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ABSTRACT

Open source software that enable research and development of machine learning (ML) models for
clinical use cases are fragmented, poorly maintained and fall short in functionality. CyclOps is
a software framework designed to address this gap and help accelerate the development of ML
models for health. In this paper, we describe the architecture, APIs and implementation details of
CyclOps, while providing benchmarks on example clinical use cases. We emphasize that CyclOps is
developed to be researcher friendly, while providing APIs for building end-to-end pipelines for model
development as well as deployment. We adopt software engineering and ML operations (MLOps)
best practices, while providing support for handling large volumes of health data. The design of the
framework is centered around the notion of iterative and cyclical development of the overall ML
system, which consists of data, model development and monitoring pipelines. The core CyclOps
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package can be installed through the Python Package Index (PyPI) and the source code is available at
https://github.com/VectorInstitute/cyclops.

1 Introduction

Healthcare continues to evolve with unforeseen challenges, and as it becomes more complex, there is a need for
solutions to improve the quality of clinical care. Machine learning hopes to address some of these challenges, by
increasing clinician capacity and improving efficiency such that they can provide better care for patients. While we
expect the number of health ML models being developed to rise over time, adoption of these models in clinical practice
appears to lag, with limited use in hospitals despite recent efforts to make health data repositories such as MIMIC [8]
[6], U.K [19] and Japan [12] Biobanks , eICU [16], I2b2 [11], ChexPert [4], NIH open to the public. Major barriers to
adoption include poorly designed ML workflows, namely due to a lack of tools for rigorous model development and
evaluation, as well as tools for integrating MLOps into clinical workflows.

Managing tasks in an ad-hoc manner during ML development makes the execution of steps error-prone, difficult,
time-consuming, and also prevents developers from building sophisticated ML models. This raises barriers towards
improving and extending development workflows, leads to unmanageable code and prevents building scalable systems.
Hence, software that is easy to modify and extend, while remaining modular and well tested is necessary for adoption
of AI systems in healthcare. Figure 1 shows the cyclical workflow of developing and operationalizing an ML model.
This workflow, while typical for ML system development, needs to be designed and developed specific to the needs and
complexities of healthcare.

Figure 1: The cyclical nature of developing and operationalizing an ML model. We view this typical workflow through
the unique lens of healthcare for designing CyclOps.

A wide variety of tools and engineering pipelines have recently been developed in the context of health ML, but were
designed for specific use cases and patient populations, and applied within the narrow context in which they were
developed. Moreover, existing approaches have been developed for research use cases and lack software engineering
rigour such as testing, documentation and continuous integration. In general, they fail to scale for large volumes of data
and do not generalize well across use cases.

CyclOps was built to address these shortcomings and overall provide support for ventures at the intersection of ML and
health. We invite open-source collaboration to drive the building of use cases and tools using CyclOps. We hope to
support and maintain the software as it grows and gets refactored towards improved usability and functionality.
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We have evaluated CyclOps and demonstrated its early usability and performance on two distinct use cases. The first
use case is built on clinical electronic health record (EHR) data for general internal medicine patient populations where
the goal of the ML models is to predict the risk of mortality. We have also demonstrated a use case using imaging data,
and hence showcase the extensibility of the framework to multimodal data.

2 Related Work

There have been multiple pioneering efforts to address the issue of reproducibility, specifically in the context of machine
learning research using medical datasets. Most notably, the mimic-code repository, a toolkit that processes the Medical
Information Mart for Intensive Care (MIMIC) into an accessible relational database [7], has enabled researchers to
easily set up the database and extract data towards their research use cases.

MIMIC-Extract [22], is a popular open-source toolkit for transforming raw electronic health record (EHR) data
from MIMIC-III into DataFrames that are directly usable for ML modelling. This toolkit provides standardized data
processing functions, including unit conversion, outlier detection, and imputation functions to account for missingness
in medical time-series data. Similarly, mimic3-benchmarks [3] is a popular open-source benchmark which showcases
predictive models in order to allow researchers to produce comparable and reproducible results on the MIMIC-III
dataset. The benchmark provides baselines on four tasks, namely in-hospital mortality prediction, decompensation
prediction, length of stay prediction and phenotype classification. Other tools and benchmarks on the MIMIC-IV [6]
[2] dataset, eICU-CRD [16], HiRID-ICU-Benchmark [24], AmsterdamUMCdb [20] also provide processing pipelines
and baselines for researchers. ATLAS [13] is built by the Observational Health Data Sciences and Informatics (OHDSI)
organization and can be used to conduct analyses on datasets that are available in the Observational Medical Outcomes
Partnership (OMOP) format. PyHealth [25] is a Python library that offers preprocessing across various EHR datasets
and modelling for multiple clinical prediction tasks. Moreover, these tools fail to offer capabilities to evaluate model
robustness to data shifts and existing tools for monitoring of clinical ML models like CheXstray [18] focus on specific
domains and offer limited functionality.

