties which may make them an attractive proposition for use within 

clinical practice. Firstly, trained classification algorithms have been demonstrated to be more accurate 

on FC data than clustering algorithms which are entirely unsupervised [8]. Secondly, the primary aim 

of FC analysis for the diagnosis of haematological malignancy is to identify known populations. 

Identifying unknown, novel populations, which clustering algorithms are well suited for, is not the goal 

[28]. Furthermore, clustering approaches still require some manual intervention, as sub-populations 

require manual labelling, somewhat negating potential benefits of automated analysis. 

CART (classification and regression trees), Random Forest (RF) and XGBoost (XGB) are tree-based 

algorithms which can be used for classification. CART are binary trees which mathematically 
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determine the best split on single features. Training these trees involves repeatedly performing these 

splits, partitioning the prediction space based on simple rules. Predicting the class of an unseen data 

instance requires following the series of rules generated by the tree to determine a classification. Each 

rule follows the form of testing whether a feature is higher or lower than a value e.g. CD45 expression 

> 0.5 [29]. RFs create an ensemble of trees, each tree is varied due to having been limited to searching 

over a random subset of features on a random sample of training data when generating decision rules, 

with the output being the class voted by most trees [30]. XGB is a gradient boosting algorithm. It 

combines a series of weak tree classifiers which sequentially aim to further minimise the training error 

of the previous tree, ultimately resulting in a strong classifier [31]. RF and XGB are less likely to overfit 

training data than a single decision tree [32]. Tree-based classifiers could be particularly well suited to 

FC analysis, as the manual gating process is analogous to the decision-making process tree-based 

algorithms use, the label given to an event being dependent on whether fluorescence intensities are 

above or below certain thresholds.  The aim of this study was to develop an automated event labelling 

approach for FC analysis which utilises tree-based classification algorithms, and test against previously 

published clustering methods. 

Results 

Clustering Method and Classification Algorithm Performance 

The 100,000 events in 152 fcs files, generated from patient samples with suspected haematological 

malignancy, were first manually labelled based on cell type. This dataset was used to train and test 

the effectiveness of tree-based classification algorithms and previously published clustering methods 

at automated event labelling. Classification algorithms were trained twice, once with the models 

weighting training instances inversely proportional to class frequency in the dataset, and once 

without. 

Cell clusters identified by the clustering methods were matched to the labelled populations using the 

Hungarian assignment algorithm which maximises the sum of F1 scores across populations, allowing 

no population to be matched more than once. Clustering methods showed poorer performance than 

classification algorithms (mean F1 score: clustering methods; 0.28 ± 0.2 vs classification algorithms; 

0.94 ± 0.04) (Fig 1). Cytometree achieved the highest mean F1 score of any clustering method (0.60 ± 

0.21). All other clustering methods showed F1 scores of less than 0.5 (Table 1). The tree-based 

classification models showed consistently high mean F1 score (CART: 0.94 ± 0.02, RF: 0.95 ± 0.05, XGB: 

0.93 ± 0.02). A two-way ANOVA showed that there was not a statistically significant interaction 

between the classifier algorithm and weighting training samples (F (2, 54) = 1.09, p = 0.34). Simple 

main effects analysis showed that F1 score was not significantly different between classifier algorithms 
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(p = 0.05), with the simpler CART models performing as well as the more complex RF and XGB models. 

Additionally, balancing training weights did not significantly affect F1 score (p = 0.25), indicating that 

balancing of minority classes was not an effective mechanism for improving overall model 

performance. However, balancing training weights led to the XGB models exhibiting the lowest mean 

precision score of any classification algorithm (0.90), and the highest mean recall (0.96), 

(Supplementary Table 1 and 2). 

Training and Prediction Time 

Training time showed greater variation between classification algorithms than F1 score (CART: 447 ± 

21 seconds, RF: 7,027 ± 443 seconds, XGB: 103,285 ± 10,579 seconds). On average, XGB took 14.7 

times as long to run as RF and 231 times as long to run as CART (Fig 2). 

RF showed the longest mean prediction time per sample (22.69 ± 2.29 seconds) with CART and XGB 

taking less than 2 seconds on average (CART: 0.20 ± 0.02 seconds, XGB: 1.64 ± 0.39 seconds) (Fig 3). 

Cytometree took the longest mean time to make predictions of any clustering method (19.42 

seconds), though this was highly variable between samples and repeats (SD: 23.82 seconds). 

Fig 4 depicts mean prediction time and F1 score. Data points in the bottom right of the figure show 

the most favourable algorithms, those with fast prediction times and high F1 scores. XGB and CART 

models showed these characteristics, though XGB suffered from long training times. RF showed high 

F1 score but slower prediction time, in the top right of the plot. Data points in the bottom left of the 

plot showed fast prediction times and low F1 scores, FLOCK had the mean fastest prediction time of 

clustering methods (0.99 ± 0.20 seconds), though low mean F1 scores (0.15 ± 0.14). 

Individual Class Performance 

Table 1 shows F1 scores within each class for each algorithm, Supplementary Information includes 

tables showing precision and recall for each class. Fig 5 shows aggregated confusion matrices for all 

classification algorithms and clustering methods. Ideal performance would be shown by a black 

diagonal running top-left to bottom-right, with all other cells light green colour – this would imply all 

cell types were 100% correctly labelled. “CD4/CD8 + T cell” (i.e. Dual + T cell) was the most challenging 

class to correctly predict showing the lowest mean F1 score of all classes for clustering methods (0.02 

± 0.02) and classification algorithms (0.76 ± 0.11). As shown in Fig 5, even the classification algorithms 

(CART, RF, XGB), which performed best, have a tendency to classify some “CD4/CD8 + T cell” samples 

as either “CD4 + T cell” or “CD8 + T cell” (variations in colour across the second row from the top in 

each panel). 
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“Not lymphocyte” showed the highest mean F1 score across all methods and algorithms (0.82 ± 0.09). 

