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ABSTRACT 

Artificial intelligence (AI) can detect left ventricular systolic dysfunction (LVSD) from 

electrocardiograms (ECGs). Wearable devices could allow for broad AI-based screening but 

frequently obtain noisy ECGs. We report a novel strategy that automates the detection of hidden 

cardiovascular diseases, such as LVSD, adapted for noisy single-lead ECGs obtained on 

wearable and portable devices. Overall, 385,601 ECGs were used for development of a standard 

and noise-adapted model. For the noise-adapted model, ECGs were augmented during training 

with random gaussian noise within four distinct frequency ranges, each emulating real-world 

noise sources. Both models performed comparably on clean ECGs with an AUROC of 0.90. The 

noise-adapted model performed significantly better on the same test set augmented with four 

distinct real-world noise recordings at multiple signal-to-noise ratios (SNRs), including noise 

isolated from a portable device ECG. The standard and noise-adapted models had an AUROC of 

0.72 and 0.87, respectively when evaluated on ECGs augmented with portable ECG device noise 

at an SNR of 0.5. This approach represents a novel strategy for the development of wearable 

adapted tools from clinical ECG repositories.  
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INTRODUCTION 

Artificial intelligence (AI) can detect left ventricular systolic dysfunction (LVSD) from 

electrocardiograms (ECGs), a diagnosis that has traditionally relied on comprehensive 

echocardiography or other cardiac imaging.1,2 Even though AI-ECG is a promising screening 

tool for detecting LVSD, the algorithms have been designed in clinically obtained 12-lead ECGs. 

Advances in wearable and handheld technologies now enable the point-of-care acquisition of 

single-lead ECG signals, paving the path for efficient and scalable AI screening tools for use 

with these technologies.3,4 This improved accessibility could enable broader AI-based screening 

for LVSD, but the reliability of such tools is limited by the presence of noise in data collected 

from wearable devices.5 Consequently, the performance of wearable-based models for detecting 

LVSD may degrade in the real-world setting, with lower performance than observed in the 

original single-lead derivatives of the clinical development studies.6,7 

In the absence of large, labelled datasets of wearable ECGs, the development of 

algorithms that can detect underlying structural heart disease on wearable devices relies on 

single-lead information specifically adapted from 12-lead ECGs extracted from clinical ECG 

libraries. However, this process does not specifically account for the unique data acquisition 

challenges encountered with wearable ECG, possibly contributing to their inconsistent diagnostic 

performance. Indeed, several sources of noise exist in wearable data, arising from factors such as 

poor electrode contact with the skin, movement and muscle contraction during the ECG, and 

external electrical interference.8–11 This noise has practical implications, as models demonstrate 

poorer performance when tested on all available wearable ECG data as opposed to selected high-

quality subsets.7 This marked difference in performance based on noise has limited wearable 

device-based screening programs, with a wearable device-based atrial fibrillation screening study 
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disqualifying 22% of patients due to insufficient signal quality.5 Accounting for this noise is a 

prerequisite to develop broadly accessible models that will form the basis of effective screening 

programs for LVSD in the community. 

In the present study, we hypothesized that a novel, noise-enhanced training approach can 

boost the performance of wearable-adapted, single-lead ECG models for accurate and noise-

agnostic identification of LVSD. Our method, which relies on training on single-lead ECG data 

derived from clinical ECGs and augmented with custom noise patterns developed in key 

frequency ranges relevant for specific ECG noise signatures, explicitly accounts for, and 

generalizes to real-world noise patterns observed in wearable devices. 

 

RESULTS 

Study Population 

There were 2,135,846 consecutive 12-lead ECGs performed at the Yale-New Haven Hospital 

(YNHH) between 2015 and 2021, 440,072 of which had accompanying TTEs acquired within 15 

days of the ECG. We developed the models on 385,601 of the ECG-TTE pairs, representing 

116,210 unique patients, who had a complete 12-lead ECG recording (Figure S1). The signal 

from Lead I, the standard lead obtained from wearable devices,4 was then isolated from each 12-

lead ECG. All selected single-lead ECG recordings contained 10 seconds of Lead I signal at 500 

Hz. The single-lead ECGs were then split at the patient level into training, validation, and test 

datasets (85%-5%-10%). 