A seminal work to showcase the importance of pipelines and modular implementations is Clairvoiyance [5]. The
toolkit highlights the challenges of engineering quality software to process medical time series data. The authors of
Clairvoiyance also show that a unified approach where the data processing and modelling along with providing
functions to obtain model calibration, interpretation scores, evaluation and other useful analyses is needed for clinical
ML problems. Clairvoiyance highlights the need for a one-stop framework for clinical ML implementation, however
it was built as a proof-of-concept research toolkit with limited scope and applications.

3 Design Principles

• Evaluation and monitoring centric CyclOps is built to enable the rigorous evaluation and monitoring of
clinical ML models. Each component is designed to enable slicing of data such that the evaluation of models
across different attributes can be easily achieved. Furthermore, the APIs provided to enable evaluation and
monitoring are extensible and easy-to-use.

• Pythonic Python is highly popular in the machine learning space, supporting many packages and tools
for data processing as well as ML modelling, research, and analysis. Hence we have built the components
of CyclOps using Python, and have provided APIs in Python. Under the hood, we use Pandas and NumPy
libraries extensively for data processing. The interfaces are built to avoid repeated work and greatly simplify
data extraction, processing and modelling workflows.

• Researcher friendly By providing easy-to-use Python API functions, we aim to support researchers to
easily extract, process and analyze EHR data. Furthermore, the APIs provided are highly customizable and
can be used to run experiments with different parameters.

• Modular and supports pipelines Due to the complex nature of tasks in the ML development workflow,
especially for workloads involved in processing large volumes of tabular, time-series and other clinical data,
CyclOps supports the building of pipelines such that these tasks can be modularized and tested. This makes it
easier to debug and modify the framework components as they grow in complexity.
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4 Application Programming Interfaces

4.1 Query API

The first stage of any machine learning pipeline is data extraction. Data scientists often refer to this process as Extract,
Transform, Load (ETL), where data in a raw format is extracted from a database, transformed to a more clean and
structured format, and loaded into a new database. Health data, and especially EHR data, is often stored in relational
databases, where programs written in the Structured Query Language (SQL) are typically used to perform ETL on
said databases. However, SQL code can be hard to understand and maintain, serving as a distraction and limiting the
extensibility of data pipelines.

To address this problem, we introduce a query API implemented in Python. As shown in figure 2, the query API
consists of low-level functions that can be used to perform common operations on the database. These functions use
the SQLAlchemy toolkit which implements an Object Relational Mapper (ORM), that can be used to query relational
databases. The output of the query API are Pandas DataFrames, a common representation used for static and temporal
(time-series) data.

Figure 2: The Query API can be used to query EHR databases. The querying operations are modules implemented
using the functional API, which in turn uses the SQLAlchemy toolkit. These modules can be combined sequentially to
create the set of operations to apply on the database.

Operations such as casting columns to specific data types, adding a new column, joins, re-ordering, and so forth, can
now be used as modules and combined sequentially. Hence, we can use these modules to create a set of high-level
API functions to query EHR databases. As an example shown in code snippet 1, we can create functions that accept
various arguments used to perform operations on the database. To process these arguments, we use a Query Argument
Placeholder (QAP) class, which wraps around the provided arguments, which is then used to optionally apply querying
operations provided the necessary arguments are specified.

The query API enables the creation of easy-to-use API functions to query EHR databases. We provide API functions to
query the popular MIMIC-IV [6] database, with plans to support other popular research datasets. As shown in example
code snippet 2, we can use these functions to easily extract a cohort of interest towards a use case.

We also provide high-level API functions to query datasets that are available in the OMOP Common Data Model (CDM)
[13]. The adoption of a common data model for EHR data has several advantages, and several health institutions have
successfully converted their data to OMOP or are in the process of doing so. Hence, our default support extends to
OMOP databases. We do provide support for developers working on arbitrary databases, where the query API can still
be applied after writing some wrapper code - for which there are tutorials and examples.
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import cyclops.query.process as qp

def dataset_api_func(
table: TableTypes,
**process_kwargs,

) -> QueryInterface:
operations: List[tuple] = [

(qp.ConditionBeforeDate, ["admit_timestamp", qp.QAP("before_date")], {}),
(qp.ConditionAfterDate, ["admit_timestamp", qp.QAP("after_date")], {}),
(qp.ConditionInYears, ["admit_timestamp", qp.QAP("years")], {}),
(qp.ConditionInMonths, ["admit_timestamp", qp.QAP("months")], {}),
(qp.ConditionIn, ["hospital_id", qp.QAP("hospitals")], {"to_str": True}),
(qp.ConditionIn, ["gender", qp.QAP("gender")], {"to_str": True}),
(qp.Limit, [qp.QAP("limit")], {}),