Other than “CD4/CD8 + T cell”, only two classes showed mean F1 scores of less than 0.98 for the 

classification algorithms, these were “Kappa B cell” and “Lambda B cell” which had mean F1 scores of 

0.88 (± 0.07) and 0.85 (± 0.11), respectively. Confusion matrices for classification algorithms show that 

the B cell classes were frequently mislabelled as one another, with areas of darker green around the 

B cell classes. Figure 6 shows the kernel density estimation (KDE) of the B cell subtype distributions.  

KDE can be used to estimate the distribution of data and shows the overlap of Kappa and Lambda B 

cell distributions where these values are very similar. 

Example predictions for a sample are plotted in Fig 7, demonstrating CART’s effectiveness at 

replicating manual analysis. A highlighted region show how cytometree has failed to cluster groups of 

events which have been assigned to T cell subtype labels by the Hungarian assignment algorithm, in 

comparison to the labelled data. The second highlighted region shows how flowMeans has clustered 

events together which contain a mixture of lymphocytes and other cell types, though these have been 

assigned to various lymphocyte subtypes by the Hungarian assignment algorithm. Though cytometree 

showed the highest f1 score of any of the clustering methods, it still resulted in misclassifications 

which could negatively impact diagnosis , suggesting that an F1 score of 0.6 is still not accurate enough 

to be clinically useful.
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Table 1 – Mean (± SD) F1 score for each class for each classification algorithm and clustering method

Method \ Class CD4 + T cell Dual + T cell Dual – T cell CD8 + T cell G/D T cell Kappa B cell Lambda B cell NK cell Not Lymph Overall 

Random Forest-No Balancing 1.0 (± 0.0) 0.82 (± 0.13) 0.99 (± 0.02) 1.0 (± 0.0) 0.98 (± 0.01) 0.9 (± 0.08) 0.87 (± 0.15) 0.99 (± 0.0) 1.0 (± 0.0) 0.95 (± 0.04) 

Random Forest-Balanced Training Weights 1.0 (± 0.0) 0.81 (± 0.14) 0.99 (± 0.02) 1.0 (± 0.0) 0.98 (± 0.01) 0.89 (± 0.08) 0.87 (± 0.15) 0.99 (± 0.01) 1.0 (± 0.0) 0.95 (± 0.05) 

XGBoost-No Balancing 1.0 (± 0.0) 0.8 (± 0.05) 1.0 (± 0.0) 1.0 (± 0.0) 0.99 (± 0.0) 0.87 (± 0.04) 0.81 (± 0.06) 0.99 (± 0.0) 1.0 (± 0.0) 0.94 (± 0.02) 

CART-Balanced Training Weights 1.0 (± 0.0) 0.75 (± 0.13) 0.98 (± 0.03) 1.0 (± 0.0) 0.97 (± 0.02) 0.88 (± 0.09) 0.86 (± 0.13) 0.99 (± 0.01) 1.0 (± 0.0) 0.94 (± 0.05) 

CART-No Balancing 1.0 (± 0.0) 0.76 (± 0.1) 0.98 (± 0.04) 1.0 (± 0.0) 0.96 (± 0.03) 0.88 (± 0.09) 0.86 (± 0.12) 0.99 (± 0.01) 1.0 (± 0.0) 0.94 (± 0.04) 

XGBoost-Balanced Training Weights 1.0 (± 0.0) 0.64 (± 0.12) 1.0 (± 0.0) 1.0 (± 0.0) 0.99 (± 0.0) 0.88 (± 0.04) 0.82 (± 0.06) 0.98 (± 0.01) 1.0 (± 0.0) 0.92 (± 0.03) 

Cytometree 0.92 (± 0.05) 0.12 (± 0.13) 0.61 (± 0.37) 0.74 (± 0.11) 0.28 (± 0.17) 0.7 (± 0.32) 0.58 (± 0.34) 0.67 (± 0.28) 0.78 (± 0.13) 0.6 (± 0.21) 

flowMeans 0.86 (± 0.3) 0.0 (± 0.0) 0.1 (± 0.3) 0.73 (± 0.38) 0.01 (± 0.01) 0.46 (± 0.42) 0.2 (± 0.4) 0.41 (± 0.37) 0.84 (± 0.09) 0.4 (± 0.25) 

samSPECTRAL 0.35 (± 0.44) 0.0 (± 0.01) 0.18 (± 0.34) 0.24 (± 0.38) 0.28 (± 0.41) 0.68 (± 0.35) 0.35 (± 0.43) 0.19 (± 0.39) 0.67 (± 0.44) 0.33 (± 0.35) 

FlowGrid 0.48 (± 0.11) 0.0 (± 0.0) 0.0 (± 0.0) 0.18 (± 0.18) 0.01 (± 0.01) 0.36 (± 0.42) 0.17 (± 0.34) 0.18 (± 0.21) 0.58 (± 0.12) 0.22 (± 0.15) 

flowSOM 0.06 (± 0.17) 0.0 (± 0.0) 0.0 (± 0.0) 0.16 (± 0.26) 0.01 (± 0.03) 0.36 (± 0.44) 0.18 (± 0.37) 0.0 (± 0.0) 0.62 (± 0.14) 0.15 (± 0.16) 

