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Evaluation of epigenetic and metabolomic biomarkers indicating biological age 

Abstract 

Biological age captures a person’s age-related risk of unfavorable outcomes using 

biophysiological information. Multivariate biological age measures include frailty scores and 

molecular biomarkers. These measures are often studied in isolation, but here we present a 

large-scale study comparing them. 

 

In two prospective cohorts (n=3,196), we compared epigenetic (DNAm Horvath, DNAm 

Hannum, DNAm PhenoAge, DNAm GrimAge) and metabolomic-based (MetaboAge, 

MetaboHealth) biomarkers in reflection of biological age, as represented by five frailty 

measures and overall mortality. 

 

We observed that mortality-trained biological age markers, DNAm GrimAge and 

MetaboHealth, outperformed age-trained biomarkers in frailty reflection and mortality 

prediction. The associations of DNAm GrimAge and MetaboHealth with frailty and mortality 

were independent of each other and of the frailty score mimicking clinical geriatric 

assessment. 

 

Epigenetic, metabolomic, and clinical biological age markers seem to capture different 

aspects of aging. These findings suggest that mortality-trained molecular markers may 

provide novel phenotype reflecting biological age and strengthen current clinical geriatric 

health and well-being assessment. 
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Age is the most prominent risk indicator for common chronic diseases, frailty, and 

mortality(1–3). However, not everyone ages at the same rate. There are large interindividual 

differences in the biological aging process and rate of functional decline. Hence, the field of 

ageing research is in need of standardized markers that reflect the biological age of 

individuals and can provide phenotypes reflecting the ageing rate to be studied in depth. 

Besides, geriatric specialists use the comprehensive geriatric assessment (CGA) to identify 

the medical, social, and functional needs of older patients(4). This generic health assessment 

is, for instance, used in the clinic to determine whether elderly patients are fit enough to 

undergo invasive treatments(5) and is considered the gold standard for the treatment of frail 

patients(4). The CGA is time- and resource-consuming and mainly narrative-based(4) . So far, 

there is no consensus for a multivariate molecular biomarker to capture the entire complexity 

of the aging process faithfully which could be used as a phenotype of biological age in ageing 

research and provide an indicator of overall health in the clinic. 

 

Consensus is lacking on the operationalization of frailty in research practice, leading to the 

introduction of a variety of frailty measures(2,6–10). The Multidimensional Prognostic Index 

(MPI) is directly derived from the CGA and is regarded as the most direct translation of the 

CGA for research purposes. The MPI contains information on the medical, social, and 

functional status of the participants(9). The frailty phenotype (FP), also known as Fried 

frailty(2), is the most commonly used frailty score to assess physical frailty and has recently 

been translated into a continuous score, Continuous Fried Frailty (Cont.)(7). The Tilburg 

Frailty Indicator (TFI) combines the physical domain with the psychological and social 

domain(8). The frailty index (FI) measures frailty as an accumulation of deficits over a wide 

range of health domains(11). 
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Furthermore, several attempts have been made to capture the discrepancy between an 

individual’s chronological age and their age based on biological and clinical information, 

known as biological age, in a biomarker. In the past two decades, large-scale molecular data 

were used to develop several molecular markers of biological age based on, for example, 

telomeres, DNA methylation (DNAm), and metabolomics(12). Well-known are the DNAm or 

epigenetic aging clocks. These epigenetic aging clocks are biomarkers based on methylation 

values at a combination of specific CpG sites by which chronological age is best reflected. 

The first-generation epigenetic aging clocks, DNAm Horvath(13) and DNAm Hannum(14), 

were trained on chronological age and outperformed other aging biomarkers, such as telomere 

length, in the reflection and prediction of the aging process(12). Since physiological deficits 

resulting from and contributing to aging do not develop in a regular, clock-like manner, the 

second-generation epigenetic aging biomarkers were developed by training CpG-models 

based on a multi-system proxy of physiological dysregulation (DNAm PhenoAge(15)) or 

mortality risk (DNAm GrimAge(16)).More recently, metabolomics-based aging biomarkers 

were established using a well-standardized nuclear magnetic resonance platform(17,18). 

These biomarkers of biological age were trained on either chronological age 

(MetaboAge(19)) or mortality (MetaboHealth(20)). 

 

Previous studies have shown that DNAm PhenoAge and DNAm GrimAge outperform the 

first-generation epigenetic aging biomarkers in reflecting physical health outcomes, cognitive 

and physical capacity, and prediction of overall mortality(21,22). However, the performances 

of the newly developed metabolomic biological age biomarkers have not been compared with 

either the first or second-generation epigenetic aging biomarkers. Moreover, whether 

epigenetic and metabolomic aging biomarkers capture different aspects of the aging process is 
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unknown. Lastly, it is unclear whether aging biomarkers have added value to the CGA and, 

thus, their possible clinical applicability. 

