Causal Inference of CNS-regulated Hormones in COVID-19: A Bidirectional 1

Two-sample Mendelian Randomization Study 2

Running title: CNS-regulated hormones and COVID-19 3

4

5 Yuxuan Sun^a, Ziyi Ding^b, Yawei Guo^c, Jinqiu Yuan^a, Chengming Zhu^a, Yihang Pan^a,

6 Rui Sun^{a*}

7

- 8 ^a Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University,
- Shenzhen 518107, P. R. China 9
- ^b The Herbert Wertheim School of Public Health and Longevity, University of 10
- California San Diego, La Jolla, California, United States of America 11
- 12 ^c School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China

13

2

14 Abstract

15	Objectives: We assessed the causal association of three COVID-19 phenotypes with
16	insulin-like growth factor 1 (IGF-1), estrogen, testosterone, dehydroepiandrosterone
17	(DHEA), thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH),
18	luteinizing hormone (LH), and follicle-stimulating hormone (FSH).
19	Methods: We used a bidirectional two-sample univariate and multivariable
20	Mendelian randomization (MR) analysis to evaluate the direction, specificity, and
21	causality of the association between CNS-regulated hormones and COVID-19
22	phenotypes. Genetic instruments for CNS-regulated hormones were selected from the
23	largest publicly available genome-wide association studies in the European population.
24	Summary-level data on COVID-19 severity, hospitalization, and susceptibility were
25	obtained from the COVID-19 host genetic initiative.
26	Results: DHEA was associated with increased risks of very severe respiratory
27	syndrome (OR=4.21, 95% CI: 1.41–12.59), consistent with the results in multivariate
28	MR (OR=3.72, 95% CI: 1.20–11.51), and hospitalization (OR = 2.31, 95% CI:
29	1.13-4.72) in univariate MR. LH was associated with very severe respiratory
30	syndrome (OR=0.83; 95% CI: 0.71-0.96) in univariate MR. Estrogen was negatively
31	associated with very severe respiratory syndrome (OR=0.09, 95% CI: 0.02-0.51),
32	hospitalization (OR=0.25, 95% CI: 0.08–0.78), and susceptibility (OR=0.50, 95% CI:
33	0.28–0.89) in multivariate MR.
34	Conclusions: We found strong evidence for the causal relationship of DHEA, LH,
35	and estrogen with COVID-19 phenotypes.
20	

- 36
- 37 Key words: Mendelian randomization, CNS-regulated hormones, COVID-19

38 Introduction

39	Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
40	coronavirus 2 (SARS-CoV-2), has infected more than 452 million individuals and resulted in
41	more than 6 million deaths worldwide as of March 12, 2022 (1). SARS-CoV-2 infection has
42	high variability in susceptibility, hospitalization, and severity, with clinical severity ranging
43	from asymptomatic or mild upper respiratory illness to moderate and severe diseases such as
44	respiratory failure, acute respiratory distress syndrome, and multi-organ failure with fatal
45	outcomes (2). A report on COVID-19 suggests that 80% of infections are mild or
46	asymptomatic, while 20% are moderate to severe (3). At the early infection stage, the innate
47	immune system recognizes SARS-CoV-2 and induces proinflammatory cytokines to remove
48	the viruses (4). However, SARS-CoV-2 disrupts the normal immune response in severely and
49	critically ill patients, leading to an uncontrolled inflammatory response and cytokine storm,
50	resulting in systemic and local damages (4, 5). Understanding the host factors influencing this
51	infectious disease is crucial for elucidating the viral life cycle, identifying risk factors, drug
52	development, and disease prevention.
53	CNS-regulated hormones have received special attention in the context of COVID-19,
54	considering their modulatory effects on cytokines. The gender disparity, with reports that
55	men experience more severe syndromes and have higher mortality than women do, suggests
56	that sex hormones such as estrogen and testosterone may play a role in COVID-19 morbidity
57	and mortality (6) (7). Androgens may be associated with an increased risk of COVID-19 due
58	to their modulatory effects on angiotensin-converting enzyme 2 (ACE2) and transmembrane
59	serine protease 2 (TMPRSS2), the two key factors associated with the entrance of

60 SARS-CoV-2 (8). Indeed, anti-androgen therapy in patients with prostate cancer has

61 reportedly protected them against infection with SARS-CoV-2 (9). A recent study also

suggested a causal effect of increased testosterone levels with a higher risk of COVID-19
hospitalization and severe disease (10). In contrast, a retrospective study found that older
females who received estradiol therapy had a lower fatality risk than older females who did
not receive the therapy, indicating a potential immune protective effect of estrogen in females
(11). Meanwhile, in a study comparing critically and non-critically ill patients, low insulin
growth-like factor-1 (IGF-1) levels showed a potential association with severe forms of
COVID-19 (12).