FLOCK 0.06 (± 0.17) 0.0 (± 0.0) 0.0 (± 0.0) 0.01 (± 0.03) 0.0 (± 0.0) 0.34 (± 0.42) 0.17 (± 0.35) 0.0 (± 0.0) 0.73 (± 0.25) 0.15 (± 0.14) 

Rclusterpp 0.18 (± 0.17) 0.0 (± 0.0) 0.0 (± 0.0) 0.22 (± 0.25) 0.01 (± 0.02) 0.29 (± 0.36) 0.14 (± 0.29) 0.0 (± 0.01) 0.45 (± 0.06) 0.14 (± 0.13) 

Mean: Clustering method 0.41 (± 0.2) 0.02 (± 0.02) 0.13 (± 0.14) 0.33 (± 0.23) 0.08 (± 0.09) 0.46 (± 0.39) 0.26 (± 0.36) 0.21 (± 0.18) 0.66 (± 0.18) 0.28 (± 0.2) 

Mean: Classification algorithm 1.0 (± 0.0) 0.76 (± 0.11) 0.99 (± 0.02) 1.0 (± 0.0) 0.98 (± 0.01) 0.88 (± 0.07) 0.85 (± 0.11) 0.99 (± 0.01) 1.0 (± 0.0) 0.94 (± 0.04) 

Mean: All 0.69 (± 0.11) 0.37 (± 0.06) 0.53 (± 0.08) 0.64 (± 0.12) 0.5 (± 0.06) 0.66 (± 0.24) 0.53 (± 0.24) 0.57 (± 0.1) 0.82 (± 0.09) 0.59 (± 0.12) 
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Fig 1. Tree-based classification algorithms exhibit higher mean F1 scores than clustering methods for automated flow cytometry analysis  

Mean (± SD) macro F1 score for classification algorithms and clustering methods. Classification algorithms (CLF) were trained once with models weighting 
classes inversely proportional to their frequencies within the dataset during model training, and once without. Classification algorithms were cross 
validated over 10 folds with a labelled dataset containing events from 152 samples. Clustering methods were run on 10 randomly chosen samples from the 
labelled dataset, identified clusters were matched to labelled populations using the Hungarian assignment algorithm.
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Fig 2. XGBoost takes considerably longer to train than CART and Random Forest 

Mean (± SD) training time for classification algorithms. Classification algorithms were trained once with models weighting classes inversely proportional to 
their frequencies within the dataset during model training, and once without. XGBoost was trained on data from 110 flow cytometry samples containing 
100,000 events, whereas CART and Random Forest were trained on data from 137 samples. 
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Fig 3. All methods showed fast mean prediction times per sample 

Mean (± SD) prediction time per sample for classification algorithms and clustering methods. Classification algorithms (CLF) were trained once with models 
weighting classes inversely proportional to their frequencies within the dataset during model training, and once without. Classification algorithms were 
cross validated over 10 folds with a labelled dataset containing events from 152 samples. Clustering methods were run on 10 randomly chosen samples 
from the labelled dataset. 
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Fig 4. CART and XGBoost showed fast mean prediction times and high mean F1 scores 

Mean macro F1 score vs mean prediction time in seconds for classification algorithms and clustering 
methods. Classification algorithms are shown as dots, clustering methods as crosses.  Classification 
algorithms were trained once with models weighting classes inversely proportional to their 
frequencies within the dataset during model training, and once without. Classification algorithms 
were cross validated over 10 folds with a labelled dataset containing events from 152 samples. 
Clustering methods were run on 10 randomly chosen samples from the labelled dataset, identified 
clusters were matched to labelled populations using the Hungarian assignment algorithm.  
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Fig 5. Mean aggregated confusion matrices for all classification algorithms and clustering methods 

X-axis shows the predicted labels, y-axis shows the true labels for each class. Colour indicates 
proportion of predicted labels normalised by the number of true labels per class. CART, Random 
Forest (RF) and XGBoost (XGB) were trained once with models weighting classes inversely 
proportional to their frequencies within the dataset during model training (Balanced Training 
Weights = BTW), and once without (No Balancing = NB). Classification algorithms were cross 
validated over 10 folds with a labelled dataset containing events from 152 samples. Clustering 
methods were run on 10 randomly chosen samples from the labelled dataset, identified clusters 
were matched to labelled populations using the Hungarian assignment algorithm. 
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Fig 6. Kernel density estimation of B cell subtypes in dataset 

Kernel density estimation of a randomly sampled 5% of the dataset showing the overlap between 
Kappa and Lambda B cell populations. B cells events are labelled as either Kappa or Lambda subtype 
depending on marker expression of their most proximal subpopulation, despite individual events of 
both subtypes frequently expressing identical phenotypic signatures. 
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Fig 7. Labels and example output from CART and the best performing clustering methods 

Top left, plotted labels from an example sample in the labelled dataset. Clockwise from top right, plotted predictions of cytometree, flowMeans and CART 
(trained with all instances being balanced equally i.e. No Balancing). Each plot shows the gating strategy for the Lymphoid Screening Tube panel which was 
used for all samples in the study, each colour indicates a different label given to each event. Initially, lymphocytes are identified from all events, before 
being gated into B, T and NK cell subtypes. CART was trained on 137 other samples. Clusters identified by clustering methods were matched to labelled 
populations using the Hungarian assignment algorithm. (a) Highlights cytometree incorrectly labelling subtypes of T cell. (b) Highlights flowMeans 
incorrectly labelling events which are not lymphocytes as lymphocytes. 
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Discussion 

The purpose of this research was to develop an automated event labelling approach for FC analysis 

which utilises tree-based classification algorithms, and test against previously published clustering 

methods. 