 

The current study compares the reflection of biological age of the first and second-generation 

epigenetic and metabolomic aging biomarkers by determining their association with five 

different frailty scores and with mortality. These outcomes largely reflect the aging process. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2022. ; https://doi.org/10.1101/2022.12.05.22282968doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.05.22282968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

Study cohorts 

The current study is a nested cohort study of data from the second and third cohort of the 

population-based Rotterdam Study (RS) and the second generation of the Leiden Longevity 

Study (LLS). In the Rotterdam Study, all residents of Ommoord, a suburb of Rotterdam, 

above the age of 55 years were invited to participate (23). Inclusion criteria were having 

complete information on all epigenetic biomarkers of biological aging based on either 450K-

data (n=687) or EPIC-data (n=737), metabolomics biomarkers of biological aging, cell 

counts, and body mass index (BMI), leaving the study population to 1,424 participants. Ten of 

these participants withdrew their consent for longitudinal follow-up but wanted to participate 

in cross-sectional studies. We used their information for the frailty analyses but not for the 

mortality analyses. 

The LLS cohort consists of 420 Dutch Caucasian families with at least two long-lived full 

siblings who were alive and willing to participate in the study.(24) Complete data on 

metabolomics, BMI, and mortality information was present in 1,849 LLS participants of the 

children of the long-living family members. In a subcohort of 584 participants, information on 

DNAm was available. Together these participants represent the study population for the 

external validation of our findings. A more detailed description of the cohorts can be found in 

the Online-Only Methods. 

 

DNA methylation 

Genome-wide DNA methylation data was obtained from whole blood. In 687 RS participants 

and the LLS, we analyzed the samples using Illumina Infinium Human Methylation 450 K 
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(450K) array(24,25). In the other 737 RS samples, we used Illumina Infinium 

MethylationEPIC BeadChip v1 manifest B5 (EPIC) arrays(26). The quality control 

procedures are described in the Online-Only Methods. 

 

Metabolomics 

Metabolomic biomarkers from EDTA plasma were measured using high�throughput NMR 

metabolomics (Nightingale Health Ltd., Helsinki, Finland; biomarker quantification version 

2016)(18). This technique quantifies over 200 metabolic measures, including routine lipids, 

lipoprotein subclass profiling with lipid concentrations within 14 subclasses, fatty acid 

composition, and various low-molecular-weight metabolites in molar concentration 

units(17,18). 

 

Biomarkers of biological aging 

We calculated DNAm Horvath(13), DNAm Hannum(14), DNAm PhenoAge(15), and 

GrimAge(16) using R and Python scripts provided by the researchers who developed these 

measures and the R methylclock package(27). In case of the 3,332 CpG sites were 

information needed to calculate the biological ages was absent on the EPIC array, we imputed 

them with their mean value in the GOLD consortium, as described previously(28). The 

metabolomic biomarkers were used to compose MetaboAge(19) and MetaboHealth(20). 

MetaboAge was calculated using MiMIR(29), the dedicated R-shiny package, on the raw 

metabolomic biomarkers(19). To calculate the MetaboHealth, we log-transformed the 

fourteen biomarkers of interest and multiplied them by the natural logarithm of their hazard 

ratio on mortality in the fully adjusted joint model, as reported in the original manuscript(20). 
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Finally, we calculated the chronological age independent part of the above-mentioned 

variables that we defined as the biomarkers of biological aging to use in all analyses in this 

study. We did so by taking the residual from the linear regression model of chronological age 

on the before-mentioned epigenetic and metabolomic variables. As we use the age-

independent part, all biological aging biomarkers have, per definition, no correlation with 

chronological age. 

 

Assessment of mortality 

Based on a linkage with the mortality registry of the municipality and the digitally connected 

medical records of the GPs working in the study area, we gathered information on the vital 

status of the participants on a bimonthly basis(30). The information on the vital status of 

participants in Rotterdam was last updated on the 20th of October 2022. 

The vital status of the participants of the LLS was updated in January 2021 through the 

Personal Records Database, which is managed by the Dutch governmental service for identity 

information(31). 

Frailty assessment 

We used interviews, physical examinations, blood sampling, and general practitioners’ 

records to obtain information on the participants’ frailty. Using this information, we 

constructed the frailty phenotype (FP)(2), continuous Fried ( Cont.)(7), the Frailty Index 

(FI)(6), the Tilburg Frailty Indicator (TFI)(32), and the Multidimensional Prognostic Index 

(MPI)(9). A more detailed description of the construction of these five frailty measures and 

the in literature described cut-offs to classify participants as either frail or non-frail can be 

found in the Online-Only Methods. 
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Assessment of covariates 

A questionnaire at baseline provided information on the sex and chronological age at blood 

sampling for all participants. We weighted and measured participants when they visited the 

research center; based on this information, BMI was calculated (kg/m2). We classified 

participants as smokers or non-smokers based on the answer to the question: “are you 

currently smoking?”. We defined cell counts as the measured white blood count percentage of 

lymphocytes and monocytes, making the percentage of granulocytes a given. 