Of these ECGs, 56,894 (14.8%) were from patients with LVSD, defined as having a paired 

TTE recording of LV ejection fraction (LVEF) below 40%. Additionally, 40,240 (10.4%) had an 

LVEF between 40% and 50%, and the remaining 288,467 (74.8%) had an LVEF of 50% or 
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higher. Patients had a median age of 68 years (IQR 56, 78) at the time of ECG recording and 

50,776 (43.7%) of the patients were women. A total of 75,928 (65.3%) patients were non-

Hispanic white individuals, 14,000 (12.0%) were non-Hispanic Black, 9,349 (8.0%) were 

Hispanic, and 16,843 (14.5%) were from other racial backgrounds (Table S1).  

 

Detection of LV Systolic Dysfunction 

The noise-adapted model was trained on a noise-augmented development set. High and low pass 

filtering was used to isolate five-minute samples of random gaussian noise within four different 

frequency ranges encompassing real-world ECG noises, including 3-12 Hz, 12-50 Hz, 50-100 

Hz, and 100-150 Hz. The first of these four ranges, 3-12 Hz, was selected to emulate motion 

artifact noises due to tremors,12,13 while the 12-50 Hz and 100-150 Hz frequency ranges 

encompass more frequently occurring lower- and higher-frequency muscle activation artifacts, 

respectively.9,13 The 50-100 Hz domain was selected to represent electrode motion noises.13 Both 

this domain and the 100-150 Hz frequency range, which contain multiples of 50 and 60 Hz, the 

two mains frequencies used in ECG acquisition,9 also serve to emulate powerline interference 

noise.9,13 These noise samples were then used to generate the noise-augmented development set, 

in which ECGs were selectively noised with random, 10-second sequences of one of the four 

frequency-banded gaussian noises at one of four signal-to-noise ratios (SNRs) each time an ECG 

was loaded. The standard model was trained on the original training set (described in Methods, 

Isolation of Frequency-Banded Gaussian Noise and Methods, Noise Augmentation). 

Both models were trained to detect LVEF below 40%, a threshold present in most heart 

failure diagnosis guidelines,14 and consistent with prior work.1,15 With an AUROC for detection 

of LVEF < 40% of 0.90 (95% CI 0.89-0.91) and 0.90 (95% CI 0.88-0.91), the noise-adapted and 
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standard models, respectively, performed similarly on a held-out test set without added noise (p-

value = 0.60). AUPRC on this clean held-out test set was 0.46 and 0.48, respectively. The noise-

adapted model had specificity and sensitivity of 0.68 and 0.92, respectively and a PPV and NPV 

of 0.20 and 0.99, respectively. The standard model had sensitivity and specificity of 0.69 and 

0.91, respectively and a PPV and NPV of 0.21 and 0.99, respectively. The noise-adapted model’s 

performance was comparable to the standard model across subgroups of age, sex, and race 

(Table 1). 

 

Standard and Noise-Adapted Model Performance on Noised ECGs 

The performance of each model was also tested on four distinct real-world noise recordings, 

including three half-hour recordings containing electrode motion, muscle artifact, and baseline 

wander noise sourced from the publicly available MIT-BIH noise stress test database.9 Both 

models were tested on separate versions of the held-out test set augmented with each of these 3 

real-world noises at eight different signal-to-noise ratios (described in Methods, Acquisition of 

Real-World, Public ECG Noise Recordings, and Methods, Noise Augmentation). 

For the noise-adapted model, model performance was comparable across all SNRs for each 

MIT-BIH noise with AUROC between 0.86-0.89, 0.87-0.89, and 0.88-0.89 for electrode motion, 

muscle artifact, and baseline wander noise, respectively. The standard model had lower 

performance across all SNRs for every noise, with AUROC between 0.79-0.86, 0.81-0.86, and 

0.80-0.86 for electrode motion, muscle artifact, and baseline wander noise, respectively (Table 

2, Figure 1). 

 

Standard and Noise-Adapted Performance with Portable ECG Device Noise 
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Real-world portable ECG device noise, isolated using a Fast Fourier Transform-based technique 

on a 30-second KardiaMobile 6L ECG recording, was also used to evaluate both models 

(Methods, Noise Extraction from a Portable Device ECG). Each model was used to generate 

predictions for noise-augmented ECGs across all SNRs, with the noise-adapted model’s AUROC 

ranging from 0.87 to 0.89. The standard model’s performance was significantly lower at each 

SNR, ranging from 0.72 to 0.83. This difference was most pronounced at an SNR of 0.5, at 

which the noise-adapted model retained an AUROC of 0.87 (95% CI 0.86-0.88) and the standard 

model had an AUROC of 0.72 (95% CI 0.71-0.74, p-value < 0.001) (Table 2, Figure 1). 