]
table = qp.process_operations(table, operations, process_kwargs)

Listing 1: An example of a high-level API function to query a dataset. In this example, the table consists of patient
administrative data, and hence arguments to the function can be used to filter the data based on admission timestamps,
hospital and gender.

import cyclops.query import MIMICIVQuerier

mimic = MIMICIVQuerier()
encounters = mimic.patient_encounters(years=[2015])
encounters = mimic.patient_diagnoses(

diagnosis_substring="delirium", patients=encounters
)
data = encounters.run()

Listing 2: An example of the usage of the query API to extract data from the popular MIMIC-IV database. In this
example, we filter patient encounters from the year 2015, and further filter those that had a diagnoses associated with
delirium.

4.2 Process API

Once data is extracted to create a subset of interest, it needs to be processed towards creating useful representations for
ML models. These features are structured for use in machine learning, for example through vectorization. NumPy arrays
and PyTorch tensors are examples of vectorized data containers that are used as input to ML model implementations.
Transforming raw health data into these vector representations is a multi-step process, and we provide a process API
which supports:

• Cleaning: Formatting values, adjusting data types, unit conversion, checking and fixing issues with raw data.

• Aggregation: Grouping infrequent and unevenly spaced temporal measures into buckets, e.g., for aggregating
lab measurements into fixed time-interval buckets, or grouping values by patient ID.

• Normalization: Normalizing values into standard ranges or using statistics of the data.

• Imputation: Handling missing values in the data. For time-series clinical data, ‘missingness’ contains valuable
contextual information about the patient’s health and needs to be handled carefully. The imputing step fills
missing values using various configurable approaches including mean, median and forward, and/or backward
filling for time-series data.

• Slicing: Filtering the data based on conditions applied to columns. For example, slice the data by a column
that contains age information to obtain a subset with all patients above the age of 50.

• Dataset splitting: Splitting the data into different subsets, for example, training, validation and testing subsets,
as well as supporting cross-validation procedures.

• Vectorization: Converting patient representations into vectors which are ready to be used as inputs to ML
models. This format typically consists of multi-dimensional arrays over which operations are more efficient.
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• Health-specific processing: Processing steps specific to health data, such as grouping diagnosis codes (ICD-10
codes) into disease trajectories to create features. ICD-10 codes tend to be sparse and granular, and hence
grouping them offers more useful representations for modelling.

As shown in Figure 3, the process API provides functionality to parse a raw DataFrame into an intermediate for-
mat to represent features, using data containers for them. These intermediate containers hold the data as Pandas
DataFrames, while providing useful methods to create feature sets for analysis and modelling. There are two con-
tainers TabularFeatures and TemporalFeatures, which inherit a base Features class. These containers hold the
extracted data, the features of interest as specified by the user and metadata information about the features, such as the
type and whether it may be a target variable. If the feature is an indicator variable, the metadata also has information
about its parent variable. The container automatically attempts to detect feature types which can be string, numeric,
binary, or categorical indicators (dummy variables).

The user can also force a feature to be of a certain type, thus allowing flexibility. Furthermore, the containers support
useful methods to normalize, slice, split and vectorize the features data. The TemporalFeatures container
has an additional aggregate method that aggregates the time-series data. We provide an additional Vectorized data
container for storing vectorized data. This container holds the data as NumPy arrays, and also contains useful methods
to normalize and split the data. Example code snippets 3 and 4 show how to instantiate the feature containers and
call methods to aggregate and vectorize the data.

Model implementations that use the scikit-learn [15] and PyTorch [14] frameworks interface well with NumPy arrays.
We provide a models library that contains reference implementations of several commonly used ML models for clinical
data, and showcase examples that ingest data from the Vectorized data containers.

Figure 3: The Process API supports various processing steps towards transforming raw EHR data into features for
ML models. The Features and Vectorized data containers are primarily used to featurize and vectorize the data
respectively.