 

Statistical analysis 

The biomarkers of biological aging were, as before mentioned, defined as the residual of a 

linear regression of chronological age on the epigenetic and metabolomics measures. 

Therefore, these biological aging biomarkers were constructed per dataset.  

We determined the correlation between the biomarkers of biological aging and the correlation 

between the frailty scores using Spearman’s log rank correlation. To increase the 

homoscedasticity, one of the assumptions of linear regression analyses, we transformed the 

frailty indices with a Yeo-Johnson transformation using the bestNormalize R-package(33). 

We decided upon using Yeo-Johnson transformations as it allows using zeroes in the 

transformation(33) since having a frailty score of zero was valuable information that we did 

not want to lose in the power transformation. Linear regression models were used to 

determine the association between cross-sectional continuous Yeo-Johnson transformed Z-

scored frailty Z-scored and biological aging biomarkers. Standardization was performed in the 

subcohorts separately for the subcohort analyses and in the combined information on all 

participants for the analyses involving the overall study population. We used Z-scores of the 

continuous outcomes as well as the aging predictors to be able to compare the effect sizes. We 
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determined the association between a biomarker of biological age and cross-sectional binary 

frailty outcomes with logistic regression analyses. The linear and logistic regression analyses 

were adjusted for chronological age at blood sampling, sex, cell counts, BMI, and visit and 

cohort within the Rotterdam Study. The analyses in the entire RS study population were 

additionally adjusted for underlying subcohort and, thereby, methylation array and 

metabolomics batch used. Furthermore, we performed a sensitivity analysis in which we 

additionally adjusted for smoking status. 

 

We used the R-package survival to compose Cox Proportional hazards regression models with 

chronological age at blood sampling to determine the association of the standardized aging 

predictors with overall mortality. We performed the analyses in four models in the RS and 

validated only the first two models in LLS as the MPI was not available in the LLS. The first 

model adjusted for sex, cell counts, BMI, and study-specific covariates. In the second model, 

we additionally adjusted for the smoking status. In the third model, we adjusted for the same 

covariates as in the first model, but we additionally adjusted for the MPI. The MPI mimics the 

CGA, as used in the clinic, best. Adjusting for the MPI provides an opportunity to determine 

the value of aging predictors beyond ongoing practice. Fourthly, we did a sensitivity analysis 

in which we additionally adjusted the third model for smoking status. Furthermore, we 

determined the association between frailty measures per standard deviation increase and 

overall mortality with a Cox Proportional Hazard model with time contributed to the study as 

the timescale. We did not use age as the timescale since some frailty measures, such as the 

frailty index, were, per definition, correlated with chronological age (Appendices 1-2). We 

adjusted the analyses for chronological age, BMI, cell counts, and sex. We again performed a 

sensitivity analysis in which we additionally adjusted for smoking status. 

We performed all analyses in R version 4.1.3. Fig. 1 was created with BioRender.com. 
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Results 

We used two distinct cohorts for our analyses: the Rotterdam Study (RS)(23), a population-

based study, and the Leiden Longevity Study (LLS)(34), a long-living family study (Figure 1, 

eTable 1). The RS was separated into two sub-cohorts where the distinguishing factor was the 

DNAm array used, either 450K (n=611) or EPIC (n=736). For the LLS, the study population 

consisted of all participants with metabolomics information (n=1,849) with a multi-omics 

subcohort (n=584) of offspring and their partners from families without a family history of 

longevity, thereby selecting a subcohort closest to the population at large(35). We calculated 

the biomarkers of biological aging as the age-independent part of the aging biomarkers and 

used this metric in all further analyses (Methods: Biomarkers of biological aging). 

Correlation between biological aging biomarkers 

Spearman’s rank correlation coefficients between the four epigenetic and two metabolomic 

aging biomarkers were low to moderate, ranging between 0.04 and 0.50 (Figure 2a). The 

highest correlation was found between DNAm Hannum and DNAm PhenoAge. The 

metabolomic aging biomarkers had the highest correlations with each other and with DNAm 

GrimAge. The correlations between biomarkers trained on chronological age from different 

molecular origins, i.e., DNAm Horvath or DNAm Hannum versus MetaboAge, were low, 

namely 0.04 between MetaboAge and DNAm Hannum and 0.16 between MetaboAge and 

DNAm Horvath. Interestingly, these correlations were lower than the observed correlation of 