 

Explaining Performance Differences in Standard and Noise-Adapted Models 

To gain mechanistic insights into the variation in performance for clean and noise-augmented 

data by different models, we visually and quantitatively assessed differences in the embedding 

outputs of both noised and clean ECGs for both standard and noise-adapted models. For this, we 

focused on the output of the 320-dimensional last fully connected layer of each model before 

generating final predictions. These predictions were collected for five different versions of the 

same 1,000 ECGs—once with the original ECG, and once for each of the four real-world noises. 

The variation in these predictions due to the addition of noise was visualized by using uniform 

manifold approximation and projection (UMAP),16 which constructs a two-dimensional 

representation of the 320-dimension prediction vectors for each noise and model combination. 

They were also quantitatively assessed using scaled Euclidean distances between prediction 

vectors for the same ECG with and without each type of noise for both models. 

For the standard model, the predictions for each of the noised ECGs were visually distinct 

from those of the clean ECGs, despite being for the same set of 1,000 ECGs, and differing only 
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on the added noise. However, for the noise-adapted model, there wasn’t a visual separation in the 

model’s predictions between clean and noised ECGs, indicating that the predictions of the noise-

adapted model are more resilient than those of the standard model (Figure 2).  

Quantitatively, the scaled Euclidean distances between predictions for noised and clean 

versions of the ECGs were lower for the noise-adapted model across all four noises. In the ECG 

with noise derived from portable ECGs, for instance, the average scaled Euclidean distance for 

the standard model was 0.50 (95% CI 0.49-0.51) and for the noise adapted model was 0.41 (95% 

CI 0.40-0.42). Similarly for the baseline wander it was 0.52 (0.51-0.53) and 0.36 (0.36-0.37), 

respectively (Table 3). 

 

DISCUSSION 

We developed a novel strategy that automates the detection of hidden signatures of 

cardiovascular diseases, such as LVSD, adapted for noisy single-lead ECGs obtained on 

wearable and portable devices. Using this approach, we developed a noise-adapted deep-learning 

algorithm that accurately identifies LV systolic dysfunction from single-lead ECG data and was 

resilient to significant noisy artifacts, despite not encountering the specific noises in the model 

development process. Specifically, the algorithm demonstrates excellent discriminatory 

performance even on ECGs containing twice as much noise as signal, features that make it ideal 

for wearable device-based screening strategies. Notably, the algorithm was developed and 

validated in a diverse population and demonstrates consistent performance across age, sex, and 

race subgroups. The noise-adapted approach defines a novel paradigm on how to build robust, 

wearable-ready, single-lead ECG cardiovascular screening models from clinical ECG 
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repositories, with significant potential to expand the screening of LV structural cardiac disorders 

to low-resource settings with limited access to hospital-grade equipment.  

Noise-adapted training of deep learning algorithms represents a relatively novel field of AI 

research, focused on expanding the use of AI tools to everyday life by accounting for noise and 

artifacts that may preclude their reliable use in this setting. Models trained on clinical ECGs have 

been applied to wearable device ECGs, but have traditionally shown significantly lower 

performance on wearable device ECGs than on held-out clinical ECG test sets.6,7 Due to the lack 

of publicly available wearable device ECG datasets, however, development of models for direct 

use with wearable ECG data remains infeasible. The current 12-lead ECG-based models are 

limited to investments by health systems to incorporate tools into digital ECG repositories, and 

thereby limited to individuals who already seek care in those systems. In addition to the 

clinically indicated ECGs limiting the scope of screening, even this technology may not be 

available or cost-effective for smaller hospitals and clinics with limited access to digital ECGs.  

Wearable devices allow obtaining ECGs that are more accessible and allow for community-

wide screening, an important next step in the early detection of common and rare 

cardiomyopathies. On this note, our approach represents a major advancement from a 

methodological and clinical standpoint. First, it augments clinical ECG datasets in such way that 

it enables reliable modelling of noisy, wearable-derived, single-lead ECG signals. Second, it 

demonstrates that through noise-augmentation, single-lead ECG models can retain the prognostic 

performance of 12-lead ECG models, as shown here for the task of predicting LV systolic 

dysfunction. 

