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Abstract  

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Lewy body 
dementia (LBD) and amyotrophic lateral sclerosis (ALS), are devastating complex diseases that result in a 
physical and psychological burden to patients and their families. There have been significant efforts to 
understand the genetic basis of neurodegenerative diseases resulting in the identification of disease risk-
associated variants involved in several molecular mechanisms, including those that influence immune-
related pathways. Regional genetic correlations, in contrast to genome-wide correlations, between pairs 
of immune and neurodegenerative traits have not been comprehensively explored, but such a regional 
assessment could shed light on additional immune-mediated risk-associated loci. Here, we systematically 
assessed the potential role of the immune system in five neurodegenerative diseases, by estimating 
regional genetic correlations between neurodegenerative diseases and immune-cell-derived single-cell 
expression quantitative trait loci (sc-eQTLs), using the recently developed method of Local Analysis of 
[co]Variant Association (LAVA). We used the most recently published genome-wide association studies 
(GWASes) for five neurodegenerative diseases and publicly available sc-eQTLs derived from 982 individuals 
from the OneK1K Consortium, capturing aspects of the innate and adaptive immune systems. Additionally, 
we tested GWASes from well-established immune-mediated diseases, Crohn’s disease (CD) and ulcerative 
colitis (UC), the immune-mediated neurodegenerative disease, multiple sclerosis (MS) and a well-powered 
GWAS with strong signal in the HLA region, schizophrenia (SCZ), as positive controls. Finally, we also 
performed regional genetic correlations between diseases and protein levels. We observed significant 
(FDR < 0.01) regional genetic correlations between sc-eQTLs and neurodegenerative diseases across 151 
unique genes, spanning both the innate and adaptive immune systems, across most diseases tested 
(except for frontotemporal dementia (FTD) and LBD). Colocalization analyses on followed-up regional 
correlations highlighted immune-related candidate causal risk genes associated with neurodegenerative 
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diseases. We also observed significant regional correlations with protein levels across 156 unique proteins, 
across all diseases tested, except for FTD. The outcomes of this study will improve our understanding of 
the immune component of neurodegeneration, which can be potentially used to repurpose existing 
immunotherapies used in clinical care for other immune-mediated diseases, to slow the progression of 
neurodegenerative diseases. 

Introduction 

Adult-onset neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS), are devastating conditions affecting populations worldwide and 
resulting in a large physical and psychological burden to patients and their families. Neurodegeneration 
occurs when the cells in the nervous system deteriorate, leading to cell death caused by various 
pathological factors and possibly multiple biological systems. Large-scale genome-wide association studies 
(GWASes), which have mostly been conducted in individuals of European genetic ancestry, identified 
multiple risk loci associated with AD, PD, ALS, and other complex neurodegenerative diseases (Ferrari et 
al., 2014; Kunkle et al., 2019; Nalls et al., 2014, 2019; Schwartzentruber et al., 2021; van Rheenen et al., 
2016, 2021; Wightman et al., 2021). However, there is a gap in our understanding of the mechanisms by 
which genetic risk factors influence the pathogenesis of neurodegenerative diseases.   

Computational and experimental evidence of several complex neurodegenerative diseases suggest that 
the immune system is involved in disease development (Broce et al., 2018; Gagliano et al., 2016; Kim et 
al., 2021; Nalls et al., 2019; Schwartzentruber et al., 2021; Tansey et al., 2022) (Supplementary Figure 1). 
For instance, there is experimental evidence in transgenic mice suggesting an association between AD 
progression and accumulation of B cells and immunoglobulin deposits around Aβ plaques (Kim et al., 
2021). Additionally, computational evidence has shown a genetic enrichment of AD GWAS signals across 
the innate and adaptive immune systems (Gagliano et al., 2016; Kim et al., 2021). Further, an experimental 
study uncovered the role of CD4+ T cells in brains of Lewy Body Dementia (LBD) patients and its 
relationship with neurodegeneration (Gate et al., 2021). In the case of ALS, the largest GWAS identified 
the Human Leukocyte Antigen (HLA) region as a novel disease risk locus, and an epigenome-wide 
association study highlighted an enrichment of Immunoglobulin E as associated with disease risk (Hop et 
al., 2022; van Rheenen et al., 2021). Additionally, the immune system is thought to be implicated in PD, in 
which the gene LRRK2 is a shared disease risk for Crohn’s disease (CD) and PD (Herrick & Tansey, 2021; 
Tansey et al., 2022). Further, tyrosine kinase inhibition has shown to modulate the immune response in 
PD (Pagan et al., 2016). These findings motivate the study of links between neurodegeneration and 
immune processes. The wealth of large-scale “omic” data becoming available presents a unique 
opportunity to apply new data-driven approaches to better understand the molecular and cellular 
immune-related mechanisms influencing neurodegenerative diseases, through the lens of genetics.  