Tree-based classification algorithms perform well at automated FC analysis 

The classification algorithms showed higher mean F1 scores than clustering methods, though the 

difference was insignificant between classification algorithms. Classification algorithm prediction time 

was comparable to clustering methods, though training time was variable between classification 

algorithms, with CART models taking, on average, less than 7.5 minutes to train on data generated 

from 137 samples, whereas XGB models took, on average, over 28 hours on FC data generated from 

110 samples. 

CART and RF both showed high mean F1 scores of over 0.94, short mean prediction times of less than 

25 seconds, and short mean training times of less than 2 hours. CART, in particular, showed the 

shortest prediction and training time, therefore combined with very high F1 scores it was perhaps the 

best all-round tree-based algorithm of those evaluated. CART achieved similar F1 scores to RF and 

XGB, suggesting the task was not complex enough to justify the use of the more complex RF and XGB 

models. XGB suffered from long training times, likely due to the process of randomised grid-search to 

optimise hyper-parameters (HPO). HPO is the practice of optimising certain model parameters to 

improve performance. Randomised grid search is an HPO method involving repeatedly evaluating the 

model using various combinations of hyper-parameters with the aim to identify those which are 

optimal. Decreasing the hyper-parameter search space or performing HPO on a smaller subset of data 

would likely decrease training time, though could result in poorer model performance. 

Models weighting classes inversely proportional to their frequencies during training provided no 

improvement in F1 score performance. XGB models trained with weighted classes exhibited higher 

mean recall of all classes, though particularly “CD4/CD8 + T cell” which was the lowest frequency class 

in the dataset, making up only 0.03% overall. Conversely the mean precision of these models was 

lower in all classes, and particularly “CD4/CD8 + T cell” (Supplementary Table 1 and 2), suggesting that 

minority classes were more likely to be predicted by the XGB weighted model, compared to the 

unweighted, regardless of whether the prediction was correct. A weighted XGB model may be 

preferred to other algorithms if higher recall was valued over precision or F1 score, for example if it 
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was deemed critical that the presence of a minority certain cell type was identified, and therefore 

false positives were preferable to false negatives. 

Clustering methods showed poor F1 score at automated analysis of FC data generated from samples 

with suspected haematological malignancy 

Of clustering methods evaluated, only cytometree achieved a mean F1 score of above 0.4. FLOCK, 

flowMeans, flowSOM, Rclusterpp and samSPECTRAL were all selected for evaluation due to 

performing well in previous comparison studies where some of the methods achieved mean F1 scores 

of over 0.9 [25]. The discrepancy between the high F1 scores previously reported and the low F1 scores 

reported by this paper could be explained by the differing datasets. The method of gating the panel 

used this study, the Lymphoid Screening Tube (LST) (described in Supplementary Information), 

involves immediately gating out events that are not deemed to be lymphocytes based on SSC-A and 

CD45. These events were labelled “Not lymphocyte” and made up 61% of the dataset. They consist of 

a variety of different cell types including granulocytes and monocytes, as well as debris. The evaluated 

clustering methods have no capacity to understand the events which are and are not relevant to an 

FC analyst. Therefore, they may be returning valid cell populations which are not of interest, for 

example, in the case of the LST panel, anything which is not a lymphocyte population. This effect, 

combined with the use of the Hungarian assignment algorithm, likely explains why “Not lymphocyte” 

was the class which exhibited the highest mean F1 score by clustering methods. A clustering method 

would be rewarded for returning the largest population of cells, as long as they were not lymphocytes, 

which 61% of the dataset was not, as the Hungarian assignment algorithm would then match this 

population as being “Not lymphocyte”. 

Cytometree achieved the highest mean F1 score of any clustering method, while also exhibiting a 

mean prediction time of less than 20 seconds. This was of particular interest as it was the only tree-

based clustering method evaluated. Gating is analogous to the decision-making process tree-based 

algorithms use, and the good performance of all tree-based methods involved in the study suggests 

FC automated gating is a task well suited to this class of algorithms. 

Tree-based models performed less well on Kappa and Lambda B cells 

“CD4/CD8 + T cell” showed the lowest F1 score of any individual class across all algorithms, though 

made up the lowest frequency of all classes in the dataset. The only other two classes with mean F1 

scores below 0.98 for classification algorithms were “Kappa B cell” and “Lambda B cell”, which had 

mean F1 scores of 0.88 (± 0.07) and 0.85 (± 0.11), respectively. However, these made-up large 

proportions of the dataset (“Kappa B cell”: 12.29% and “Lambda B cell”: 11.67%), suggesting lack of 
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training data was not the factor limiting performance. Furthermore “Kappa B cell” and “Lambda B cell” 

were the classes which cytometree most frequently confused. Due to the nature of manual gating, 

events are not considered in isolation. Instead, several thousand events at minimum, are plotted and 

gated simultaneously. In contrast, in this study, the classification algorithms were trained and made 

predictions on a single event at a time, not considering other events and populations. The gating 

procedure is demonstrated in the Supplementary Information. Kappa and Lambda B cells often exhibit 

similar phenotypic signatures when stained with the LST panel and may be even more similar in certain 

conditions, such as CLL where Kappa or Lambda expression are known to be weak [33]. B cell events 

are manually gated by considering the position of the centroid of the sub-population which the events 

are closest in proximity to i.e. an event classified as a “Kappa B cell” or a “Lambda B cell” may have 

similar values, but if the event is closer to a cluster of cells with a centroid located more towards Kappa 

+, then the event may be labelled “Kappa B cell” and vice versa for “Lambda B cell". Therefore, as the 

classification algorithms learn and make predictions based solely on the values of a single event, they 

do not possess the same information which led to labelling the events. 