Our approach also offers a strategy to examine the process by which the models achieve 

better performance. Compared with the current approach of developing models, our noise-
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adapted approach resulted in selective removal of noise from signal, even for noises the model 

hadn’t encountered before, while preserving the model’s robustness in discerning complex 

hidden labels. This strategy is particularly important for a model intended for use on wearable 

devices, which capture ECGs in unpredictable settings with varying types and magnitudes of 

noise. 

This study has several limitations. First, this model was developed using ECGs from patients 

who had both an ECG and a clinically indicated echocardiogram. Though this population differs 

from the intended broader real-world use of this algorithm as a screening method for LV systolic 

dysfunction among individuals with no clinical disease, the consistent performance across 

demographic subgroups suggests robustness and generalizability of the model’s performance. 

Nevertheless, prospective assessments in the intended screening setting are warranted. Second, 

the model performance may vary by the severity of LV systolic dysfunction. Though the LVEF 

threshold of 40% was selected due to its therapeutic implications,14 it is possible that the model 

performance among patients with an LVEF near to this cutoff differed compared with those 

individuals with LVEF significantly higher or lower than 40%. This might also be attributable to 

a lack of precision in LVEF measurement by echocardiography, which has shown to be less 

precise relative to other approaches, such as magnetic resonance imaging.17,18 Finally, four 

distinct types of randomly generated noise were used during training and randomly selected 

sequences of four real-world noises were used at multiple signal-to-noise ratios in the evaluation 

of performance on the test set. Though this suggests that the model performance generalizes well 

to unseen noise, we cannot ascertain whether it maintains performance on every type and 

magnitude of noise possible on wearable devices. 
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CONCLUSIONS 

We developed a novel strategy that automates the detection of hidden signatures of 

cardiovascular diseases, such as LVSD, adapted for noisy single-lead ECGs obtained on 

wearable and portable devices. Using this approach, we developed a single-lead ECG algorithm 

that accurately identifies LV systolic dysfunction despite significant noisy artifacts, suggesting a 

novel approach for the development of wearable adapted tools from clinical ECG repositories. 

 

METHODS 

The study was reviewed by the Yale Institutional Review Board, which approved the study 

protocol and waived the need for informed consent as the study represents secondary analysis of 

existing data. The data cannot be shared publicly. 

Study design 

The study was designed as a retrospective analysis of a cohort of 116,210 patients, 18 years of 

age or older, who underwent clinically indicated ECG with paired echocardiograms within 15 

days of the index ECG at the Yale-New Haven Health hospital. To ensure the generalizability of 

our models, we applied no exclusion criteria, including patients of all sexes, races, and ethnicities 

(Table S1). 

 

Data Source and Population 

Raw voltage data for lead I was isolated from 12-lead ECGs collected at the Yale-New Haven 

Hospital (YNHH) between 2015 and 2021. Lead I was chosen as it represents the standard lead 

obtained from wearable devices.4 Each clinical ECG was recorded as a standard 10-second, 12-

lead recording with a sampling frequency of 500 Hz. These ECGs were predominantly recorded 
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using Philips PageWriter and GE MAC machines. Patient identifiers were used to link ECGs 

with an accompanying transthoracic echocardiogram within 15 days of the ECG. These 

echocardiograms had been evaluated by expert cardiologists, and the LVEF defined in their 

interpretation was identified. If multiple echocardiograms were performed within the 15-day 

window, the one nearest to each ECG was used to define the LVEF for the model development 

and evaluation.      

 

Data Preprocessing 

A standard preprocessing strategy was used to isolate signal from lead I of 12-lead ECGs, that 

included median pass filtering and scaling to millivolts. The Lead I signal was then isolated from 

each ECG, and a one second median filter was calculated for and subtracted from each single-

lead ECG to remove baseline drift. The amplitudes of each sample in each recording were then 

divided by a factor of 1000 to scale the voltage recordings to millivolts. 