Despite the possible effect of CNS-regulated hormones on COVID-19, there appears to 69 70 be a reverse directional effect of COVID-19 on hormones. A cohort study found that as the severity of COVID-19 increased, the concentration of dehydroepiandrosterone (DHEA) 71 significantly increased (13). However, another observational study of hospitalized patients 72 73 did not find any difference in DHEA levels between males and females with severe COVID-19 (14). Another study on thyroid function found that thyroid-stimulating hormone 74 (TSH) levels in COVID-19 patients were obviously lower than those in non-COVID-19 75 76 patients, which suggested the possible effects of COVID-19 on TSH (15). 77 Although observational studies provide some evidence for the conferral of hormonal effects on COVID-19, the liability of these findings is challenged by confounding factors, 78 reverse causation, and other factors (16). Therefore, the causal impact of hormones on 79 80 COVID-19 risk has not been ascertained. Mendelian randomization (MR) uses genetic 81 variants following Mendel's law of independent assortment as unconfounded proxies of an adjustable exposure to examine whether the exposure has causal effects on an outcome, 82 overcoming the limitations of observational studies (17). 83 84 In this study, we used two-sample MR univariate and multivariable analyses to examine

85 potential causal associations between three types of COVID-19 (very severe respiratory

syndrome, hospitalization, and susceptibility) and eight CNS-regulated hormones [IGF-1,

87	estrogen, testosterone, DHEA, TSH, thyrotropin-releasing hormone (TRH), luteinizing
88	hormone (LH), and follicle-stimulating hormone (FSH)]. We also performed a bidirectional
89	analysis to detect the possible reverse causal relationship between CNS-regulated hormones
90	and COVID-19. By assessing and establishing the causal role of CNS-regulated hormones,
91	possible hormonal therapies could be applied as therapeutics for COVID-19 to reduce
92	mortality and morbidity in COVID-19 infected patients.
93	

94 Materials and Methods

95 CNS-regulated hormones

96 Single-nucleotide polymorphisms (SNPs) associated with the levels of the eight selected 97 hormones were selected based on summary-level data from either the Integrative Epidemiology Unit (IEU) open genome-wide association study (GWAS) project (18, 19) or 98 the largest meta GWAS of thyroid-related traits (20). Strict European samples were selected 99 100 as exposure sets, part of which were from the UK Biobank. The sample sizes of the exposure set varied from 468,343 to 1,000. Genetic instruments for TSH were extracted from a 101 102 meta-analysis of thyroid hormones in 26,420 participants of European ancestry (21). Estradiol is the most potent form of estrogen in the human body; thus, it was used to 103 represent the function of estrogens (22). In addition, DHEA-sulfate (DHEA-S) was adopted 104 105 to represent DHEA because it circulates at a far higher concentration than DHEA in the blood (23). All GWAS summary data were adjusted for age, sex, and other study-specific covariates. 106 Detailed information is provided in Table S1. 107

108 COVID-19 severity, hospitalization, and susceptibility

Summary statistics for the three COVID-19 phenotypes were obtained from release 5 of 109 the COVID-19 Host Genetics Initiative (HGI) GWAS meta-analysis (24). The COVID-19 110 111 HGI is a consortium of scientists from over 54 countries working collaboratively to investigate human genetic variation related with very severe respiratory syndrome (cases: 112 5,582; controls: 709,010), hospitalization (cases: 17,992; controls: 1,810,493), and 113 114 susceptibility (cases: 87,870; controls: 2,210,804) (Table S2). All individuals included in our analysis were of European ancestry. Very severe respiratory syndromes were cases that ended 115 with respiratory support or death from COVID-19. Hospitalizations were cases that involved 116 hospitalized patients. Susceptibility was defined as cases that tested positive, including 117 laboratory-confirmed COVID-19 using reverse transcription-quantitative polymerase chain 118 119 reaction (RT-qPCR) or serological testing, clinically diagnosed COVID-19 and self-reported COVID-19. In the GWAS meta-analysis, single-variant association analyses of COVID-19 120 traits were performed after adjusting for age, age 2 , sex, age \times sex, top principal components 121 122 for ancestry, and study-specific covariates of each contributing cohort. All studies contributing data to the analyses were approved by the relevant ethics committees. 123

124 Selection of Genetic Instruments for CNS-regulated hormones and COVID-19 traits

125	Genetic instruments were selected from the exposure data with genome-wide
126	significance ($p < 5 \times 10^{-8}$). SNPs were excluded if (1) they were not present in the outcome
127	GWAS summary data, (2) SNPs in linkage disequilibrium were within 1-Mb genomic
128	distance (R-squares above 0.01) using the 1000 Genome European reference panel and
129	retained the SNP with the lowest p -value, and (3) minor allele frequency was greater than
130	0.42 for non-inferable palindromic alleles. For exposures with a relatively small number of
131	SNPs, such as DHEA-S and TRH, if an SNP was absent in the outcome dataset, an LD proxy

SNP was searched using the 1000 Genome European panel to replace the missing SNP (25).
Exposure and outcome GWAS summary statistics were harmonized by aligning the effect
alleles. The number of genetic instruments used in bidirectional MR analyses is shown in **Table S1**. The proportion of variance was calculated using the sum of the variance explained
by individual SNPs divided by the variance of phenotype (26) (**Table S2**).

137 Bidirectional Two-sample MR and Statistical Analysis

We conducted bidirectional two-sample MR analyses. CNS-regulated hormones were considered exposures in the forward direction, and COVID-19 severity, hospitalization, and susceptibility were the outcomes. Conversely, COVID-19 severity, hospitalization, and susceptibility were exposures, and CNS-regulated hormones were outcomes in the reverse direction. The procedures for genetic instrument selection were similar in both directions of analysis.