Future Research 

Tree-based models may show the required accuracy and prediction times to be suitable for automated 

FC for the diagnosis of haematological malignancy. Additionally, classification algorithms do not suffer 

from the downside of having to further label clustered sub-populations, saving further processing 

time. However, there are challenges to overcome. The classification algorithms trained during this 

study are only able to make predictions on the LST panel, predicting only the classes that the data was 

trained on. Labelling the data required for training is time consuming. 

Therefore, future research should focus on testing tree-based classifiers on datasets generated by 

other panels. In particular, due to the variability associated with manual gating a “consensus dataset” 

made up of samples gated by multiple operators to act as “gold standard” labels would be preferable 

to a single operator labelling the data, as was the case during the present study [8]. 

When considering the poor performance of the other clustering methods, cytometree performed well 

and may provide a platform for further development towards a goal of accurate, fast, fully automated 

FC analysis which would also not require labelled data as classification algorithms do. 

Tree-based methods, both cytometree and classification algorithms, were the best performing 

methods, though struggled with B cell classes more than other classes. B cell classes are gated with 

particular consideration towards the surrounding cell sub-populations. Therefore, future research 

may also look to consider how tree-based methods could be combined with density or mixture model-

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.07.22283209doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.07.22283209


based approaches to pair the accuracy of tree-based algorithms while considering the surrounding cell 

sub-populations. 

In conclusion, tree-based classification algorithms could provide a solution for automated FC analysis 

of known populations. When used for the diagnosis of haematological malignancies, this could reduce 

diagnostic bottlenecks [13]. CART especially, showed short prediction and training times, and very 

high F1 scores, comparable with RF and XGB. The only tree-based clustering method evaluated, 

cytometree, was the best performing of the clustering methods, suggesting that tree-based methods 

are well suited to FC analysis. Future research should prioritise further evaluation of the discussed 

methods on other FC datasets, as well as looking to improve the performance of tree-based 

classification methods by providing information of on surrounding sub-populations, rather than solely 

single events. 

Methods 

Ethics Statement 

This study was approved by the University of Liverpool for Sponsorship in Dec 2020 (UoL001599) and 

Integrated Research Application System (IRAS) approval was granted (project ID: 290362). 

Dataset 

The Haemato-Oncology Diagnostics Service (HODS) based at the Royal Liverpool University Hospital 

carries out primary reporting of haematological malignancies for the two million people within the 

Merseyside and Cheshire area. One hundred and fifty-two fcs 2.0 files were used for the dataset which 

had been collected by HODS between the dates of February 2018 and March 2020. The data was 

generated from peripheral blood samples from patients with either an abnormal full blood count 

result or suspected haematological malignancies for whom FC had been performed as part of the 

diagnostic pathway. Samples had been stained with the EuroFlow LST panel (BD Biosciences, San Jose, 

CA) for the purpose of identifying aberrant B, T and NK cell lineages [28]. All samples were analysed 

on FACSCanto cytometers (BD Biosciences, San Jose, CA). Each file had been compensated and 

contained 100,000 events from a single patient sample. As part of HODS’s standard operating 

procedure, each file had undergone a quality control process within HODS which included samples 

being checked for any signs of degradation during histopathological examination and the ability to 

observe distinguishable clusters on SSC and CD45 parameters of FC data. 

Gating 
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Each fcs file was gated by a single trained FC operator using manual gating software (FlowJo, BD 

Biosciences, San Jose, CA). Each sample was gated to label events the operator was confident of the 

identity of. One of nine labels was given to these events: “Not lymphocyte”, “Kappa B cell”, “Lambda 

B cell”, “CD4+ T cell”, “CD8+ T cell”, “CD4/CD8 + T cell”, “CD4/CD8 – T cell”, “Gamma delta T cell”, 

“CD56+ NK cell”. Details of gating strategy are included in Supplementary Information. Each class of 

labelled event from a file was exported to a csv. 

Pre-processing 

The labelled events from each sample were combined and fluorescence channels were transformed 

using the Logicle transformation, while FSC and SSC remained linear [34]. The Logicle transformation 

has been suggested as the preferred transformation for FC data, resulting in fewer misclassified events 

than other popular transformations [35]. The transformed data from each sample was plotted in 2D 

scatter plots and checked for visual similarity to the equivalent unlabelled sample to ensure that 

transformation was successful. No pre-gating was performed, all ungated labelled events were used 

for evaluation. Table 2 summarises the labelled events in the dataset. 

 

Table 2. The frequency of each class label within the dataset 

Event Label Count Percentage of Dataset 

Not lymphocyte 7,146,843 60.99 

Kappa B cell 1,439,913 12.29 

Lambda B cell 1,367,375 11.67 

CD4+ T cell 802,516 6.85 

CD8+ T cell 652,899 5.57 

CD56+ NK cell 232,881 1.99 

Gamma delta T cell 61,834 0.53 

CD4/CD8 – T cell 10,149 0.08 

CD4/CD8 + T cell 3,483 0.03 

Total 11,717,893 100 

 

Classification algorithms and training 

Ten-fold cross-validation was used to measure the performance of the models. Folds and splits were 

made between samples, rather than events, meaning events within a sample would not appear in 
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both train and test sets within a fold. This was done to simulate how an algorithm would be trained in 

practice i.e., the data from an entire sample would be analysed together. For CART and RF, there was 

a 90/10 train-test split in each fold. For XGB, there was a 72/18/10 train-test-validation split in each 

fold, as 10% was used for validation, and of the resulting 90%, 80% was used for training and the rest 

for testing. 