0.20 between MetaboAge and the mortality-trained DNAm GrimAge. The mortality-trained 

aging biomarkers DNAm GrimAge and MetaboHealth, trained on respectively DNAm and 

metabolomics, had a correlation of 0.30. Correlation patterns were similar across different 

methylation arrays (within RS) and across the two cohorts (RS and LLS) (eFigure 1) 

Frailty 
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Frailty measures, like the biological aging biomarkers, were developed to capture the 

individual aging process(11,12,36); they represent measures of biological age. To determine 

whether different frailty measures developed based on different rationales could be used 

interchangeably, we measured five different frailty scores in our study population: the FI(6), 

the FP(2), Cont.(7), the TFI (8,32), and the MPI(9) (Online-Only Text 1 & 2). When elements 

from these frailty measures were lacking in our dataset, we used proxies (Online-Only Text 

2).  

As shown in Figure 2b, the correlation between the different frailty measures ranged from 

0.22 to 0.52. The highest correlation was observed between the two physical frailty measures 

FP and Cont. and the lowest between FP and the MPI, the latter being the frailty measure 

directly derived from the CGA. All frailty measures were associated with an increased risk on 

overall mortality. We observed higher hazard ratios for frailty scores including information 

beyond the physical domain than the physical frailty measures, yet this difference was not 

statistically significant (Figure 2c, eTable 2). 

  

We concluded that the frailty measures could not be used interchangeably. Therefore, we 

examined the six biological aging biomarkers (four epigenetic and two metabolomic aging 

biomarkers) for their association with all five frailty measures. All biological aging 

biomarkers and the frailty scores were standardized to improve comparability. We observed 

that an increase in the biological aging biomarkers originally trained on mortality (DNAm 

GrimAge and MetaboHealth) was consistently associated with higher frailty scores in linear 

regression analyses adjusted for age, sex, body mass index, cell counts, and study-specific 

covariates. Moreover, these results were more prominent than we observed for biological 

aging biomarkers trained on chronological age (clocks), with MetaboAge among the clocks 

showing the most prominent association with frailty scores, and phenotypic age. The strongest 
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associations were found for MetaboHealth (adjusted beta in the RS combined study 

population per standard deviation increase (B 0.20 95%-confidence interval [CI] [0.15;0.25]) 

and DNAm GrimAge (B 0.21 [CI 0.16;0.26]) with the MPI (Figure 2d, eFigure 2, eTable 3). 

The analyses were adjusted for age despite using chronological age-independent aging 

biomarkers to address the inherent correlation of frailty measures, for example the frailty 

index, with chronological age. BMI was included as a covariate as both epigenetic-(37) and 

metabolomic-based(19) aging biomarkers are known to associate with a higher BMI and BMI 

information is included in all frailty scores(2,6–9) (Online-Only Text 1 & 2). We performed a 

sensitivity analysis adjusting for smoking to determine whether the inclusion of smoking-pack 

years in the construction of the DNAm GrimAge was driving the results. The sensitivity 

analysis did not remarkably alter the results (eTable 3).  

 

Subsequentially, we determined whether the associations with the frailty measures of the best-

performing epigenetic and best-performing metabolomic aging biomarker were independent 

of each other. Both DNAm GrimAge and MetaboHealth remained independently associated 

with frailty in a linear regression adjusted for the same covariates as the univariable analyses 

(Table 1, Extended Data 6: Extended Table 4). There were some small improvements of the 

explained variance of the models when both DNAm GrimAge and MetaboHealth were 

included, for example the explained variance of the association with frailty index improved 

from 0.22 for DNAm GrimAge and 0.23 for MetaboHealth to 0.24 in the combined model 

(eTable 3, eTable 4). Additionally adjusting for smoking status did, again, not considerably 

change the results (eTable 4). Furthermore, the same pattern appeared when categorizing 

participants as non-frail and frail using the traditional cut-offs (Online-Only Text 1) of the 

frailty measures (eTable 5). 
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Mortality 

Beyond reflecting on an individual’s current state, biomarkers of biological age are believed 

to capture predictive information on the aging process(12). We, therefore, determined the 

association of biological aging biomarkers with mortality during 11,281 person-years of 

follow-up in the RS. The median follow-up time was 8.6 years. During follow-up, 132 

participants died. A higher DNAm GrimAge and MetaboHealth were associated with a higher 

risk of overall mortality in both subgroups as well as the combined study population. The 

highest risk estimates for all-cause mortality were observed for DNAm GrimAge (adjusted 

hazard ratio in the RS combined study population per standard deviation increase (HR) 1.79 

95%-confidence interval [CI] [1.52;2.12]) and MetaboHealth (HR 1.79 [CI 1.52;2.09]) 

(Figure 3a, eFigure 3, eTable 6). Yet, the observed hazard ratios were a bit more stable for 

DNAm GrimAge than for MetaboHealth. The Cox Proportional Hazard models were adjusted 

for the same covariates as used in the linear regression except for age, which was included in 

the timescale. A sensitivity analyses to determine whether smoking status influenced the risk 

entailed by the aging biomarkers, again, did not noteworthy shift the results.   