144 We applied three MR methods to estimate causal effects: inversed-variance weighted (IVW) regression/Wald ratio, weighted median (WM), and MR-Egger regression. IVW 145 regression was the primary approach used to derive causal estimates, where at least two 146 147 exposure SNPs were available for analysis. Under the assumption of no horizontal pleiotropy, the IVW approach could generate an unbiased causal estimate (27). The Wald ratio method 148 was used when only one instrumental SNP was available for analysis. When the pleiotropy 149 assumption was not satisfied, the WM method would have a lower bias but a higher type I 150 151 error rate than the IVW method and was therefore used to further verify the inference effects 152 (27). The MR-Egger test was used to assess the horizontal pleiotropy. The intercept of MR-Egger represents the average horizontal pleiotropic effect across the exposure genetic 153 154 instruments, where the slope of the regression was the casual estimates (28).

155	Multivariable Mendelian randomization (MVMR) analyses were conducted to account
156	for potential confounding factors due to the possible genetic correlation of sex hormones,
157	including estradiol, testosterone, DHEA-S, LH, and FSH (29). Multivariable lasso was used
158	to perform MVMR analyses, as multivariable lasso is mostly a robust multivariate method,
159	accounting for outliers and pleiotropy caused by invalid instruments (30). After combining
160	SNPs of sex hormones, we clumped SNPs for linkage disequilibrium $r^2 < 0.01$ within a 1-Mb
161	genomic distance, excluded overlapping SNPs, and removed SNPs lacking linkage
162	information. The remaining SNPs were used for MVMR analysis. We also conducted
163	MVMR in the reverse direction to account for possible confounding due to the genetic
164	correlation of three types of COVID-19 on CNS-regulated hormones, showing evidence of
165	univariable MR associations with at least one COVID-19 trait. For traits with insufficient
166	SNPs (N \leq 3) to perform MVMR analyses, genetic instruments were selected with a
167	suggestive genome-wide significant <i>p</i> -value threshold ($p < 1 \times 10^{-5}$).
168	Sensitivity analyses were performed to verify the robustness of the results. Heterogeneity
169	among the SNPs included in each analysis was examined using the Cochran's Q test. We
170	used the MR-Egger regression intercept test and MR pleiotropy residual sum and outlier
171	(MR-PRESSO) global test to check for horizontal pleiotropy. The MR-PRESSO method was
172	used to check and correct for outliers (31). I_{GX}^2 statistic was used to examine the
173	measurement error in the SNP-exposure association (32). The strength of the selected SNPs
174	was assessed by F-statistic (33) calculated using the total sample size, the number of SNPs
175	used, and the proportion of variance explained.
176	The significance threshold was corrected for multiple testing with each MR analysis
177	using the Bonferroni method (<i>p</i> -value < 0.05 / number of exposures). In the sensitivity

analysis, as the *p*-value evaluated the precision of the effect estimation and given the large

number of statistical tests performed, we evaluated each result with a p-value < 0.05

- 180 individually by considering heterogeneity, pleiotropy, and removal of outliers. All data
- analyses were performed in R (34) using the *TwoSampleMR* (19), *MendelianRandomization*
- 182 (35), and *MR-PRESSO* (31) packages.
- 183
- 184 **Results**
- 185 Forward MR Results: Impact of CNS-regulated hormones on COVID-19

186 Univariable MR Analysis using CNS-regulated hormones as exposures

As shown in Figure 1, genetically predicted DHEA-S concentrations were nominally 187 associated with very severe respiratory syndrome (OR = 4.21, 95% CI: 1.41 - 12.59, p =188 0.010). This means that each standard deviation increase in DHEA-S level would 189 dramatically increase the odds of having very severe respiratory syndrome by 4.21-fold. 190 Additionally, DHEA-S was significantly associated with hospitalization (OR = 2.31, 95% CI: 191 1.13 - 4.72, p = 0.021). Along with the insignificant but positive association between 192 DHEA-S and susceptibility (OR = 0.94, 95% CI: 0.67-1.31, p = 0.703), the results showed a 193 194 possible trend between DHEA-S and COVID-19; DHEA-S had an increased OR and significance level for the three COVID-19 phenotypes (susceptibility, hospitalization, and 195 very severe respiratory syndrome). There was evidence of a negative association between LH 196 level and very severe respiratory syndrome (OR = 0.83, 95% CI: 0.71 - 0.96, p = 0.013). In 197 198 the susceptibility analysis, we did not find significant causal effects of CNS-regulated hormones on COVID-19 phenotypes (Table S3). The F statistics of all instrument variables 199 were > 10, with the proportion of variance explained ranging from 0.069% to 17.879%, 200 indicating the absence of weakness in the selected instruments (Table S2). 201

medRxiv preprint doi: https://doi.org/10.1101/2022.12.07.22283193; this version posted December 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made ava	ilable under	а	CC-B	-NC	-ND	4.0	International	license .	

	Very severe respiratory syndromes		Hospitalization		Susceptibility	
Exposure	1	OR (95% CI)		OR (95% CI)		OR (95% CI)
DHEA-S	⊢/ <i>⊢</i>	4.21 (1.41 - 12.59)	⊢ • – -1	2.31 (1.13 - 4.72)	⊢•1	1.09 (0.76 - 1.56)
Estradiol	⊢ ≁/⊢	1.73 (0.32 – 9.37)	⊢•—-1	1.20 (0.64 - 2.24)	• //	1.15 (0.34 - 3.83)
LH	 +	0.83 (0.71 - 0.96)	н	0.91 (0.82 - 1.00)	H	0.96 (0.92 - 1.00)
Testosteror	ne 🛏	0.94 (0.60 - 1.47)	H∎-I	1.10 (0.84 - 1.45)	┝╼┥	0.92 (0.81 - 1.05)
FSH	F=-1	0.83 (0.59 - 1.16)	H	0.87 (0.69 - 1.09)	H•-1	0.92 (0.82 - 1.04)
IGF-1	H	0.97 (0.86 - 1.10)	H	1.00 (0.92 - 1.09)	l•l	0.99 (0.95 - 1.03)
TSH	F	0.96 (0.77 - 1.20)	H	0.93 (0.79 - 1.09)	F ≠ I	0.99 (0.90 - 1.08)
TRH	⊢•1 ,,	1.36 (0.84 – 2.21)	H∎-1	1.08 (0.81 - 1.44)	⊦⊷⊣ //	1.09 (0.95 - 1.25)
	0.5 1.5 2.5 9 10 11 12 Odds Ratio		0.5 2.5 4.5 Odds Ratio		0.5 1.5 3.5 Odds Ratio	4.0