As sub-populations identified by FC differ in size, classes were heavily imbalanced. Tree based 

methods tend to work best with balanced data [36]. Therefore, analysis was repeated twice, once with 

equal weighting given to all instances during model training, and once with models weighting classes 

inversely proportional to their frequencies during model training. Hyperparameters of XGB were 

tuned using randomised grid-search prior to model training. All analysis was performed in Python 

(version 3.9) [37]. The sklearn package (0.24.2) was used for CART and RF, and xgboost package (1.5.1) 

for XGB [31,38]. 

Clustering methods 

To identify previously published automated FC analysis methods, PubMed was searched with the 

search term “("flow cytometry" OR "FCM") AND ("automat*" OR "clustering" OR "classification" OR 

"machine learning" OR "random forest" OR “CART” OR "decision tree*")”. Search results were 

assessed for relevance and relevant references were explored. The following criteria was used for 

selecting a short list of clustering methods for benchmarking: 

1. The method was designed to be used with FC data to identify or cluster similar events so they 

can be labelled. 

2. The method was freely available to use either as source code or application. 

3. The method was straightforward to use, meaning; either default or suggested parameters 

were detailed, and the method ran either without error, or with errors which could be fixed 

without modification to source code. 

4. Either the method had previously been independently assessed or had been released since 

the most recently published critical assessment paper in 2016 [25]. I.e., there had been no 

opportunity for it to be independently assessed. 

All methods which had previously been independently assessed were included in either one of two 

papers [8,25]. Due to the large number of methods which had previously been assessed, only the three 

best performing methods based on mean F1 score from both papers were included for benchmarking. 

This resulted in a shortlist of nine clustering methods selected for benchmarking, these methods used 
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a variety of approaches (Table 3). BayesFlow and X-shift could not be successfully installed for testing, 

therefore seven methods were benchmarked. 

 

Table 3. Overview of clustering methods selected for benchmarking evaluation. 

Method Description Availability Rationale for inclusion Ref 

BayesFlow Bayesian hierarchical 
modelling and Gaussian 

Mixture Modelling 

Python library from 
GitHub 

Published since the most recent 
critical assessment 

[39] 

cytometree Binary trees where nodes 
are sub-populations of cells 

R package Published since the most recent 
critical assessment 

[40] 

FLOCK Density based clustering, 
followed by merging 

C source code 3rd best performing method during 
Aghaeepour et al. (2013) 

[41] 

FlowGrid Density based clustering, 
followed by merging 

Python library from 
GitHub 

Published since the most recent 
critical assessment 

[42] 

flowMeans K-means clustering, 
followed by merging 

R package Best performing method during 
Aghaeepour et al. (2013) 

[43] 

flowSOM Self-organising map, 
followed by merging using 

hierarchical clustering 

R package 2nd best performing method during 
Weber et al. (2016) 

[44] 

Rclusterpp Hierarchical clustering R package 3rd best performing method during 
Weber et al. (2016) 

[45] 

samSPECTRAL Speed optimised spectral 
clustering 

R package 2nd best performing method during 
Aghaeepour et al. (2013) 

[46] 

X-shift K – nearest – neighbours 
based 

Standalone application 
run through CLI 

Best performing method during 
Weber et al. (2016) 

[47] 

 

Ten samples were randomly selected from the labelled dataset to evaluate clustering methods 

performance on. Not all 152 files in the dataset were used as some of the clustering methods can take 

multiple hours to run [25]. Each method was run five times on each sample due to the stochastic 

nature of some of the methods. Some methods allowed the number of output clusters which were to 

be identified by the method to be specified, before running the method. If allowed, this was set to 9, 

matching the number of classes in the dataset. Clusters identified by the methods were matched to 

the labelled populations using the Hungarian assignment algorithm which maximises the sum of F1 

scores across populations, allowing no population to be matched more than once [25]. 

Evaluation metrics 
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Precision is the proportion of instances of a class which are identified correctly, and recall is the 

proportion of actual class samples which are identified correctly. F1 score is the harmonic mean of 

precision and recall. In this paper, macro averaged F1 score was calculated (averaged over the set of 

all classes) and is a preferred evaluation metric when classes are imbalanced [48]. The training time, 

in seconds, of each classifier was recorded. Measurements for running time were made on a cluster 

with a cumulative 50 cores and 100GB of RAM. 

Statistical Analysis 

A two-way ANOVA was performed to analyse the effect of classifier algorithm and weighting training 

instances on F1 score. Statistical significance was set as p < 0.05. Data in figures, tables and text are 

presented as means ± standard deviation. 
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Supplementary Information 

Gating Strategy 

1. From all events within an fcs file, lymphocytes were identified as being CD45+ / SSC low. All 

other events were labelled “Not lymphocytes”. 
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2. From lymphocytes, T cells were identified as being CD3+ / CD19-, Gamma Delta T cells as 
being CD3+ / CD19+, and B cells as being CD3- / CD 19+. 
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3. From T cells, CD4+ T cells were identified as being CD4+ / CD8-, CD8+ T cells as being CD4- / 
CD8+, CD4/CD8- T cells and CD4/CD8 + T cells were identified as described. 
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4. From B cells, Kappa B cells being identified as part of a Kappa+ population, Lambda B cells as 
being part of a Lambda + population. 
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5. From lymphocytes, which had not been labelled as B cells, NK cells were identified as CD56+. 
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Supplementary Table 1. Mean (± SD) recall for each class for each classification algorithm and clustering method. 