Pinpointing targets for neurodegenerative diseases in specific cell types involved in the immune system 
will be key to downstream repurposing of existing immune therapies as treatment options for certain 
neurodegenerative diseases. Here, we identify and investigate shared genomic loci between immune 
function and risk of neurogenerative disease risk using bioinformatics tools with large-scale GWAS datasets 
and expression quantitative trait loci (gene expression and protein). In our investigation of the role of 
immune-mediated pathways in neurodegenerative diseases, we not only demonstrate known 
relationships among genes, cell types and diseases, but also identify new potential links. Our approach 
pinpoints pertinent genes in a particular cell type for a particular neurodegenerative disease. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.07.22283179doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.07.22283179
http://creativecommons.org/licenses/by/4.0/


Methods 

Datasets and data formatting 

We obtained genome-wide association study (GWAS) datasets from publicly available repositories, or 
requested access to their corresponding summary statistics. We selected five GWAS datasets from 
European genetic ancestry case/control studies of common neurodegenerative diseases as test traits: 1) 
Alzheimer’s disease (Schwartzentruber et al., 2021), 2) Parkinson’s disease (Nalls et al., 2019), 3) Lewy 
body dementia (Chia et al., 2021), 4) amyotrophic lateral sclerosis (van Rheenen et al., 2021), and 5) 
frontotemporal dementia (Ferrari et al., 2014). We also included three GWAS datasets corresponding to 
case/control studies of immune-mediated diseases as control traits: 1) multiple sclerosis (IMSGC et al., 
2012), 2) ulcerative colitis (de Lange et al., 2017), and 3) Crohn’s disease (de Lange et al., 2017). Finally, 
we included as a test dataset a well-powered case/control study of schizophrenia (Pardiñas, 2018), a 
neuropsychiatric disorder in which there is a genome-wide association with the Human Leukocyte Antigen 
(HLA) region, encoding genes that play a key role in the immune system. Detailed information on the GWAS 
sample sizes, number of genetic variants, genomic build, and source URLs are available in Supplementary 
Table 1. After download, we formatted the GWAS summary statistics with R (version 4.0.2) (R Core Team, 
2019) and lifted over the genomic coordinates to the Human Genome Build GRCh37 with the R package 
rutils version 0.99.2 (RHReynolds, 2022) as needed. We used the R package 
SNPlocs.Hsapiens.dbSNP144.GRCh37 (Pagès, 2017) to map reference SNP IDs (rsids) to genomic 
coordinates or vice versa. All analyses in the present study were performed using the Digital Research 
Alliance of Canada compute clusters. 

We obtained single-cell expression quantitative trait loci (sc-eQTLs) summary statistics from the OneK1K 
study (Yazar et al., 2022) by personal communication with the corresponding author. The dataset includes 
single-cell expression data on 1.27 million peripheral blood mononuclear cells in 982 individuals of 
European genetic ancestry, clustered into 14 immune cell types. To minimize the multiple testing burden, 
we selected a subset of these cell types for the present study. Specifically, we included the following cells 
from the innate and adaptive immune system: 1) classical monocytes, 2) effector memory CD4+ T cells, 3) 
naïve CD4+ T cells, 4) effector memory CD8+ T cells, 5) naïve CD8+ T cells, 6) naïve B cells, and 7) memory 
B cells. To explore an additional level of biological variation, we also obtained summary statistics of plasma 
protein QTLs, pQTLs (Zhang et al., 2022), corresponding to the “European American” sample, including 
7,213 individuals (http://nilanjanchatterjeelab.org/pwas/).  

Genome-wide genetic correlations across GWAS datasets 

We estimated genome-wide genetic correlations (rg) across GWAS trait pairs using linkage disequilibrium 
score regression (LDSC) (Bulik-Sullivan et al., 2015). We first formatted GWAS summary statistics for each 
trait using the munge_sumstats.py function to align the alleles and keep SNPs present in the HapMap 
Project Phase 3, with the MHC region removed. Next, we ran the ldsc.py function for each trait pair using 
the 1000 Genomes Project Phase 3 European super-population as the LD reference to obtain rg estimates. 
We applied a Bonferroni corrected p-value threshold to account for the number of pair-wise correlations 
performed, and subsequently defined a significant correlation if p-value < 0.0014. 

Regional genetic correlations across GWAS datasets 
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We estimated regional genetic correlations (rg) across GWAS pair traits with the R package Local Analysis 
of [co]Variant Association (LAVA) (Werme et al., 2022). We used the genomic regions defined as autosomal 
LD blocks (N = 2,495) across autosomal chromosomes by Werme et al., which are characterized by having 
minimum LD across regions, a minimum of 2,500 variants included on each LD block, and with an average 
LD block size of 1 million bases. To define which genomic regions to test across GWAS traits, we selected 
LD blocks that contained at least one genome-wide significant signal in at least one GWAS trait (n = 389). 
We considered sample overlap across GWAS datasets in the analysis by including the pair-wise genetic 
covariance estimated by LDSC and further standardizing it into a correlation matrix. To estimate regional 
rg, we first performed a univariate test for each trait per LD block and performed a bivariate test only for 
those trait pairs that had a significant univariate genetic signal (p-value < 1.28e-04, correcting for the 389 
LD blocks tested). We applied a Bonferroni corrected p-value threshold to account for the number of pair-
wise regional correlations performed and defined a significant correlation if p-value < 2.63e-05 
(0.05/1,902). 