202

- 203 Figure 1. MR analyses the association of CNS-regulated Hormones and COVID-19
- 204 phenotypes.
- Abbreviations: CNS, central nervous system; COVID-19, coronavirus disease 2019;
- 206 DHEA-S, dehydroepiandrosterone sulfate; FSH, follicle-stimulating hormone; IGF-1,
- 207 insulin-like growth factor 1; LH, luteinizing hormone; MR, Mendelian randomization; TRH,
- 208 thyrotropin-releasing hormone; TSH, thyroid-stimulating hormone

209 Multivariable MR analysis with sex hormones

210	After adjusting for other sex hormones, genetically predicted DHEA-S was still
211	significantly associated with an increased risk of very severe respiratory syndrome at
212	a nominal significance level (OR = 3.72, 95% CI: 1.20 – 11.51, <i>p</i> = 0.023) (Table 1).
213	Although the association between DHEA-S and hospitalization and susceptibility
214	became insignificant, the trend matched what we found in the univariable analysis;
215	DHEA-S had an increasing effect size and significance level as COVID-19 severity
216	increased. In addition, the effect estimates of LH on very severe respiratory syndrome
217	were invalidated by conditioning the genetic effects of other sex hormones. However,
218	we observed significant associations between estradiol and very severe respiratory
219	syndrome (OR = 0.09, 95% CI: $0.02 - 0.51$, $p = 0.006$), hospitalization (OR = 0.25,
220	95% CI: 0.08 – 0.78, <i>p</i> = 0.016), and susceptibility (OR = 0.50, 95% CI: 0.28 – 0.89,
221	p = 0.019). The different results of LH and estradiol levels between univariate and
222	multivariable analyses indicated that sex hormones interacted with each other during
223	COVID-19. Notably, estradiol consistently increased the effect size and significance
224	level as COVID-19 severity decreased, as in the univariate analysis, which further
225	supported progressive interactions with COVID-19. Other than estradiol and DHEA-S,
226	we did not find any significant associations between CNS-regulated hormones and
227	COVID-19. Meanwhile, in the MVMR analysis, hormones other than testosterone
228	also exhibited a similar increasing OR trend as DHEA-S in the univariate analysis,
229	suggesting possible progressive immune interactive mechanisms during COVID-19.
230	Table 1. MVMR analysis of CNS-regulated hormone SNPs and COVID-19
231	severity and susceptibility

Very severe respiratory	Hospitalization	Susceptibility

	syndron	ne				
Exposure	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value
	3.72	0.022	1.69	0 1 4 4	0.94	0.702
DHEA-S	(1.20–11.51)	0.023	(0.83–3.42)	0.144	(0.67–1.31)	0.703
Estradiol	0.09	0 006	0.25	0 016	0.50	0 019
Estradior	(0.02–0.51)	0.000	(0.08–0.78)	0.010	(0.28–0.89)	0.017
1.11	1.23	0.242	1.16	0.200	1.08	0.251
LH	(0.81–1.86)	0.343	(0.88–1.52)	0.296	(0.94–1.24)	0.251
FOL	1.11	0 4 6 4	1.03	0.751	1.00	0.047
FSH	(0.84–1.48)	0.464	(0.85–1.24)	0.751	(0.91–1.10)	0.947
Testosteron	0.42	0.059	0.74	0.212	0.76	0.067
e	(0.17–1.03)	0.058	(0.41–1.33)	0.312	(0.56–1.02)	0.067

Abbreviations: CNS, central nervous system; COVID-19, coronavirus disease 2019; 232

DHEA-S, dehydroepiandrosterone sulfate; FSH, follicle-stimulating hormone; LH, 233

luteinizing hormone; MVMR, multivariable Mendelian randomization; SNP, 234

single-nucleotide polymorphisms 235

Reverse MR Results: Testing for bidirectionality using COVID-19 traits as 236 exposures 237

238 We did not find evidence supporting reverse causality between DHEA and all

three COVID-19 phenotypes. However, there was evidence of the promoting effects 239

of very severe respiratory syndrome on IGF-1 (OR = 1.01, 95% CI: 1.00 - 1.02, p =240

0.040), and susceptibility on testosterone (OR = 1.05, 95% CI: 1.03 - 1.06, p < 0.001) 241

after outlier correction (Table S4). 242

243	In MVMR analysis, after adjusting for other COVID-19, very severe respiratory
244	syndrome still had promoting effects on testosterone (OR = 1.11 , 95% CI: $1.03 - 1.19$,
245	p = 0.003) and hospitalization was found to have significant decreasing effects on
246	testosterone (OR = 0.89, 95% CI: $0.84 - 0.94$, $p < 0.001$) (Table S5).