 

We then assessed whether the observed associations between the aging biomarkers and 

mortality were explained by frailty. For this, we used the MPI since it is the frailty score most 

closely related to the CGA. Earlier we showed that the MPI itself is associated with an 

increased risk of overall mortality (Figure 2c, eTable 2). Nevertheless, the associations 

between the aging predictors and mortality were independent of and not notably changed by 

the MPI (Figure 3a, eFigure 3, eTable 6). These results remained, yet again, unchanged in a 

sensitivity analysis adjusting for smoking status (Figure 3a, eFigure 3, eTable 6). 
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To determine whether the risk of mortality captured by the best performing epigenetic aging 

predictor and metabolomic aging predictor were mutually independent, we performed a Cox-

proportional hazard analysis including both aging predictors and adjusted for sex, BMI, and 

cell count. When combining DNAm GrimAge and MetaboHealth in a model, both showed an 

independent risk of all-cause mortality, respectively DNAm GrimAge (HR 1.56 [CI 

1.31;1.85]) and MetaboHealth (HR 1.60 [CI 1.35;1.89]). The concordance increased slightly 

from 0.69 when only using DNAm GrimAge and 0.67 when only including MetaboHealth to 

0.70 in the combined model. These results were robust among the RS overall study population 

and subcohorts. These results remained, again, similar when adjusting for the MPI and 

smoking status (Table 2, eTable 7). 

 

In our external validation cohort, the LLS, 147 participants died during follow-up (median 

13.3 years), of whom 43 participants were part of the multi-omics subcohort that represented 

7,553 (median 13.2 years) of person-year follow-up. In the subcohort, where we could 

validate both the epigenetic and the metabolomic aging predictors, the results of DNAm 

PhenoAge, DNAm GrimAge, and MetaboAge were similar to the results in the RS. By 

contrast, the associations between the other aging predictors, especially MetaboHealth, and 

mortality drops significantly (Fig. 3b, eTable 6). In the overall population of the LLS, 

MetaboHealth outperformed MetaboAge in the prediction of mortality, yet the mortality risk 

of both aging predictors was smaller than in the RS overall population and more comparable 

to the EPIC-subgroup (eFigure 3, eTable 6).  
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Discussion 

There is no consensus on which biomarkers that can be measured in human studies in 

standardized fashion reflect biological age. In the present study we considered frailty 

measures and mortality as phenotypes representing biological age. We compared five frailty 

measures in a population-based cohort and four epigenetic and two metabolomic biomarkers 

of biological age in two distinct cohorts of which the majority of older participants were not 

clinically frail. Our most prominent findings were: 1) the rather weak to moderate correlations 

between DNAm and metabolomics biological aging biomarkers especially between 

biomarkers from different origins trained on chronological age; 2) the outperformance of the 

mortality-trained biomarkers, MetaboHealth and DNAm GrimAge, in reflection of biological 

age, as represented by frailty and mortality, compared to age-trained biological age 

biomarkers and frailty measures; 3) the mutually independent associations between the 

mortality-trained biomarkers of biological age, DNAm GrimAge and MetaboHealth with 

frailty and mortality; and 4) the independence of the mortality association of the biomarkers 

of biological age from the MPI, the frailty measure directly derived from the CGA, and 

smoking. These findings stress that the different molecular markers of biological age 

complement each other in estimating frailty and mortality risk and potentially complement 

standardized health assessment in the clinical setting. 

 

Similar to previous studies(9,38–43), we found an association between higher frailty scores 

and an increased risk of all-cause mortality for all frailty measures of interest. Unfortunately, 

despite the large variety of frailty measures, only a few of them have been directly compared 

in other studies. Most studies comparing different frailty measures focused on the frailty 

index and frailty phenotype(44–46). Our results align with previous studies reporting a higher 

risk on overall mortality for the frailty index than for the frailty phenotype(45,46). However, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2022. ; https://doi.org/10.1101/2022.12.05.22282968doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.05.22282968
http://creativecommons.org/licenses/by-nc-nd/4.0/


this difference was not significant in our study, which could be a result of lack of power. We 

are not aware of other studies comparing the risk estimates of frailty measures with the 

molecular biomarkers of biological age assessed in this study. Nonetheless, a previous study 

comparing the frailty index with a frailty index build using 40 different biomarkers showed 

that the biomarker-based frailty index was associated with a higher mortality risk than the 

frailty index in participants who are not clinically frail, like most of our participants. 

Furthermore, this study also emphasizes the added value of using biomarkers in frailty 

assessment as they report higher discriminative ability when both the biomarker-based frailty 

and frailty index are included in mortality prediction(44).  