Regional genetic correlations between GWAS and QTLs 

We estimated regional rg between GWAS and QTL datasets using LAVA (Werme et al., 2022). In the case 
of the regional correlations between GWAS and gene expression levels, we tested protein and non-protein 
coding genes harbouring at least one genome-wide significant sc-eQTL per cell type separately. We 
extended the tested region 100kb upstream and downstream of the start and end positions of the gene, 
which is where the majority of the cis-eQTLs are located (Võsa et al., 2021). We followed the same 
approach when defining the genomic regions to test between GWAS and protein levels, in which we 
included proteins that harboured at least one genome-wide significant pQTL, and extended the tested 
region +/- 100kb from the start/end gene coordinates of the respective protein. In both cases (i.e. sc-eQTLs 
and pQTLs) we assumed that there was no sample overlap between the GWAS and QTL datasets, which 
we believe is a reasonable assumption. We estimated regional rg as described above, in which we first 
performed a univariate test for each trait, and then performed a bivariate test between GWAS-QTL only if 
both had a significant univariate genetic signal, correcting for the number of genes or proteins tested. We 
applied an FDR correction to the p-value threshold to account for the number of pair-wise regional 
correlations, separately for the analysis with sc-eQTLs and pQTLs, thus defining a significant GWAS-QTL 
correlation if FDR < 0.01. We chose an FDR correction, instead of a stricter Bonferroni correction, given 
that genic regions do not necessarily represent unique regions of linkage equilibrium (i.e. variants in one 
gene may be in linkage disequilibrium with variants in nearby genes as well).  

Colocalization to follow-up on regional correlations between GWAS and gene expression levels 

We performed colocalization analysis to follow-up on the significant (FDR < 0.01) regional correlations 
between GWAS and gene expression levels using the tool, coloc (Giambartolomei et al., 2014; Wallace, 
2021). For those traits where the sample minor allele frequency (MAF) was available, we checked the 
correlation between the MAF of the 1000 Genomes European super-population and the sample MAF, 
which was 0.99 in all cases. Similar to the regional correlations approach, we tested the genic region +/- 
100kb from the start/end gene coordinates and assumed a maximum of one causal signal per 
colocalization. We tested a total of 366 GWAS-QTL pairs using the default SNP priors (p1 = p2 = 1e-04 and 
p12 = 1e-05). We considered a region to colocalize between gene expression levels and a GWAS trait, if the 
posterior probability (PP) of H4 ≥ 0.8, which suggests a high probability of a shared causal signal between 
both traits.  
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Gene set enrichment analysis to follow-up on regional genetic correlations between GWAS and protein 
levels 

We performed a gene set enrichment analysis with the GENE2FUNC tool implemented in FUMA 
(Watanabe & Taskesen, 2017) to aid in the interpretation of the regional genetic correlations between 
GWAS traits and protein levels. We analysed one GWAS trait at a time and included only genes with protein 
levels that were significantly correlated with that GWAS trait (FDR < 0.01). We used Ensembl version 92 
and included the list of 4,657 genes for which protein levels were assessed (hence the genes used in the 
pQTL analysis) as the background set of genes (Zhang et al., 2022). FUMA performs a hypergeometric test 
for gene set enrichment using gene set databases obtained from MSigDB, WikiPathways and the GWAS 
Catalog. Of the available datasets, we focused specifically on Gene Ontology biological processes. We set 
a minimum threshold of overlapping genes with gene sets of ≥ 2 and used the Benjamin-Hochberg FDR 
multiple testing correction method (alpha = 0.05) to define enriched gene-sets.  

Validation of AD and PD signals using GWAS without proxy cases 

The AD and PD GWAS used in these analyses included proxy cases (i.e., individuals who do not have the 
disease of interest, but have a close relative who does). The inclusion of proxy cases has been suggested 
as a useful means to increase case sample size, particularly for late-onset disorders such as AD and PD (Liu 
et al., 2017). However, there are also concerns raised on the impact of proxies on heritability and careful 
diagnosis, which has been examined in the context of AD (Escott-Price & Hardy, 2022). As a sensitivity 
analysis to verify that our results involving AD and PD are not primarily driven by possible spurious effects 
of the inclusion of proxy cases, we reperformed the analyses for significant findings for the regional genetic 
correlations with gene expression levels and with protein levels using AD and PD without proxy cases 
(Blauwendraat et al., 2019; Kunkle et al., 2019). Validation results are described in Supplementary Note 1. 

Data and Code Availability 

The source of each GWAS summary statistics file is provided in Supplementary Table 1. OneK1K sc-eQTL 
summary statistics that include effect sizes and standard errors were provided through personal 
communication with the corresponding author. pQTL summary statistics are available from 
http://nilanjanchatterjeelab.org/pwas/. All code generated for performing the analyses in the present 
study is available in the following GitHub repository: https://github.com/GaglianoTaliun-
Lab/neuroimmune_genetics_project.  