Method \ Class CD4 + T cell Dual + T cell Dual – T cell CD8 + T cell G/D T cell Kappa B cell Lambda B cell NK cell Not Lymph Overall 

Random Forest-No Balancing 1.0 (± 0.0) 0.84 (± 0.15) 0.99 (± 0.01) 1.0 (± 0.0) 0.98 (± 0.02) 0.95 (± 0.07) 0.86 (± 0.2) 0.99 (± 0.01) 1.0 (± 0.0) 0.96 (± 0.05) 

Random Forest-Balanced Training Weights 1.0 (± 0.0) 0.82 (± 0.16) 0.99 (± 0.01) 1.0 (± 0.0) 0.98 (± 0.03) 0.95 (± 0.07) 0.86 (± 0.2) 0.99 (± 0.02) 1.0 (± 0.0) 0.95 (± 0.06) 

XGBoost-No Balancing 1.0 (± 0.0) 0.84 (± 0.1) 1.0 (± 0.0) 1.0 (± 0.0) 0.99 (± 0.0) 0.92 (± 0.06) 0.79 (± 0.09) 0.98 (± 0.01) 1.0 (± 0.0) 0.95 (± 0.03) 

CART-Balanced Training Weights 1.0 (± 0.0) 0.75 (± 0.15) 0.99 (± 0.02) 1.0 (± 0.0) 0.97 (± 0.03) 0.93 (± 0.07) 0.85 (± 0.18) 0.98 (± 0.02) 1.0 (± 0.0) 0.94 (± 0.05) 

CART-No Balancing 1.0 (± 0.0) 0.8 (± 0.13) 0.99 (± 0.0) 1.0 (± 0.0) 0.96 (± 0.03) 0.93 (± 0.07) 0.85 (± 0.18) 0.99 (± 0.01) 1.0 (± 0.0) 0.95 (± 0.05) 

XGBoost-Balanced Training Weights 1.0 (± 0.0) 0.95 (± 0.08) 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0) 0.93 (± 0.05) 0.79 (± 0.08) 0.99 (± 0.0) 1.0 (± 0.0) 0.96 (± 0.03) 

cytometree 0.87 (± 0.09) 0.55 (± 0.43) 0.58 (± 0.36) 0.6 (± 0.14) 0.19 (± 0.13) 0.62 (± 0.33) 0.56 (± 0.35) 0.71 (± 0.18) 0.65 (± 0.16) 0.59 (± 0.24) 

flowMeans 0.9 (± 0.3) 0.0 (± 0.0) 0.1 (± 0.3) 0.8 (± 0.4) 0.06 (± 0.13) 0.64 (± 0.45) 0.29 (± 0.45) 0.77 (± 0.38) 0.73 (± 0.13) 0.48 (± 0.28) 

samSPECTRAL 0.4 (± 0.49) 0.01 (± 0.03) 0.25 (± 0.37) 0.3 (± 0.46) 0.26 (± 0.39) 0.88 (± 0.3) 0.37 (± 0.46) 0.19 (± 0.38) 0.66 (± 0.44) 0.37 (± 0.37) 

FlowGrid 0.32 (± 0.1) 0.0 (± 0.0) 0.0 (± 0.0) 0.3 (± 0.36) 0.2 (± 0.4) 0.51 (± 0.42) 0.14 (± 0.29) 0.12 (± 0.14) 0.55 (± 0.16) 0.24 (± 0.21) 

flowSOM 0.1 (± 0.29) 0.0 (± 0.0) 0.0 (± 0.0) 0.31 (± 0.45) 0.07 (± 0.18) 0.4 (± 0.49) 0.21 (± 0.4) 0.0 (± 0.0) 0.46 (± 0.15) 0.17 (± 0.22) 

FLOCK 0.09 (± 0.28) 0.0 (± 0.0) 0.0 (± 0.0) 0.1 (± 0.29) 0.01 (± 0.02) 0.38 (± 0.47) 0.2 (± 0.4) 0.0 (± 0.0) 0.72 (± 0.28) 0.17 (± 0.19) 

Rclusterpp 0.32 (± 0.28) 0.0 (± 0.0) 0.05 (± 0.13) 0.41 (± 0.37) 0.08 (± 0.15) 0.28 (± 0.32) 0.12 (± 0.24) 0.02 (± 0.03) 0.29 (± 0.05) 0.17 (± 0.17) 

Mean: Clustering method 0.43 (± 0.26) 0.08 (± 0.07) 0.14 (± 0.17) 0.4 (± 0.35) 0.12 (± 0.2) 0.53 (± 0.4) 0.27 (± 0.37) 0.26 (± 0.16) 0.58 (± 0.2) 0.31 (± 0.24) 

Mean: Classification algorithm 1.0 (± 0.0) 0.83 (± 0.13) 0.99 (± 0.01) 1.0 (± 0.0) 0.98 (± 0.02) 0.93 (± 0.06) 0.83 (± 0.16) 0.99 (± 0.01) 1.0 (± 0.0) 0.95 (± 0.04) 

Mean: All 0.69 (± 0.14) 0.43 (± 0.1) 0.54 (± 0.09) 0.68 (± 0.19) 0.52 (± 0.12) 0.72 (± 0.24) 0.53 (± 0.27) 0.6 (± 0.09) 0.78 (± 0.11) 0.61 (± 0.15) 
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Supplementary Table 2. Mean (± SD) precision for each class for each classification algorithm and clustering method. 