247 Sensitivity analysis

248 Test for horizontal pleiotropy

In univariate analysis with the COVID-19 phenotype as the outcome, the

250 MR-Egger regression intercept test did not find any horizontal pleiotropy in the

association between eight CNS-regulated hormones and three COVID-19 phenotypes

(all, p > 0.05) (Table S6). However, the MR-PRESSO global test suggested

253 horizontal pleiotropy in the association of IGF-1 and testosterone with COVID-19

254 phenotypes (p-value < 0.05).

255 In the bidirectional analysis using CNS-regulated hormones as outcomes, there was no evidence of horizontal pleiotropy in any associations between COVID-19 and 256 hormone traits using the MR-Egger regression intercept test (all p-values > 0.05). The 257 258 MR-PRESSO global test suggested potential horizontal pleiotropy effects associated with very severe respiratory syndrome COVID-19 and susceptibility to IGF-1 and the 259 three COVID-19 phenotypes with testosterone (p < 0.05). Apart from IGF-1 and 260 261 testosterone, no horizontal pleiotropy effect was found in either direction for any of the three COVID-19 phenotypes, which indicates the validity of the significant 262 findings in the univariable MR analysis (Table S7). 263

264 Test for heterogeneity of instruments

265	As shown in Table S6, in the univariate analysis with COVID-19-severity as an
266	outcome, heterogeneity was found in IGF-1 and testosterone estimates. Cochran's Q
267	test indicated heterogeneity in the association of IGF-1 with very severe respiratory
268	syndrome ($p = 0.001$) and susceptibility ($p = 0.007$). Heterogeneity was only
269	associated with very severe respiratory syndrome ($p < 0.001$).
270	For the analysis using COVID-19 as exposure, heterogeneity was found in the
271	association among very severe respiratory syndrome, susceptibility, and IGF-1 and in
272	the association between very severe respiratory syndrome and testosterone ($p < 0.001$
273	for all analyses) (Table S7).
274	Test for measurement error
275	In the analysis using COVID-19 severity as an outcome, only TSH was found to
276	have a low I_{GX}^2 statistic associated with COVID-19, which indicated a potential bias
277	to MR-Egger estimators (Table S6).
278	In the analysis using very severe respiratory syndrome as exposure, only
279	DHEA-S had an I_{GX}^2 statistic > 0.900, which suggested that MR-Egger estimates of
280	all other hormones could be biased by measurement errors (Table S7). We did not
281	find any measurement errors in the hospitalization analysis based on the I^2_{GX} statistics.
282	Like very severe respiratory syndrome, almost all the associations between
283	susceptibility and hormones were biased by measurement errors, except for DHEA-S.

284 Discussion

285 Main findings

286	Bidirectional two-sample MR analyses using large publicly available genomic
287	datasets to analyze the causal association between the genetic liability of
288	CNS-regulated hormones and COVID-19 susceptibility, hospitalization, and severity.
289	We found strong evidence supporting the causal associations of DHEA and LH with
290	very severe respiratory syndrome COVID-19 and the association of DHEA with
291	hospitalization due to COVID-19. We did not find evidence supporting an association
292	between CNS-regulated hormones and COVID-19 susceptibility. In MVMR analyses,
293	we found evidence of a negative association between estradiol and COVID-19
294	susceptibility, hospitalization, and severity, adjusted for other sex-related hormones.
295	In the reverse direction, we found that very severe respiratory syndrome was
296	associated with IGF-1 levels, and COVID-19 susceptibility was associated with
297	testosterone levels. Together with previous observational studies, we revealed
298	possible causal associations between CNS-regulated hormones, especially sex
299	hormones, and COVID-19 severity, suggesting that hormonal therapies could be
300	potential treatments for COVID-19 severe patients.

301 Hormones and COVID-19

The effects of DHEA on COVID-19 are contradictory. On the one hand, DHEA 302 can exert immunomodulatory and anti-inflammatory functions, which means that 303 DHEA could have potential protective effects. Conversely, as a type of androgen, 304 305 DHEA is suspected to be associated with an increased risk of COVID-19. Our analysis clearly indicated that DHEA is associated with an increased risk of 306 COVID-19, especially the risk of very severe respiratory syndrome COVID-19. As 307 mentioned before, DHEA, as a type of androgen, has regulatory effects on the ACE-2 308 receptor and TMPRSS2, promoting the fusion of the SARS-CoV-2 virus into host 309 cells, thereby increasing the susceptibility and severity of COVID-19 (36, 37). 310

311 Besides its androgenic effect, DHEA also acts as a powerful inhibitor of

312 glucose-6-phosphate dehydrogenase (G6PD) (38). G6PD deficiency has been

demonstrated to enhance cell infection with human coronavirus 229E (HCoV 229E)

314 (39). Considering that SARS-CoV-2 is also a human coronavirus, DHEA may greatly

increase the risk of COVID-19 due to its inhibition of G6PD.

In contrast to androgens, estrogen is the main reason why the female immune system responds more efficiently to pathogens (40). In the analysis, when adjusting for all other sex hormones, estrogen was found to have significant decreasing effects on all types of COVID-19, which supports the possible protective effects of estrogen and indicates the potential for the implementation of hormonal therapy (41). In fact, clinical trials are in progress to test the effect of additional estrogen on COVID-19 patients (42).