 

Results 

Genome-wide overview of genetic correlations among diseases 

We performed pairwise genome-wide genetic correlations (rg) across GWAS datasets(Bulik-Sullivan et al., 
2015). These GWAS datasets include five neurodegenerative diseases (AD, PD, LBD, ALS and FTD) immune-
mediated diseases (MS, UC and CD) and SCZ, a neuropsychiatric disorder. Using a Bonferroni-corrected p-
value = 0.0014, we identified six significant positive correlations (Figure 1), of which one was between two 
neurodegenerative diseases: PD and LBD (rg = 0.65; p-value = 1e-03). We did, however, observe nominally 
significant correlations (p-value < 0.05) between other pairs of tested neurodegenerative diseases, except 
for FTD, for which there were no nominally significant correlations (Supplementary Table 2). Between 
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immune-mediated diseases (our control traits), we confirmed the expected significant positive 
correlations across these diseases (Figure 1), providing internal validation of the robustness of our 
approach. Finally, we saw positive significant correlations between SCZ and immune-mediated diseases 
(i.e. UC and CD), but not between SCZ and neurodegenerative diseases (Figure 1). All genome-wide genetic 
correlations results are provided in Supplementary Table 2. 

Regional genetic correlations highlight pleiotropic loci implicated in neurodegenerative diseases 

Reassured by the detection of known global genetic correlations and cognisant of the fact that regional 
correlations between two traits can be masked when assessing in a genome-wide basis (van Rheenen et 
al., 2019), we estimated regional genetic correlations using LAVA (Werme et al., 2022). The advantage of 
this tool is that it can perform correlations across multiple traits simultaneously. We performed a total of 
1,902 pair-wise correlations across 389 loci with adequate univariate signal, yielding a total of 59 genomic 
regions (i.e. LD blocks – See Methods) with significant correlations in at least one trait pair (Bonferroni-
corrected p-value threshold = 2.629e-05). 

We identified significant regional correlations between various diseases and genomic loci, including loci 
that contain genes known to be implicated in neurodegenerative diseases. For example, we observed 
positive genetic correlations between AD and LBD at two genomic loci. The locus located on chromosome 
2 [chr2:126754028-127895644] contains the BIN1 gene (rg = 0.564; p-value = 9.80e-06), whereas the locus 
on chromosome 19 [chr19:45040933-45893307] contains the APOE gene (rg = 0.80; p-value = 1.97e-124). 
Both genes have been implicated in AD and LBD risk (Chia et al., 2021; Kunkle et al., 2019; 
Schwartzentruber et al., 2021; Seshadri et al., 2010; Wightman et al., 2021). We also observed a positive 
genetic correlation between PD and LBD at a locus on chromosome 4 [chr4:812416-1529267] containing 
TMEM175 (rg = 0.648; p-value = 1.49e-05). In contrast, other genomic loci containing genes that are known 
to be involved in more than one neurodegenerative disease did not yield significant correlations, such as 
the locus containing SNCA [chr4:90236972-91309863] between LBD and PD (rg = 0.165; p-value = 0.130), 
and the locus that includes GRN [chr17:42348004-43460500], known to be involved in AD, PD, FTD and 
LBD. In the latter case of GRN, AD, FTD and LBD did not have sufficient univariate signal (p-value ≥ 2.63e-
05) to test genetic correlations at that locus. In the case of the locus including SNCA, the lack of correlation 
may be explained by previous colocalization analyses, which have suggested that there are different 
regulatory causal variants implicated in PD and LBD (Chia et al., 2021). 

Aside from observing significant correlations at known pleiotropic loci, we also saw significant genetic 
correlations between neurodegenerative and immune-mediated diseases. One such example was a 
genomic locus on chromosome 1 [chr1:161054077-161945442] containing, among multiple genes, 
FCGR2A. This locus was negatively correlated between PD and UC (rg = -0.652; p-value = 1.64e-05), 
positively correlated between UC and CD (rg = 0.835; p-value = 1.81e-06), and it was correlated with 
nominal significance between PD and CD (rg = -0.462; p-value = 0.018) (Figure 2). The gene FCGR2A has 
been previously associated with several immune-mediated diseases, and it is a risk locus for PD (Nalls et 
al., 2019; Witoelar et al., 2017). Additionally, a locus [chr4:169555115-170682809] that includes six 
protein-coding genes (i.e. PALLD, CBR4, NEK1, CLCN3, C4orf27 and SH3RF1) was significantly correlated 
between PD and UC (rg = 0.525; p-value = 1.02e-05) and nominally significant between ALS and CD (rg = 
0.369; p-value = 0.044) (Figure 2). The gene CLCN3 is a disease risk locus for PD (Nalls et al., 2019), whereas 
rare variants within the same gene have been associated with ALS risk (van Rheenen et al., 2021). Finally, 
there was a significant correlation at a locus [chr7:49632427-50894508] that includes the gene IKZF1, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.07.22283179doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.07.22283179
http://creativecommons.org/licenses/by/4.0/


which encodes a transcription factor of the zinc-finger DNA-binding protein family, involved in B cell 
activation and differentiation, between AD and MS (rg = -0.77; p-value = 3.55e-06). This same locus was 
also nominally positively correlated between AD and CD (rg = 0.489; p-value = 0.002) (Figure 2).  

The Human Leukocyte Antigen (HLA) locus, a region in the genome with clear immune influences, spans 
multiple genomic loci that were tested in the analysis. However, we only observed one locus within this 
region [chr6:32208902-32454577] with significant positive correlations between neurodegenerative and 
immune-mediated diseases, correlated between AD and MS (rg = 0.778; p-value = 2.01e-06). This locus 
contains the Major Histocompatibility Complex (MHC) class II gene HLA-DRA. The same genomic locus was 
positively correlated between SCZ and UC (rg = 0.683; p-value = 1.47e-06). An additional locus also spanning 
the HLA region [chr6:32682214-32897998] was positively correlated between SCZ and UC (rg = 0.626; p-
value = 9.99e-06) and between CD and SCZ (rg = 0.677; p-value = 2.58e-05). This locus includes the following 
MHC class II genes: HLA-DQA2, HLA-DQB2 and HLA-DOB. 