 

Previous studies focusing on the comparison between different epigenetic aging biomarkers 

have found comparable results. For example, the Irish Longitudinal Study on Ageing 

compared the four DNAm aging predictors used in the current study in a sample of 490 

participants. Similar to the present study, results showed that DNAm GrimAge (the mortality-

based biomarker) outperformed the other three epigenetic aging-based biomarkers in the 

reflection of physical health outcomes and prediction of all-cause mortality(21). Another 

study, including participants from three British cohorts, showed that associations between 

cognitive and physical capacity were present with DNAm GrimAge and DNAm PhenoAge, 

but absent when assessing DNAm Horvath or DNAm Hannum(22). 

 

The performance of the metabolomic-based biomarkers of biological age trained on the basis 

of age acceleration and mortality has, to our knowledge, not been evaluated in other studies. 

In the two cohorts from the Rotterdam Study, the outperformance of the mortality-trained 

markers in reflecting frailty and predicting mortality was evident, as was the case for the 

comparison of metabolomics aging predictors in the LLS study. The lower performance of 
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these markers in the LLS subgroup might be caused by the small sample size since in the 

original studies of this cohort(19,20) the metabolomic markers predicted adverse outcomes 

equally well in RS and LLS. Another possible explanation might be the difference in follow-

up time between the two cohorts. Due to the small sample size, we cannot check the latter. In 

the RS, we observed somewhat unstable results for DNAm Horvath and MetaboAge, and to a 

lesser extent, MetaboHealth. This might be a result of the usage of the age-independent part 

of the aging biomarkers. We used the age-independent part as our biomarkers by regressing 

out chronological age. This approach is more vulnerable to outliers when fewer participants 

are included in the study. Further analysis of the performance of these biomarkers of 

biological age in small studies is recommended to determine their applicability in studies with 

smaller sample sizes. The molecular markers of biological age could potentially be used in the 

clinical setting to improve health and resilience estimates and as response monitors in 

intervention studies. In both future applications, the performance in limited sample-sized 

groups and ultimately even in individual patients is crucial. 

 

Both MetaboHealth and DNAm GrimAge were trained on prospective mortality, 

MetaboHealth directly and DNAm GrimAge by creating DNAm surrogates of plasma 

proteins and smoking-pack years and using an elastic net Cox regression to the surrogates 

associated with overall mortality. DNAm PhenoAge was trained on phenotypic age, a 

predictor of mortality consisting of nine biomarkers and chronological age. Phenotypic age 

had a correlation with chronological age of 0.94 in NHANES IV(15). DNAm Horvath, 

DNAm Hannum, and MetaboAge were trained on chronological age. As MetaboHealth and 

DNAm GrimAge outclass the other aging biomarkers, not solely in mortality prediction but 

also frailty reflection, we believe training on mortality, or, for example, multimorbidity, 

improves the aging biomarkers’ ability to capture the heterogeneity in aging. Our findings 
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align with the theory that fast-agers die sooner and consequently contribute less to the 

construction of biomarkers based on age, while biomarkers containing longitudinal 

information, such as mortality, suffer less from this selection bias(47). This finding could be 

of interest for future research aiming to create a new biological age biomarker. Based on the 

fact that DNAm GrimAge and MetaboHealth outperformed the other aging clocks in both RS 

subcohorts, as well as the LLS overall study population, we believe that our study provides 

further support for the benefits of training on longitudinal information regardless of the 

omics-layer used. This finding could have important implications for the development of 

future biomarkers as using longitudinal outcomes seems to results in aging predictors better 

equipped to capture the physiological heterogeneity that increases with aging. However, the 

performance of biological aging biomarkers on short-term outcomes still needs to be 

evaluated. 

 

The low correlation of the epigenetic and metabolomic aging biomarkers in combination with 

the independent association of DNAm GrimAge and MetaboHealth with frailty and mortality 

suggests that metabolomic and epigenetic aging biomarkers capture different aspects of the 

aging process. However, there was only a slight increase in the explained variance when using 

both DNAm GrimAge and MetaboHealth. Furthermore, since the associations of these 

biomarkers of biological age were also independent of the MPI, there is an indication that 

these aspects are not captured in the CGA. This could imply that using these aging biomarkers 

would strengthen clinical geriatric risk assessment. Therefore, further research into the 

different aspects of aging captured by the different aging biomarkers and their applicability in 

the clinic would be advisable. 
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The main strengths of this study are the relatively large study population for which we had 

information on both DNAm and metabolomics, internal validation as well as external 

validation, and only a small loss to follow-up in the mortality data. Furthermore, with five 

different frailty measures, we had data on a wide variety of aspects of aging and were able to 

give insight into the distinct features of frailty measures. Besides, having information on both 

frailty and mortality gave us the opportunity to determine the associations of biological aging 

biomarkers with mortality adjusted for the MPI and, thereby, obtain an indication of the 

performance of molecular markers of biological aging beyond ongoing clinical practice.  