Moreover, the effects of DHEA and estrogen all displayed a progressively 323 increasing effect size and significance level as the COVID-19 severity increased. Two 324 possible mechanisms may play a role in this pattern. The first is the difference in viral 325 load between severe and mild cases. A study of the viral load during COVID-19 326 reported that compared with mild cases, patients with severe COVID-19 tend to have 327 higher viral loads (43). Considering the effects of DHEA in enhancing the fusion of 328 329 viruses into host cells, DHEA might result in a higher risk for people with higher viral 330 loads than those with lower viral loads. Another possible explanation is the mechanism of COVID-19. The key factors affecting severity are an uncontrolled 331 immune response and cytokine storms. Estrogen has powerful anti-inflammatory 332 333 effects due to its inhibition of proinflammatory cytokines such as IL-1B, IL-6, and others (44). As COVID-19 severity increases, uncontrolled immune responses 334 produce more proinflammatory cytokines; therefore, the anti-inflammatory effect of 335

336 estrogen becomes more powerful, which leads to increasing effect size and

337 significance level.

338	We did not find any association between testosterone and the three types of
339	COVID-19. A recent MR study on serum testosterone and bioavailable testosterone
340	found that only bioavailable testosterone level was associated with a higher risk of
341	hospitalization due to COVID-19, indicating that different forms of testosterone may
342	have different effects on COVID-19 (10). Besides, we found the promoting effect of
343	COVID-19 susceptibility on testosterone levels. Some studies have observed
344	decreased testosterone levels in severe cases. However, other studies have also
345	proposed that the inflammatory response caused by SARS-CoV-2 viruses may trigger
346	testosterone secretion to initiate an anti-viral reaction considering the
347	anti-inflammatory and immune-modulatory effects of testosterone (45-47). Besides
348	testosterone levels, we also observed that COVID-19 severity was associated with
349	increased levels of IGF-1. However, a phenome-wide association study (48) found
350	that genetically determined severe COVID-19 was associated with lower IGF-1 levels.
351	The contradiction of the results suggests that further studies and an understanding of
352	IGF-1's mechanisms and pathways are needed.
353	Additional findings

354 Our findings also elucidate the possible interactive effects of sex hormones on

355 COVID-19. We found significant effects of LH on very severe respiratory syndrome

356 COVID-19. A recent COVID-19 case-control study involving 89 men with

357 COVID-19 suggested that impaired testosterone in infected males may stimulate LH

release to maintain testosterone levels based on negative-feedback regulation(46).

359 Analysis using COVID-19 as exposure indicated that COVID-19 were associated with

360 increased testosterone levels. Combined with the anti-inflammatory function of

361 testosterone, increased LH levels could decrease the risk of severe COVID-19. Another possible reason could be the interaction between LH and estradiol. Univariate 362 analysis did not find a possible causal association between estradiol and COVID-19. 363 In contrast, after adjusting for other hormones in multivariable analysis, estradiol 364 was found to be significantly negatively associated with all three types of COVID-19 365 with alterations in the effect direction and significance level of LH. LH is the 366 upstream hormone of testosterone and estrogen, which controls the secretion and 367 transformation of these hormones based on the negative-feedback loop. The true 368 369 effect of LH may be influenced by both estrogen and testosterone levels. Strengths and limitations 370 The strengths of our study include the integration of univariate, multivariate, and 371 372 bidirectional MR analyses using genetic instrument variables drawn from the largest GWASs to date. We also included a variety of CNS-regulated hormone levels and 373 COVID-19 phenotypes. Furthermore, follow-up sensitivity analyses such as the 374 375 MR-Egger intercept test, Cochran's Q test demonstrated the robustness of our findings. The F-statistic of the instrument variables also illustrated the strength of our 376 selected SNPs. Finally, applying multivariable and univariable approaches is an 377 advantage highlighted by the converging findings for COVID-19 phenotypes. We 378 379 minimized the chances of population stratification between exposure datasets and

hormones and by excluding the 23andMe cohort from COVID-19 datasets.

380

Our study has the following limitations. The selected genetic instruments generally explain a small to moderate proportion of the variance in exposure, although well within the typical ranges for complex traits (49). Investigations of genetic variants associated with CNS-regulated hormones are needed. In addition, some

outcome datasets by using GWAS of the European population for CNS-regulated

386	exposures had only one or two SNPs, which were not suitable for sensitivity analyses.
387	The use of weak genetic instruments may limit our ability to detect subtle, causal
388	associations. However, the roughly similar pattern between univariate and
389	multivariate analysis, and the high F-statistic, suggested the robustness and reliability
390	of our results. Considering the possible sex effects, we used the UK Biobank
391	sex-stratified data to assess the effects of testosterone, estrogen, IGF-1, and TSH on
392	COVID-19. The results showed an effect direction consistent with that of the
393	univariate two-sample MR analysis (Table S8).
394	In conclusion, our study found a possible causal association between
395	CNS-regulated hormones and COVID-19. In contrast to previous observational
396	studies focusing on a single hormone, such as testosterone or estrogen, our study was
397	the first to use MR analysis to investigate the causal association between
398	CNS-regulated hormones and COVID-19 severity, hospitalization, and susceptibility.
399	We found that genetically predicted DHEA and LH had significant causal associations
400	with COVID-19; and that significant effects of estrogen on COVID-19 were observed
401	after adjusting for other hormones, supporting the feasibility of hormonal therapy for
402	COVID-19. Future studies may need to be designed to further understand the
403	mechanisms and pathways underlying the causal relationship between CNS-regulated
404	hormones and COVID-19, with the goal of developing potential therapeutic strategies.
405	

406 Acknowledgements

We thank the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/) for
making their data publicly available. We thank the IEU open GWAS project

- 409 (https://gwas.mrcieu.ac.uk/) for making the summary statistics of 7 hormones traits
- 410 publicly available.
- 411

412 Ethics approval and consent to participate

413 The requirement for informed consent was waived because the study analyzed public

414 databases.