Gene expression levels of immune-related genes share causal signals with neurodegenerative diseases 

We then moved forward to ask whether regional genetic correlations could allow us to identify immune 
targets for neurodegenerative diseases. To do so, we estimated regional genetic correlations between 
diseases and genes significantly expressed across seven immune cell types (i.e., naïve B cells, memory B 
cells, classical monocytes, CD4+ naïve T cells, CD8+ naïve T cells, CD4+ effector memory T cells and CD8+ 
effector memory T cells) from one of the largest datasets, the OneK1K dataset (Yazar et al., 2022), to assess 
if changes in gene expression are correlated with disease risk. We performed 1,628 pair-wise correlations 
across 2,553 significantly expressed genes in at least one cell type (Supplementary Table 3), which resulted 
in 366 significant correlations (FDR < 0.01) (Figure 3). Additionally, we followed up on the significant 
correlations through colocalization analyses to assess if there is a shared causal signal driving the 
correlation. This information provided insights about specific immune cell types and genes implicated in 
disease risk. 

Across the tested neurodegenerative diseases, there were no expressed genes significantly correlated with 
FTD or LBD, which were the two GWASes with the smallest sample size. In terms of the total number of 
tested correlations within a disease, AD had a higher proportion of correlations with expressed genes in 
classical monocytes. Similarly, there was a relatively higher proportion of expressed genes significantly 
correlated with ALS in memory B cells (but there were only 12 significant correlations across all cell types 
for ALS). Finally, compared to all other tested diseases, there was a relatively higher proportion of 
expressed genes significantly correlated with PD in CD8+ effector memory T cells. These results provide an 
initial overview of how disease risk across neurodegenerative diseases may be influenced by different 
immune cell types. 

Significant correlations between diseases and expressed genes were distributed across all autosomes 
except on chromosome 9, where we only observed nominally significant correlations (Supplementary 
Figure 2). Additionally, there were genes for which their expression was significantly correlated with a 
disease across more than one cell type (N = 47), whereas other expressed genes were significantly 
correlated with a disease in only one cell type (N = 96). For example, the expression of BIN1 was positively 
correlated with AD across five immune cell types (i.e., memory B cells, CD4+ naïve and effector memory T 
cells and CD8+ naïve and effector memory T cells). It was also nominally correlated with LBD only in CD4+ 
effector memory T cells (Figure 4A). BIN1 is ubiquitously expressed across multiple tissues, including the 
brain, and is implicated in AD pathogenesis, possibly through its role in neuron hyperexcitability 
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(Voskobiynyk et al., 2020). However, BIN1 expression in B cells has not been associated with AD risk. Our 
colocalization analysis in the BIN1 region indicate that there is no colocalization between AD risk and gene 
expression (H3 > 0.99). This result suggests that different variants in the locus influence either BIN1 
expression in B cells or AD risk (Figure 5), highlighting the importance of complementing significant 
regional genetic correlations with colocalization analyses.  

We observed significant positive correlations between AD and SCIMP expression in naïve and memory B 
cells (Figure 4B). Furthermore, colocalization analysis supported the hypothesis of a single shared causal 
variant (H4 = 0.99 and 0.85 for naïve and memory B cells, respectively), suggesting that the expression of 
SCIMP in B cells may contribute to AD risk. SCIMP is a gene that has been previously associated with 
immune-mediated diseases, such as lupus and rheumatoid arthritis (Dozmorov et al., 2014), as well as with 
AD risk (Schwartzentruber et al., 2021; Wightman et al., 2021). The gene encodes a protein expressed in 
antigen-presenting cells, localized in the immunologic synapse, and serves as a regulator of antigen 
presentation (Draber et al., 2011). Overall, this result supports a role of the adaptive immune system in 
AD risk, specifically of B cells, mediated by the expression of genes, such as SCIMP.  

Amongst all diseases assessed, we observed a relatively higher number of significant correlations between 
PD and gene expression across all cell types tested (N = 79), many of which were not correlated with other 
diseases (Supplementary Figure 2). After following up these significant correlations, we observed 
colocalization (H4 > 0.8) with three genes expressed in one or more cell types (i.e., RAB7L1, ARSA and 
KANSL1-AS1) (Figure 5; Supplementary Table 4).  

The expression of RAB7L1 in CD4+ naïve T cells was positively correlated with PD (rg = 0.826; p-value = 
0.001). This gene is a known risk locus for PD (Nalls et al., 2014, 2019), involved in the regulation of the T 
cell receptor signalling pathway. It has also been shown to interact with LRRK2 to alter the intraneuronal 
sorting of proteins and the lysosomal pathway (Kuwahara et al., 2016; MacLeod et al., 2013), suggesting 
that the overexpression of RAB7L1 in T cells may increase PD risk through the interaction with LRRK2. 