 

However, there are some limitations of the current study. Firstly, participants needed to be fit 

enough to visit the research centers to provide blood samples and participate in several 

assessments for the frailty examinations. This requirement led to a selection bias towards 

healthy individuals. Secondly, the RS and the LLS were part of a large study in which the 14 

biomarkers used in MetaboHealth were selected; of the 44,168 participants included in the 

construction of MetaboHealth, 13.7 percent originated from either LLS or RS. The 

contribution of both cohorts to the selection of MetaboHealth might have led to an 

overestimation of its association with frailty and mortality. Thirdly, we did not have all the 

original measurements on which the frailty measures are usually based. When a specific 

measurement was not present, we used proxies (Online-Only Text 2). We chose the proxies 

carefully with the help of a geriatrician; however, this could have had some impact on the 

estimations. Lastly, our study population consisted of white individuals aged 30 to 98 years; 

thus, validation of our project in other study populations and other (middle-aged) aspects of 

biological age is needed to assess the robustness of our results. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2022. ; https://doi.org/10.1101/2022.12.05.22282968doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.05.22282968
http://creativecommons.org/licenses/by-nc-nd/4.0/


To our knowledge, this is the first study comparing the performance of both epigenetic and 

metabolomic-based aging biomarkers in reflecting frailty and mortality risk as measures of 

biological age. Furthermore, this is the first study including information on five different 

frailty measures as well as information on molecular biomarkers of biological age. We 

showed that epigenetic and metabolomic-based biomarkers of biological aging trained on 

mortality, DNAm GrimAge, and MetaboHealth reflected these biological age measures better 

than aging predictors trained on age or phenotypic age. The associations of DNAm GrimAge 

and MetaboHealth with frailty and mortality are independent of each other, suggesting that 

they capture information on different aspects of aging and may both be studied as novel 

phenotypes in research aimed at finding determinants of biological ageing. For the age and 

health category we have studied, it is also relevant that the associations of the biological age 

markers with mortality are partly independent of the MPI, a proxy for the standardized 

geriatric health assessment CGA as used in the clinic. These findings suggest that DNAm 

GrimAge and MetaboHealth could be valuable to complement the current health, well-being, 

and risk assessments in clinical practice. Therefore, further research into the potential 

integration of these biomarkers of biological aging in a clinical setting is warranted as well as 

increasing the informativity of these markers on the level of the individual patient.  
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Table 1. Results of multivariable regression models including both DNAm GrimAge and 

MetaboHealth as exposures and frailty measures as outcome 

  DNAm GrimAge MetaboHealth 

  Adjusted* Beta 

per SD (CI) 

P-value Adjusted* Beta 

per SD (CI) 

P-value 

FI n=1,341 0.08 (0.03;0.14) 4.27x10-3 0.17 (0.11;0.22) 4.02x10-10 

FP n=1,339 0.01 (-0.05;0.07) 0.69 0.11 (0.05;0.17) 2.02x10-4 

Cont. n=748 0.11 (0.03;0.19) 5.39x10-3 0.10 (0.02;0.18) 0.01 

TFI n=1,339 0.07 (0.01;0.13) 0.02 0.11 (0.06;0.17) 9.88x10-5 

MPI n=1,344 0.15 (0.10;0.21) 1.20x10-7 0.17 (0.12;0.22) 6.67x10-10 

* Adjusted for chronological age at blood sampling, sex, body mass index, cell counts, 

subcohort, and visit and cohort within the Rotterdam Study.  

 

SD indicates standard deviation; CI, 95%-confidence interval; FI, frailty index; FP, frailty 

phenotype; Cont., continuous Fried; TFI, Tilburg Frailty Indicator; MPI, multidimensional 

prognostic index; and n, number of participants for whom we have information on this frailty 

score. 
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Table 2. The multivariable risk of all-cause mortality of DNAm GrimAge and MetaboHealth 

 Model 1 Model 2 Model 3 Model 4 

 n/N = 132/1,336 n/N = 131/1,331 n/N = 132/1,333 n/N = 131/1,331 

 HR (CI) P HR (CI) P HR (CI) P HR (CI) P 

DNAm 

GrimAge 

1.56 

(1.31;1.85) 

5.81x

10-7 

1.52 

(1.23;1.87) 

8.02

x10-5 

1.55 

(1.30;1.84) 

1.02

x10-6 

1.51 

(1.23;1.86) 

9.80x

10-5 

MetaboHealth 
1.60 

(1.35;1.89) 

3.91x

10-8 

1.62 

(1.37;1.92) 

2.11

x10-8 

1.59 

(1.34;1.89) 