415 Availability of data and materials

- 416 GWAS summary data of seven hormone traits are available in IEU open GWAS
- 417 project (https://gwas.mrcieu.ac.uk/) with GWAS ID as ukb-d-30770_irnt for IGF-1,
- 418 ukb-d-30800_irnt for Estradiol, ukb-d-30850_irnt for Testosterone, met-a-478 for
- 419 DHEA-S, prot-a-3102 for TRH, prot-a-529 for LH, and prot-c-3032_11_2 for FSH.
- 420 GWAS summary data of TSH are collected in a GWAS meta-analysis of
- 421 thyroid-related traits.(20) Summary statistics (release 5) of GWAS meta-analysis for
- 422 the three COVID-19 phenotypes are available in the COVID-19 Host Genetics
- 423 Initiative (HGI) at https://www.covid19hg.org/results/r5/.

424 **Declaration of interest**

- 425 All authors declare no conflicts of interest.
- 426

427 Funding

- 428 This study is supported by Research Start-up Fund of the Seventh Affiliated Hospital,
- 429 Sun Yat-sen University (Grant No. 392016).

430

References
1. COVID W. Dashboard. Geneva: World Health Organization 2020.
2. Wu Z, McGoogan JM. Characteristics of and important lessons from the
coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of /2
314 cases from the Chinese Center for Disease Control and Prevention. Jama.
2020,525(15).1259-42. 3 Team F. The enidemiological characteristics of an outbreak of 2019 novel
coronavirus diseases (COVID-19)—China 2020 China CDC weekly 2020:2(8):11
4. Yang L. Liu S. Liu J. Zhang Z. Wan X. Huang B. et al. COVID-19:
immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther.
2020:5(1):128.
5. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et
Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant. N Engl J
Med. 2021:585-94.
6. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender Differences in
Patients With COVID-19: Focus on Severity and Mortality. Front Public Health.
2020;8:152.
7. Papadopoulos V, Li L, Samplaski M. Why does COVID-19 kill more elderly m
than women? Is there a role for testosterone? Andrology. 2021;9(1):65-72.
8. Nyce J. Alert to US physicians: DHEA, widely used as an OTC androgen supplement may exacerbate COVID 10. Endogring Polated Cancer
2021.28(2).R47_R53
9 Bhowmick NA Off I Dorff T Pal S Agarwal N Figlin RA et al COVID-19
and androgen-targeted therapy for prostate cancer patients. Endocr Relat Cancer.
2020:27(9):R281-R92.
10. Liu L, Fan X, Guan Q, Yu C. Bioavailable testosterone level is associated with
COVID-19 severity in female: A sex-stratified Mendelian randomization study.
Journal of Infection. 2022.
11. Seeland U, Coluzzi F, Simmaco M, Mura C, Bourne PE, Heiland M, et al.
Evidence for treatment with estradiol for women with SARS-CoV-2 infection. BMC
Med. 2020;18(1):369.
12. Ilias I, Diamantopoulos A, Botoula E, Athanasiou N, Zacharis A, Tsipilis S, et a
Covid-19 and Growth Hormone/Insulin-Like Growth Factor 1: Study in Critically and

medRxiv preprint doi: https://doi.org/10.1101/2022.12.07.22283193; this version posted December 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

- 470 13. Vaez Mahdavi MR, Kaboudanian Ardestani S, Rezaei A, Mohammadi S,
- 471 Rajabnia Chenary M, Gharegozlou B, et al. COVID-19 patients suffer from DHEA-S
- 472 sufficiency. Immunoregulation. 2020;3(2):135-44.
- 473 14. Beltrame A, Salguero P, Rossi E, Conesa A, Moro L, Bettini LR, et al.
- 474 Association Between Sex Hormone Levels and Clinical Outcomes in Patients With
- 475 COVID-19 Admitted to Hospital: An Observational, Retrospective, Cohort Study.
- 476 Frontiers in immunology. 2022;13.
- 15. Wang W, Su X, Ding Y, Fan W, Zhou W, Su J, et al. Thyroid Function
- 478 Abnormalities in COVID-19 Patients. Front Endocrinol (Lausanne). 2020;11:623792.
- 479 16. Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. Improving
- 480 reproducibility by using high-throughput observational studies with empirical
- 481 calibration. Philosophical Transactions of the Royal Society A: Mathematical,
- 482 Physical and Engineering Sciences. 2018;376(2128):20170356.
- 483 17. Smith GD. Mendelian randomization for strengthening causal inference in
- observational studies: application to gene× environment interactions. Perspectives on
 Psychological Science. 2010;5(5):527-45.
- 18. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC
 IEU OpenGWAS data infrastructure. BioRxiv. 2020.
- 487 IEU OpenG w AS data initiastructure. BioRXIV. 2020.
- 19. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The
- 489 MR-Base platform supports systematic causal inference across the human phenome.
 490 Elife. 2018;7:e34408.
- 491 20. Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cappola AR, et al. A
- 492 meta-analysis of thyroid-related traits reveals novel loci and gender-specific
- differences in the regulation of thyroid function. PLoS Genet. 2013;9(2):e1003266.
- 494 21. Bos MM, Smit RAJ, Trompet S, van Heemst D, Noordam R. Thyroid Signaling,
- Insulin Resistance, and 2 Diabetes Mellitus: A Mendelian Randomization Study. J
 Clin Endocrinol Metab. 2017;102(6):1960-70.
- 497 22. Salole EG. Estradiol. Analytical profiles of drug substances. 15: Elsevier; 1986.
 498 p. 283-318.
- 499 23. Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol500 Endocrinol. 2016;56(3):R139-55.
- 501 24. Initiative C-HG. The COVID-19 host genetics initiative, a global initiative to
- 502 elucidate the role of host genetic factors in susceptibility and severity of the
- 503 SARS-CoV-2 virus pandemic. European Journal of Human Genetics. 2020;28(6):715.
- 504 25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al.
- 505 PLINK: a tool set for whole-genome association and population-based linkage
- 506 analyses. Am J Hum Genet. 2007;81(3):559-75.
- 507 26. Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, et al. A
- 508 multivariate genome-wide association analysis of 10 LDL subfractions, and their
- response to statin treatment, in 1868 Caucasians. PLoS one. 2015;10(4):e0120758.
- 510 27. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient
- method for Mendelian randomization with hundreds of genetic variants. Nat Commun.2020;11(1):376.
- 513 28. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
- 514 instruments: effect estimation and bias detection through Egger regression.
- 515 International journal of epidemiology. 2015;44(2):512-25.
- 516 29. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of
- 517 pleiotropic genetic variants to estimate causal effects. Am J Epidemiol.
- 518 2015;181(4):251-60.