The expression of KANSL1-AS1, an anti-sense RNA gene, was negatively correlated with PD across all 
adaptive immune cell types, but the correlation was the strongest for CD8+ T cells (i.e., effector memory 
T cells: rg = -0.831; p-value = 1.34e-39, naïve T cells: rg = -0.768; p-value = 1.13e-25; Supplementary Figure 
2). Additionally, colocalization analysis suggested the presence of a shared causal variant at the KANSL1-
AS1 locus (Figure 5; Supplementary Table 4). The protein coding gene KANSL1 is in the MAPT locus, which 
has been previously associated with PD (Do et al., 2011; Nalls et al., 2014, 2019; Spencer et al., 2011), but 
recent experimental evidence suggests that the differential expression of another gene in the MAPT locus, 
KANSL1, also plays a crucial role in PD risk (Soutar et al., 2022).  

Of the initial 366 significant correlations observed across all tested diseases traits and cell types, 92 
correlations (25.14%) implicated loci that did not encompass genome-wide significant GWAS variants (p-
value ≥ 5e-08). However, 33.7% of these aforementioned loci are suggestive of association (p-value < 1e-
06), whereas the remaining 66.3% loci are nominally significant (p-value < 0.05) (Supplementary Table 5). 
We observed colocalization with only two of these loci: 1) between AD and the expression of FNBP4 in 
memory B cells (H4 = 0.913) and in CD8+ T cells (H4 = 0.85 and 0.84, for effector and naïve CD8+ T cells, 
respectively), and 2) between PD and the expression of ARSA in CD8+ effector T cells (H4 = 0.88). FNBP4 
(situated approximately 15,000 base pairs away from CELF1) has been previously identified as an AD risk 
locus (Karch et al., 2016), but in a more recent transcriptome-wide association study (TWAS) of AD, this 
gene was discarded in conditional analyses (Harwood et al., 2021). ARSA has been previously investigated 
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as a PD risk locus in a Chinese population, in which no significant associations were found with PD 
susceptibility (Pan et al., 2022). These results provide a new line of in silico evidence, suggesting that the 
expression of FNBP4 and ARSA in adaptive immune cell types may play a role in AD and PD risk, 
respectively. 

Regional correlations with blood protein levels provide evidence of additional mechanisms involved in 
disease risk 

Proteins contain biologically meaningful information that cannot always be identified by solely assessing 
the transcriptome. For instance, as the proteome is often dysregulated by diseases, it is amenable to drug 
targeting and thus a better understanding of the of the proteome could aid in identifying novel treatments 
(Zhang et al., 2022). Therefore, we performed regional genetic correlations between diseases and protein 
levels in plasma using a large pQTL database (Zhang et al., 2022), with the aim of exploring an additional 
level of biological variation and its relation to neurodegenerative disease risk.  

We performed a total of 1,863 bivariate tests between diseases and protein levels. We considered a 
significant regional correlation if FDR < 0.01. We observed significant correlations between protein levels 
and all diseases, except FTD. PD had a higher number of significant correlations, compared to other tested 
diseases (Supplementary Figure 3). We evaluated the concordance between the regional genetic 
correlations performed with gene expression levels from diverse immune cell types and regional genetic 
correlations performed with protein levels derived from peripheral blood samples (Supplementary Figure 
4). A total of 68 unique gene/proteins were evaluated across both datasets (i.e., 68 genes with significant 
eQTLs also had genome-wide significant pQTLs), resulting in 35 genetic correlations that were at least 
nominally significant across both tests, including 24 significant correlations across both tests (FDR < 0.01). 
The direction of effect was consistent across 17 of the significant correlations. 

To obtain a biological understanding of the significant correlations with protein levels, specifically to assess 
if immune-related pathways were significantly enriched, we performed a gene-set enrichment test with 
FUMA (Watanabe & Taskesen, 2017). We observed enrichment of several gene ontology (GO) biological 
processes (BP) across immune-mediated diseases, as well seven GO BP enriched for LBD (Supplementary 
File 1). The enriched GO BP for UC, CD and MS include several immunological processes, whereas the GO 
BP enriched for LBD correspond to gene-sets related to triglyceride processes. While there was a partial 
overlap of the GO BP among the three immune-related diseases (5.5%), there was no overlap of GO BP 
between LBD and other diseases (Supplementary Figure 5). Nevertheless, there were proteins harbouring 
significant correlations with at least one neurodegenerative disease and at least one of the immune-
mediated diseases, none of which were significant in the regional genetic correlations with sc-eQTLs, but 
which have a function in the immune system (Figure 6).  

One of the proteins harbouring a significant correlation with both a neurodegenerative and an immune-
mediated disease was Fc fragment of IgG receptor IIa (FCGR2A), a cell surface receptor found on 
phagocytic cells (i.e., neutrophils, macrophages), involved in the process of clearing immune complexes 
(Dahlqvist et al., 2022). Protein levels of FCGR2A were negatively correlated with UC (rg = -0.675; p-value 
= 1.44e-20) and positively correlated with PD (rg = 0.237; p-value = 6.02e-13) (Figure 6). In line with these 
results, our regional genetic correlations among diseases highlighted a locus on chromosome 1 that 
encompasses this gene as negatively correlated between PD and UC (Figure 2A). However, there were no 
significant correlations between the expression of FCGR2A and PD or UC, even though the gene harbours 
genome-wide significant eQTLs in CD8+ effector memory T cells, but not in monocytes (macrophage 
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precursors). These findings suggest that the protein levels of FCGR2A have opposite risk effects in UC and 
PD, which may be regulated by transcriptome-independent processes. Alternatively, FCGR2A may be 
differentially expressed in another cell type (such as macrophages), which we did not assess in the current 
study.  