 

Isolation of Frequency-Banded Gaussian Noise  

Random gaussian noise within four distinct frequency ranges was isolated to train the noise-

adapted model. High pass and low pass filters were applied to five minutes of random gaussian 

noise to isolate noise within each of the frequency ranges, which included 3-12 Hz, 12-50 Hz, 

50-100 Hz, and 100-150 Hz. Each frequency range was specifically selected to model an element 

of real-world ECG noises. 3-12 Hz models the motion artifact noises attributable to tremors, 

which occur within this frequency range.12,13 The 50-100 Hz domain reflects consistent electrode 

contact noise,13 while the 12-50 Hz and 100-150 Hz ranges contain the lower and higher 

frequency muscle noises, respectively.9,13 Additionally, the 50-100 and 100-150 Hz ranges each 
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contain multiples of 50 and 60 Hz, the two mains frequencies used in ECG acquisition,9 which 

make up powerline interference noise.9,13 (Figure 3) 

 

Acquisition of Real-World, Public ECG Noise Recordings 

Four real-world noise records, not included during training of either model, were used to test the 

models. These included three half-hour noise recordings from the MIT-BIH Noise Stress Test 

Database. The MIT-BIH dataset noises, each obtained at a sampling frequency of 360 Hz, 

represent three types of noises frequently encountered in ECGs: baseline wander noise, a low-

frequency noise produced by lead or subject movement,9 muscle artifact, caused by muscle 

contractions,13 and electrode motion artifact, which is caused by irregular movement of the 

electrodes during ECG recordings.9,13 Each of these recordings were obtained using a standard 

12-lead ECG recorder by positioning the electrodes on patient limbs such that the patients’ ECG 

signals were not visible in the recordings (Figure 4).9 

 

Noise Extraction from a Portable Device ECG 

Real-world noise was also isolated from a 30-second, 300 Hz portable device ECG recording 

obtained using a KardiaMobile 6L portable ECG device. The noise was extracted from the 

recording by applying a modified version of the Fourier transform-based approach previously 

used to denoise ECGs.19 First, a fast Fourier transform (FFT) was applied to a 30-second ECG 

recording and the result was plotted in the frequency domain. Then, a threshold was manually 

selected to separate the high- and low-amplitude frequencies which contained signal and noise, 

respectively. Finally, instead of computing the inverse FFT on the frequencies with amplitudes 
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greater than this threshold, an inverse FFT was applied to all frequencies with amplitudes below 

the selected threshold, yielding the noise (Figure 5). 

 

Noise Augmentation 

While training the noise-adapted model, each ECG was included in the training dataset twice, 

with one of the four frequency ranges for the generated noise randomly selected each time an 

ECG was loaded. A 10-second sequence was then randomly selected from the full five-minute 

length of the selected noise recording. This noise sequence was then added to the clean ECG at a 

signal-to-noise ratio (SNR) randomly selected from a set of SNRs, including 0.50, 0.75, 1.00, 

and 1.25.20 

During model evaluation, the noised versions of the test set were generated by following the 

same procedure as with the noised training set with several key modifications. First, the noise 

added to ECGs in the test set was sourced from either the baseline wander, electrode motion, or 

muscle artifacts noise recordings from the MIT-BIH dataset or from the 30-second noise sample 

from the KardiaMobile 6L portable ECG device. Second, the MIT-BIH noises and the portable 

ECG noise were all up-sampled from their original sampling frequencies, 360 Hz and 300 Hz, 

respectively, to a 500 Hz sampling frequency to match that of the clinical device ECGs. Third, 

the specific 10-second sequence of noise added to each ECG in the test set was randomly 

selected once and defined for each ECG, ensuring that every time any model was tested at any 

SNR for any specific noise, each individual ECG was always loaded with the same randomly 

selected sequence of noise. Model performance was evaluated separately for a larger set of 

SNRs, including all the SNRs used in training and SNRs of 1.50, 1.75, and 2.00. 
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Outcome label  

Each ECG included in the dataset had a corresponding LVEF value from a paired 

echocardiogram within 15 days of the ECG. The cutoff for low LVEF was set as LVEF < 40%, a 

threshold present in most heart failure diagnosis guidelines,14 and consistent with prior work in 

this space.1,15  

 

Model Training 

All unique patients represented in the set of ECGs were then randomly subset on the patient level 

into training, validation, and held-out test sets (85%, 5%, 10%). We built and tested multiple 

convolutional neural network (CNN) models with varying numbers and sizes of convolutional 

layers and total model parameters. We selected the architecture yielding the highest area under 

the receiver operator characteristic (AUROC) curve on the validation set with the fewest number 

of parameters for the standard model. This architecture consisted of a (5000, 1, 1) input layer, 

corresponding to a 10-second, 500 Hz, Lead I ECG, followed by seven two-dimensional 

convolutional layers, each of which were followed by a batch normalization layer,21 ReLU 

activation layer, and a two-dimensional max-pooling layer. The output of the seventh 

convolutional layer was then taken as input into a fully connected network consisting of two 

dense layers, each of which were followed by a batch normalization layer, ReLU activation 

layer, and a dropout layer with a dropout rate of 0.5.22 The output layer was a dense layer with 

one class and a sigmoid activation function. Model weights were calculated for the loss function 

such that learning was not affected by the lower frequency of LVEF < 40% compared to the 

incidence of LVEF ≥ 40% using the effective number of samples class re-weighting scheme.23 