Method \ Class CD4 + T cell Dual + T cell Dual – T cell CD8 + T cell G/D T cell Kappa B cell Lambda B cell NK cell Not Lymph Overall 

Random Forest-No Balancing 1.0 (± 0.0) 0.83 (± 0.15) 0.99 (± 0.03) 1.0 (± 0.0) 0.99 (± 0.01) 0.87 (± 0.15) 0.92 (± 0.11) 1.0 (± 0.0) 1.0 (± 0.0) 0.95 (± 0.05) 

Random Forest-Balanced Training Weights 1.0 (± 0.0) 0.83 (± 0.15) 0.98 (± 0.04) 1.0 (± 0.0) 0.99 (± 0.01) 0.87 (± 0.15) 0.92 (± 0.11) 1.0 (± 0.0) 1.0 (± 0.0) 0.95 (± 0.05) 

XGBoost-No Balancing 1.0 (± 0.0) 0.78 (± 0.05) 1.0 (± 0.0) 1.0 (± 0.0) 0.99 (± 0.0) 0.84 (± 0.09) 0.87 (± 0.13) 0.99 (± 0.0) 1.0 (± 0.0) 0.94 (± 0.03) 

CART-Balanced Training Weights 1.0 (± 0.0) 0.78 (± 0.15) 0.98 (± 0.05) 1.0 (± 0.0) 0.98 (± 0.02) 0.85 (± 0.16) 0.91 (± 0.12) 0.99 (± 0.01) 1.0 (± 0.0) 0.94 (± 0.06) 

CART-No Balancing 1.0 (± 0.0) 0.75 (± 0.13) 0.97 (± 0.07) 1.0 (± 0.0) 0.96 (± 0.04) 0.85 (± 0.16) 0.9 (± 0.12) 0.99 (± 0.01) 1.0 (± 0.0) 0.93 (± 0.06) 

XGBoost-Balanced Training Weights 1.0 (± 0.0) 0.5 (± 0.16) 0.99 (± 0.0) 1.0 (± 0.0) 0.98 (± 0.0) 0.84 (± 0.09) 0.87 (± 0.13) 0.96 (± 0.02) 1.0 (± 0.0) 0.9 (± 0.04) 

cytometree 0.99 (± 0.01) 0.1 (± 0.1) 0.78 (± 0.39) 0.99 (± 0.01) 0.82 (± 0.35) 0.86 (± 0.33) 0.76 (± 0.37) 0.76 (± 0.34) 1.0 (± 0.0) 0.78 (± 0.21) 

flowMeans 0.83 (± 0.31) 0.0 (± 0.0) 0.1 (± 0.29) 0.69 (± 0.38) 0.0 (± 0.01) 0.46 (± 0.46) 0.2 (± 0.4) 0.33 (± 0.35) 0.99 (± 0.02) 0.4 (± 0.25) 

samSPECTRAL 0.32 (± 0.4) 0.0 (± 0.0) 0.3 (± 0.44) 0.27 (± 0.34) 0.38 (± 0.42) 0.63 (± 0.36) 0.37 (± 0.4) 0.22 (± 0.4) 0.97 (± 0.02) 0.38 (± 0.31) 

FlowGrid 1.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0) 0.71 (± 0.45) 0.0 (± 0.01) 0.5 (± 0.5) 0.2 (± 0.4) 0.6 (± 0.49) 0.79 (± 0.31) 0.42 (± 0.24) 

flowSOM 0.04 (± 0.12) 0.0 (± 0.0) 0.0 (± 0.0) 0.13 (± 0.21) 0.01 (± 0.02) 0.33 (± 0.4) 0.17 (± 0.34) 0.0 (± 0.0) 1.0 (± 0.0) 0.19 (± 0.12) 

FLOCK 0.04 (± 0.12) 0.0 (± 0.0) 0.0 (± 0.0) 0.01 (± 0.02) 0.0 (± 0.0) 0.31 (± 0.39) 0.16 (± 0.32) 0.0 (± 0.0) 0.77 (± 0.28) 0.14 (± 0.13) 

Rclusterpp 0.14 (± 0.13) 0.0 (± 0.0) 0.0 (± 0.0) 0.17 (± 0.2) 0.01 (± 0.01) 0.35 (± 0.43) 0.18 (± 0.37) 0.0 (± 0.01) 0.95 (± 0.14) 0.2 (± 0.14) 

Mean: Clustering method 0.48 (± 0.16) 0.01 (± 0.02) 0.17 (± 0.16) 0.42 (± 0.23) 0.17 (± 0.12) 0.49 (± 0.41) 0.29 (± 0.37) 0.27 (± 0.23) 0.93 (± 0.11) 0.36 (± 0.2) 

Mean: Classification algorithm 1.0 (± 0.0) 0.75 (± 0.13) 0.98 (± 0.03) 1.0 (± 0.0) 0.98 (± 0.01) 0.85 (± 0.13) 0.9 (± 0.12) 0.99 (± 0.01) 1.0 (± 0.0) 0.94 (± 0.05) 

Mean: All 0.72 (± 0.08) 0.36 (± 0.07) 0.55 (± 0.1) 0.69 (± 0.12) 0.55 (± 0.07) 0.66 (± 0.28) 0.57 (± 0.25) 0.61 (± 0.12) 0.96 (± 0.06) 0.63 (± 0.13) 
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Supplementary Fig 1. Mean (± SD) precision, recall and F1 for classification algorithms and clustering methods.  

CART, Random Forest (RF) and XGBoost (XGB) were trained once with models weighting classes inversely proportional to their frequencies within the 
dataset during model training (Balanced Training Weights = BTW), and once without (No Balancing = NB). Classification algorithms were cross validated over 
10 folds with a labelled dataset containing events from 152 samples. Clustering methods were run on 10 randomly chosen samples from the labelled 
dataset, identified clusters were matched to labelled populations using the Hungarian assignment algorithm. 
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