The protein levels of Phospholipase C gamma 2 (PLCG2) were significantly correlated with UC and AD, in 
opposite directions (rgUC = 0.442; p-value = 2.28e-06, and rgAD = -0.491; p-value = 3.03e-04) (Figure 6). 
We did not estimate regional genetic correlations between the expression of PLCG2 and diseases, given 
that this gene did not harbour genome-wide significant eQTLs in the immune cell types tested. 
Nonetheless, mutations in the gene PLCG2 have been associated with dysregulation of the immune 
system, as well as with several dementias, in which distinct genetic variants are associated with different 
diseases, based on the identification of different functional point mutations across diseases (Jackson et 
al., 2021). For instance, the G allele of a missense variant within PLCG2 has been shown to be protective 
against AD, LBD and FTD (van der Lee et al., 2019). In contrast to our in silico observations of low PLCG2 
blood protein levels correlated with high AD risk, a recent study showed an upregulation of PLCG2 
expression in post-mortem brains of late-onset AD patients and its association to inflammation in microglia 
(Tsai et al., 2022). These seemingly discordant findings may be explained by different effects of PLCG2 
across stages of neurodegeneration, as well as by differences across sampled tissues. 

Discussion 

The aim of the work was to assess the role that peripheral immune cells and related processes play in 
neurodegenerative diseases. We addressed this aim through orthogonal bioinformatics approaches: i) by 
applying regional genetic correlations to relate neurodegenerative diseases to diseases known to be driven 
by immune dysfunction, ii) by extending the correlation analysis by incorporating single-cell eQTLs to 
identify known gene-disease relationships in immune cell types, and iii) by assessing the evidence for 
specific genes through expression and pQTL analyses. Through our approach, we identified new links that 
warrant additional follow-up to better understand immune-mediated loci that may play a role in 
neurodegenerative diseases, such as the role of SCIMP expression in memory B cells as an AD risk locus, 
and the role of FCGR2A blood protein levels, correlated with PD risk. 

By performing regional genetic correlations between pairs of diseases, we highlighted relationships 
between neurodegenerative diseases across loci encompassing known risk genes (e.g., BIN1, TMEM175, 
APOE). Additionally, we highlighted relationships between neurodegenerative and immune-mediated 
diseases, suggesting the presence of shared immune-related biological pathways across these diseases 
(e.g. FCGR2A, CLCN3, IKZF1). The gene FCGR2A, for instance, located within a locus significantly correlated 
between PD and UC, has been previously associated with immune-mediated diseases (Witoelar et al., 
2017), and is significantly expressed in CD8+ effector T cells and memory B cells (Yazar et al., 2022). 
Although our regional genetic correlations with gene expression levels indicated that the expression of 
FCGR2A is correlated with neither PD nor UC risk, we observed significant correlations with the 
corresponding protein levels for both PD and UC. Similarly, the gene IKZF1 is within an LD locus significantly 
correlated between MS and AD, and is significantly expressed in CD8+ naïve T cells (Yazar et al., 2022). 
However, regional genetic correlations with gene expression levels showed no evidence of significant 
correlation with AD (rg = 0.113; p-value = 0.487), whereas the correlation test with MS was not performed 
due to lack of significant univariate signal.  
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The observations at these loci (i.e., FCGR2A and IKZF1) suggest that different cell types or alternative 
molecular mechanisms may be involved in disease risk. In fact, we observed only a partial overlap and 
concordance of loci evaluated in both gene expression and protein regional genetic correlations, in line 
with our expectations, given that the eQTL and pQTL datasets used were generated through different 
sources: single-cell RNA-sequencing from specific immune cell types and bulk blood tissue, respectively. 

Our regional analysis of genetic correlations with gene expression levels shed light on overall differences 
among diseases, including the varying proportion of correlations accounted for by gene expression in 
immune cell types. For example, a higher proportion of significant correlations between AD and sc-eQTLs 
were accounted for by genes expressed in classical monocytes, including genes within and outside of the 
HLA region. These results are in line with previous evidence pointing at a key role of the innate immune 
system (i.e., microglia) in AD. However, it has also been suggested that circulating monocytes participate 
in the clearance of Aβ plaques that diffuse into the bloodstream (Chen et al., 2020; Xiang et al., 2015), and 
that monocyte-derived macrophages have a more efficacious phagocytic capacity than microglia in the 
brain (Malm et al., 2010; Thériault et al., 2015). Therefore, aside from the crucial role microglia play in AD, 
peripheral innate immune cells may be independently contributing to AD risk via changes in transcription 
levels. 

Our gene set enrichment analysis, aimed at better understanding the significant correlations observed 
between diseases and protein levels, did not highlight significant immune-related biological pathways 
enriched for neurodegenerative diseases. However, we identified proteins across neurodegenerative and 
immune-related diseases for follow-up. We believe that novel pathway enrichment methods that consider 
gene-specific weights (i.e. weights dependent on a measure of the strength of the regional correlations) 
could provide an important avenue for follow-up, alongside the current methods that consider all genes 
as input to the analysis as having equal effects. 