(Figure S2). 
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Both models were trained on the Keras framework in TensorFlow 2.9.1 and Python 3.9 using 

the Adam optimizer. First, the models were trained at a learning rate of 0.001 for one epoch. The 

learning rate was then lowered to 0.0001 and training was continued until performance on the 

validation set did not improve for three consecutive epochs. The epoch with the highest 

performance on the validation set was selected for each model. 

 

Learning Representation Assessments for Noise-Adapted Model 

To visualize the variation between predictions for clean and noise-augmented data for each 

model, we first modified both the standard and noise-adapted models by removing their final 

output layers so both models instead produced the 320-dimensional vector output of the model’s 

final fully connected layer. We then randomly selected a 1,000 ECG subset from the held-out 

test set. For each of the two models, we generated the 320-dimension prediction vectors five 

times for each of the 1,000 ECGs—once without noise, and once augmented at an SNR of 0.5 for 

each of the four noises used for testing. We then visualized the variation in the predictions 

separately for the standard and noise-adapted models using uniform manifold approximation and 

projection (UMAP), which constructs a two-dimensional representation of the 320-dimension 

prediction vectors.16 The variation in predictions was numerically assessed by the pair-wise 

calculation of the Euclidean distances between the 320-dimensional prediction vectors for the 

clean and noised data for each of the four noises. These Euclidean distances were then scaled on 

a per-model and per-noise basis by dividing by the total range of pair-wise Euclidean distances 

for each model and noise combination. The average scaled Euclidean distance and a 95% 

confidence interval was then calculated for each model and noise combination. 
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Statistical Analysis 

Summary statistics are presented as counts (percentages) and median (interquartile range, IQR), 

for categorical and continuous variables, respectively. Model performance was evaluated in the 

held-out test set both with and without added real-world noises. We used area under receiving 

operation characteristics (AUROC) to measure model discrimination. We also assessed area 

under precision recall curve (AUPRC), sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and diagnostic odds ratio, and chose threshold values based on 

cutoffs that achieved sensitivity of 0.90 in validation data. We used a DeLong’s test to compare 

AUROCs of the noise-adapted and standard models for each noise at each signal-to-noise ratio.24 

95% confidence intervals for AUROC were calculated using DeLong’s algorithm.24,25 A paired t-

test was used to compute the probability of overlap for the scaled Euclidean distances between 

last-layer projections of the noise-adapted and standard models. All analyses were performed 

using Python 3.9 and level of significance was set at an alpha of 0.05.  
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Table 1. Performance of noise-adapted model on test ECGs without noise across 
demographic subgroups. Abbreviations: PPV, positive predictive value; NPV, negative 
predictive value; AUROC, area under receiver operating characteristic curve; CI, confidence 
interval, AUPRC, area under precision recall curve; OR, odds ratio. 
 

Labels PPV NPV Specificity Sensitivity AUROC (95% CI) AUPRC OR 
All 0.203 0.990 0.676 0.924 0.896 (0.886-0.905) 0.455 25.195 
Male 0.231 0.986 0.653 0.916 0.881 (0.867-0.894) 0.478 20.508 
Female 0.163 0.994 0.716 0.923 0.913 (0.898-0.927) 0.404 30.318 
White 0.204 0.990 0.675 0.922 0.894 (0.883-0.906) 0.445 24.544 
Black 0.211 0.990 0.596 0.945 0.880 (0.854-0.906) 0.461 25.407 
Hispanic 0.208 0.992 0.740 0.923 0.917 (0.881-0.953) 0.535 34.158 
Other 0.218 0.995 0.772 0.941 0.932 (0.900-0.964) 0.545 54.122 
65 or Older 0.198 0.989 0.606 0.936 0.879 (0.865-0.893) 0.432 22.611 
Under 65 0.209 0.990 0.731 0.910 0.908 (0.895-0.921) 0.481 27.543 
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Table 2. Performance of noise-adapted and standard model on test ECGs with across 
different types of noise. Abbreviations: SNR, signal-to-noise ratio, PPV, positive predictive 
value; NPV, negative predictive value; AUROC, area under receiver operating characteristic 
curve; CI, confidence interval, AUPRC, area under precision recall curve. 
 