medRxiv preprint doi: https://doi.org/10.1101/2022.12.07.22283193; this version posted December 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

- 30. Grant AJ, Burgess S. Pleiotropy robust methods for multivariable Mendelian 519 randomization. Stat Med. 2021;40(26):5813-30. 520 31. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal 521 pleiotropy in causal relationships inferred from Mendelian randomization between 522 complex traits and diseases. Nature genetics. 2018;50(5):693-8. 523 32. Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan NA, Thompson 524 JR. Assessing the suitability of summary data for two-sample Mendelian 525 randomization analyses using MR-Egger regression: the role of the I2 statistic. 526 International journal of epidemiology. 2016;45(6):1961-74. 527 33. Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength 528 529 requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740-52. 530 34. Team RC. R: A language and environment for statistical computing. 2013. 531 532 35. Yavorska OO, Burgess S. MendelianRandomization: an R package for 533 performing Mendelian randomization analyses using summarized data. International journal of epidemiology. 2017;46(6):1734-9. 534 535 36. Samuel RM, Majd H, Richter MN, Ghazizadeh Z, Zekavat SM, Navickas A, et al. Androgen signaling regulates SARS-CoV-2 receptor levels and is associated with 536 severe COVID-19 symptoms in men. Cell Stem Cell. 2020;27(6):876-89. e12. 537 37. Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, et al. 538 Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen 539 response element. Mol Endocrinol. 2013;27(12):2028-40. 540 541 38. Gordon G, Mackow MC, Levy HR. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch Biochem Biophys. 542 1995;318(1):25-9. 543 544 39. Vick DJ, editor Glucose-6-phosphate dehydrogenase deficiency and COVID-19 infection. Mayo Clinic Proceedings; 2020: Elsevier. 545 40. Al-Lami RA, Urban RJ, Volpi E, Algburi AM, Baillargeon J, editors. Sex 546 hormones and novel corona virus infectious disease (COVID-19). Mayo Clinic 547 Proceedings; 2020: Elsevier. 548 41. Bennink HJC, Foidart J-M, Debruyne FM. Treatment of serious COVID-19 with 549 550 testosterone suppression and high-dose estrogen therapy. European Urology. 2021. 42. University T. Estradiol and Progesterone in Hospitalized COVID-19 Patients. 551 https://ClinicalTrials.gov/show/NCT04865029; 2021. 552 43. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, et al. Viral dynamics in mild 553 554 and severe cases of COVID-19. Lancet Infect Dis. 2020;20(6):656-7. 44. Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Al-Maiahy TJ, Cruz-Martins N, 555 Batiha GE-S. The looming effects of estrogen in Covid-19: a rocky rollout. Frontiers 556 in Nutrition. 2021;8. 557 45. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al. 558 Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia 559 patients. Andrology. 2021;9(1):88-98. 560 46. Kadihasanoglu M, Aktas S, Yardimci E, Aral H, Kadioglu A. SARS-CoV-2 561 pneumonia affects male reproductive hormone levels: a prospective, cohort study. The 562 Journal of Sexual Medicine. 2021;18(2):256-64. 563
- 47. Younis JS, Skorecki K, Abassi Z. The Double Edge Sword of Testosterone's Role
 in the COVID-19 Pandemic. Front Endocrinol (Lausanne). 2021;12:607179.
- in the COVID-19 Pandemic. Front Endocrinol (Lausanne). 2021;12:607179.
 48. Papadopoulou A, Musa H, Sivaganesan M, McCoy D, Deloukas P, Marouli E.
- 567 COVID-19 susceptibility variants associate with blood clots, thrombophlebitis and
- 568 circulatory diseases. PLoS One. 2021;16(9):e0256988.

- 49. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497-501. 569
- 570

571