Through our data-driven approach, we provide fine resolution links for genomic regions to a disease in a 
particular cell type to better understand the etiology of neurodegenerative diseases in relation to the 
peripheral immune system. However, this approach is not without limitations. First, our analyses used 
GWAS and QTL datasets of inferred European genetic ancestry, which is a limitation stemming from the 
lack of diversity in GWAS cohorts (Fatumo et al., 2022). Genetic ancestry may be particularly important for 
immune function given different selection pressures placed by infectious diseases. Even though GWAS of 
neurodegenerative diseases have been performed in cohorts of other genetic ancestries (van Rheenen et 
al., 2021), the sample sizes needed to reach sufficient power to identify significant correlations falls short, 
as we observed in the case of the smaller FTD and LBD GWAS datasets. Second, it is known that there are 
sex differences in the incidence of some neurodegenerative and immune-mediated diseases, but the 
GWAS datasets used do not include sex-stratified analyses or sex chromosome data, which is a limiting 
factor in the identification of (i) sex-specific or sex-skewed expressed genes, or (ii) candidate immune-
related genes on the sex chromosomes. Future studies that consider sex-chromosomes or sex differences 
may provide new insights on underlying mechanisms or cell types involved in disease pathogenesis. Third, 
mechanisms other than varying gene expression could be responsible for the absence of particular eQTL-
disease correlations, which we were not able to capture with our approach. One such example is the 
absence of genome-wide significant eQTLs for LRRK2 in any of the immune cell types tested, a gene in 
which missense point mutations have been associated with PD risk (Ross et al., 2011). Finally, our main 
analyses are based on correlations, which cannot assess causal relationship between diseases and the 
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molecular mechanisms assessed. Nonetheless, we have highlighted immune-related genes as clear 
candidates for further investigation to better understand neurodegenerative diseases. 
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Figures 

 

Figure 1. Genome-wide genetic correlations (rg) across GWAS traits. Significant positive correlations 
(Bonferroni corrected p-value < 0.0014) are highlighted in shades of red. AD = Alzheimer’s disease; LBD = 
Lewy body dementia; PD = Parkinson’s disease; FTD = Frontotemporal dementia; ALS = Amyotrophic lateral 
sclerosis; SCZ = Schizophrenia; MS = Multiple sclerosis; UC = Ulcerative colitis; CD = Crohn’s disease.  

Figure 2. Significant regional genetic correlations (rg) between neurodegenerative and immune-
mediated diseases across three distinct loci in chromosomes 1 (A), 4 (B) and 7 (C). ** = significant 
correlations (p-value < 2.629e-05); · = nominally significant correlations; ns = non-significant 
correlations (p-value ≥ 0.05). Absence of correlations means that the bivariate test was not 
performed (See Methods for details). CD = Crohn’s disease; MS = Multiple sclerosis; UC = 
Ulcerative colitis; PD = Parkinson’s disease. 
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Figure 3. Proportion of significant regional genetic correlations between diseases and gene expression, 
across seven immune cell types. As there were no significant correlations for neither frontotemporal 
dementia nor Lewy body dementia, those traits are not displayed. CD = Crohn’s disease; MS = Multiple 
sclerosis; UC = Ulcerative colitis; SCZ = Schizophrenia; ALS = Amyotrophic lateral sclerosis; AD = Alzheimer’s 
disease; PD = Parkinson’s disease.  

Figure 4. Examples of significant regional correlations between gene expression levels and diseases across 
three genes. (A) BIN1 (chromosome 2) was significantly correlated with AD across various adaptive 
immune cell types. (B) SCIMP (chromosome 17) was significantly correlated with AD across B cells. (C) 
RAB7L1 (chromosome 1) was significantly correlated with PD in naive CD4+ T cells. ** = significant 
correlations (FDR < 0.01); · = nominally significant correlations; ns = non-significant correlations (p-value ≥ 
0.05). AD = Alzheimer’s disease; LBD= Lewy body dementia; PD = Parkinson’s disease; BMem = Memory B 
cells; CD4ET = CD4+ effector memory T cells; CD4NC = CD4+ naive T cells; CD8ET = CD8+ effector memory 
T cells; CD8NC = CD8+ naïve T cells.  
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Figure 5. Colocalization results between diseases and expressed genes in at least one immune cell type. 
Pairs of traits that share a causal variant through colocalization analysis are highlighted in orange (Posterior 
Probability, PP H4 ≥ 0.8), whereas pairs of traits that have distinct causal variants are highlighted in purple 
(PP H3 ≥ 0.8). The number inside the colocalized signals indicates the number of cell types for which a 
colocalization was observed. The cell type(s) for each disease-gene pair displayed here are listed in 
Supplementary Table 4.  

 

Figure 6. Regional correlations between protein levels and diseases shared between at least one test 
disease (i.e., AD, PD, ALS, LBD, FTD, SCZ) and at least one control disease (i.e., MS, UC, CD). ** = significant 
correlations (FDR < 0.01); · = nominally significant correlations; ns = non-significant correlations (p-value ≥ 
0.05). 
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