7.24

x10-8 

1.61 

(1.36;1.91) 

3.68x

10-8 

Concordance 0.70 0.70 0.70 0.70 

Model 1: Adjusted for sex, BMI, cell count, batch, and cohort within the Rotterdam Study; 

Model 2: Model 1 + additionally adjusted for smoking status; 

Model 3: Model 1 + additionally adjusted for the MPI 

Model 4: Model 3 + additionally adjusted for smoking status 

CI indicates 95%-confidence interval; HR, hazard ratio; MPI, multidimensional prognostic 

index; n, cases; N, persons at risk; P, p-value; and SD, standard deviation. 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2022. ; https://doi.org/10.1101/2022.12.05.22282968doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.05.22282968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Outline of the study and study population characteristics 

 

* Smoking status was unknown for 5 Rotterdam Study participants (3 participants of the 

450K-subgroup, 2 participants of the EPIC-subgroup) and for 17 LLS participants of whom 4 

belonged to the multi-omics subgroup 

 

a. The Rotterdam Study overall study population with population characteristics; b. the 

Rotterdam Study two subcohorts, 450K and EPIC, stratified by the DNA methylation array 

used and their population characteristics; c. The external validation cohort, the Leiden 

Longevity Study with population characteristics; d. The subcohort of the Leiden Longevity 

Study where epigenetic information was available with population characteristics; e. We used 

both the overall Rotterdam Study population as its two subcohorts 1) to determine the 

correlations between each of the biological aging biomarkers, 2) to perform a linear 

regression for the association between the biological aging biomarkers and frailty, and 3) to 

determine the association between each of the biological aging biomarkers and all-cause 

mortality. We externally validated the correlations between the biological aging biomarkers 

and the association between the biological aging biomarkers and all-cause mortality in the 

Leiden Longevity Study and its subcohort. 

In a-d, BMI indicates body mass index; DNAm, DNA methylation; and n, size of the study 

population. Population characteristics in a-d are shown as a number for the population size; 

mean ± standard deviation (range) for age and BMI; and number (percentage) for the number 

of women and the number of participants currently smoking. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2022. ; https://doi.org/10.1101/2022.12.05.22282968doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.05.22282968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2 Correlations between biological age measures and the association between 

biomarkers of biological aging and frailty  

 

a. Spearman’s correlation of the different biological aging biomarkers in 1,424 Rotterdam 

Study participants with the histograms of epigenetic aging biomarkers in yellow and 

metabolomic-based aging biomarkers in blue. Labels in bold indicate a mortality-trained 

aging biomarker; cursive label a phenotypic age-trained aging biomarker; and the regular font 

an aging biomarker trained on chronological age. Values after r= represent Spearman’s rank 

coefficient; values after p= represent the p-value; the background color is darker for higher 

correlations. Horvath indicates DNAm Horvath; Hannum, DNAm Hannum; Pheno, DNAm 

PhenoAge; GrimAge, DNAm GrimAge; mAge, MetaboAge; and mHealth, MetaboHealth; b. 

Spearman’s correlation between the different Yeo-Johnson- transformed frailty measures in 

the 746 Rotterdam Study participants with information on all five frailty measures. . Values 

after r= represent Spearman’s rank coefficient; values after p= represent the p-value; the 

background color is darker for higher correlations. FI indicates frailty index, FP: frailty 

phenotype, Cont.: continuous Fried, TFI: Tilburg Frailty Indicator, and MPI: 

Multidimensional Prognostic Index; c. Risk of all-cause mortality per standard deviation 

increase of the Yeo-Johnson transformed FI(ncases=130/n=1330),  FP(ncases=132/n=1328),  

Cont.(ncases=69/n=743), TFI(ncases=129/n=1328), MPI(ncases=132/n=1333) in the RS 

overall study population. The figure represents the adjusted hazard ratios and 95%-confidence 

intervals. d. Associations of standardized biological aging biomarkers with standardized 

FI(n=1,341), FP(n=1,339), Cont.(n=748), TFI(n=1,339), and MPI(n=1,344) based on linear 

regression analyses in all participants of whom data on biological aging biomarkers and 

frailty were available in the overall Rotterdam Study dataset. Analyses were adjusted for age, 
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sex, BMI, cell counts, subcohort, and Rotterdam Study cohort and visit. The figure represents 

the adjusted betas and 95%-confidence intervals.  
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Figure 3 Aging predictors and their univariable risk of all-cause mortality per SD 

 

Risk of all-cause mortality per standard deviation increase of the aging predictors in a. the 

overall Rotterdam Study population (n=1,336); and b. the subgroup of the Leiden Longevity 

Study with information on the epigenetic aging predictors (n=584). BMI indicates body mass 

index; HR, hazard ratio; and MPI, multidimensional prognostic index. 
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