Model Noise SNR PPV NPV Specificity Sensitivity AUROC (95% CI) AUPRC 
Noise-Adapted Clean N/A 0.203 0.990 0.676 0.924 0.896 (0.886-0.905) 0.455  

Portable ECG 0.5 0.152 0.993 0.523 0.956 0.871 (0.861-0.882) 0.392  
Portable ECG 2 0.188 0.992 0.636 0.940 0.889 (0.880-0.899) 0.439  

Electrode Motion 0.5 0.126 0.993 0.395 0.971 0.858 (0.846-0.869) 0.361  
Electrode Motion 2 0.167 0.991 0.579 0.945 0.885 (0.875-0.895) 0.426  
Muscle Artifact 0.5 0.175 0.989 0.608 0.927 0.871 (0.861-0.882) 0.389  
Muscle Artifact 2 0.194 0.990 0.654 0.930 0.891 (0.881-0.900) 0.449  

Baseline Wander 0.5 0.186 0.990 0.634 0.932 0.883 (0.873-0.893) 0.427  
Baseline Wander 2 0.201 0.991 0.669 0.929 0.892 (0.883-0.902) 0.457 

Standard Clean N/A 0.207 0.988 0.688 0.910 0.895 (0.884-0.905) 0.475  
Portable ECG 0.5 0.091 0.981 0.132 0.972 0.723 (0.706-0.739) 0.200  
Portable ECG 2 0.125 0.991 0.398 0.958 0.834 (0.822-0.847) 0.329  

Electrode Motion 0.5 0.088 0.988 0.079 0.990 0.792 (0.779-0.806) 0.239  
Electrode Motion 2 0.152 0.988 0.537 0.925 0.855 (0.843-0.866) 0.333  
Muscle Artifact 0.5 0.100 0.991 0.210 0.979 0.807 (0.795-0.820) 0.245  
Muscle Artifact 2 0.181 0.988 0.631 0.912 0.864 (0.853-0.875) 0.344  

Baseline Wander 0.5 0.095 0.993 0.158 0.987 0.802 (0.789-0.816) 0.236  
Baseline Wander 2 0.169 0.986 0.599 0.908 0.855 (0.843-0.866) 0.322 
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Table 3. Scaled Euclidean distance between last-layer predictions of noise-adapted and 
standard models for noise-augmented and clean ECGs across different noise types at an 
SNR of 0.5. Abbreviations: SNR, signal-to-noise ratio; ECG, electrocardiogram; CI, confidence 
interval; P-Value, probability value. 
 

Noise Type Standard Model Scaled 
Euclidean Distance (95% CI) 

Noise-Adapted Model Scaled 
Euclidean Distance (95% CI) P-Value 

Portable ECG 0.50 (0.49-0.51) 0.41 (0.40-0.42) <0.001 
Electrode Motion 0.56 (0.55-0.58) 0.49 (0.48-0.50) <0.001 
Muscle Artifact 0.53 (0.52-0.54) 0.40 (0.39-0.41) <0.001 

Baseline Wander 0.52 (0.51-0.53) 0.36 (0.36-0.37) <0.001 
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Figure 1. Standard and noise-adapted model performance at increasing levels of noise. 
Abbreviations: AUROC, area under receiver operating characteristic curve; ECG, 
electrocardiogram. 

  

Model Performance at Increasing Levels of Noise
Noise-Adapted Model Standard Model
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Figure 2. UMAP Projections of Last-Layer Predictions of Standard and Noise-Adapted 
Model for Clean and Noise-Augmented ECGs. Abbreviations: UMAP, uniform manifold 
approximation and projection; ECG, electrocardiogram. 
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Figure 3. Noise Extraction and ECG Augmentation for Noise-Adapted Training. Abbreviations: 
ECG, electrocardiogram; Hz, hertz; s, seconds. 
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Figure 4. Noise Augmentation of Test Set with MIT-BIH Real-World Noises. Abbreviations: 
ECG, electrocardiogram; s, seconds. 
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Figure 5. Portable ECG Device Noise Isolation and ECG Noise Augmentation. 

Abbreviations: ECG, electrocardiogram; s, seconds; FFT, Fast Fourier Transform; Hz, hertz. 
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