4.3 Monitor API

As the barrier to scaling clinical AI systems, shifts from model development to deployment, there is a growing need
for continuous monitoring and updating in order to understand when a model is likely to output erroneous predictions
due to distributional shifts. The monitor API allows for the detection of data drift prior to model failure in order to
inform end-users and trigger retraining and updating procedures. It provides support for rigorous ML model monitoring
across time, patient cohorts, location, and custom data splits to enable the safe deployment of clinical ML models.
The methods use state-of-the art drift detection methods [21] and are designed to work with high dimensional data
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from cyclops.process.feature import TabularFeatures

tabular_features = TabularFeatures(
data=cohort,
features=features,
by="encounter_id",

)
vectorized_tabular_features = tab_features.vectorize()

Listing 3: Processing of static features, using the TabularFeatures class.

from cyclops.process.feature import TemporalFeatures
from cyclops.processors.aggregate import Aggregator

aggregator = Aggregator(
aggfuncs={"event_value": "mean"},
timestamp_col="event_timestamp",
time_by="encounter_id",
agg_by=["encounter_id", "event_name"],
timestep_size=timestep_size,
window_duration=window_duration,

)
temporal_features = TemporalFeatures(

events,
features="event_value",
by=["encounter_id", "event_name"],
timestamp_col="event_timestamp",
aggregator=aggregator,

)
aggregated = temporal_features.aggregate(**kwargs)
vectorized_temporal_features = aggregator.vectorize(aggregated)

Listing 4: Processing of temporal features, using the TemporalFeatures class.

by performing dimensionality reduction followed by a two-sample or classifier-based test to identify and characterize
whether there is a statistically significant distribution shift between the source and target domain [17]. In this regard,
the API provides the following:

• Clinical Shift Applicator: Enables real clinical experiments for drift detection through splitting the data into
different subsets across time, patients’ cohorts, locations, seasons, or unprecedented events such as COVID.

• Synthetic Shift Applicator: Perturbs a subset of data synthetically using a variety of covariates and label
shifts with varying magnitudes and proportions.

• Rolling Window Analyzer: Evaluates the model stability and potential drift over time using discrete buckets
of time.

• Reductor: Performs various linear and non-linear dimensionality reduction techniques to produce lower di-
mensional latent representations for downstream testing. The Reductor also supports dimensionality reduction
using Black Box Shift Estimators (BBSE) [9] across various deep learning algorithms for EHR and imaging
data.

• Domain Classifier Tester: Implements domain classifiers to identify if a shift in the distribution has occurred
between the latent representation of source and target domains.

• Two-Sample Tester: Implements univariate and multivariate two-sample statistical tests to identify if a shift
in the distribution has occurred between the latent representation of source and target domains.

The monitoring API can be implemented using three main steps: (1) shift application, (2) experiment selection, and (3)
drift detection. As previously mentioned, the primary goal is to detect distribution shifts in clinical data.

Shift Application: The first step is shift application which involves the creation of source and target datasets based on
criteria and conditional logic defined by the user. Given the nature of the intended shift, the user can choose to leverage
the SyntheticShiftApplicator or the ClinicalShiftApplicator. The SyntheticShiftApplicator adds
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Figure 4: The Monitor API supports shift application, experiment selection and drift detection.

synthetic perturbations that span a variety of covariate and label shifts with varying magnitudes and fractions of affected
data to the target subset of the dataset. The ClinicalShiftApplicator includes conditional logic to select subsets of
data based on hospital, time, patient population, and other sensitive attributes (e.g. age, race, gender) to enable real-life
drift detection experiments.

from drift_detector import ClinicalShiftApplicator

clin_applicator = ClinicalShiftApplicator(shift_type="hospital_type",
source="academic",
target="community")

x_source, x_target = clin_applicator.apply_shift(x, **kwargs)

Listing 5: Shift Application using the ClinicalShiftApplicator class.

from drift_detector import SyntheticShiftApplicator

syn_applicator = SyntheticShiftApplicator(shift_type="gn_shift", **kwargs)
x_source, x_target = syn_applicator.apply_shift(x, **kwargs)

Listing 6: Shift Application using the SyntheticShiftApplicator class.

Experiment Selection: The next step is experiment selection with functionality to perform a sensitivity test or a rolling
window experiment. The sensitivity test will setup an experiment where data distribution shift is measured between a
fixed sample size from the source population and increasing sample sizes randomly sampled from the target population.
The RollingWindow will setup an experiment where data distribution shift can be measured between i) two streams
of time-varying source and target data separated by user-defined lookback period or ii) a constant set of source data
used to train a model and streams of incoming time-varying target data. The size of the window, the stride length, drift
threshold and number of samples to use for statistical testing can all be customized by the user.

Drift Detection: The final step is drift detection using the Detector which consists of two components: Reductor and
Tester. The Reductor supports various techniques to reduce the dimensionality of source and targets datasets. The
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from drift_detector import Reductor, TSTester, Detector, RollingWindow
from baseline_models.temporal.pytorch.utils import load_checkpoint

reductor = Reductor(dr_method="BBSEs_trained_LSTM",**kwargs)
tester = TSTester(tester_method="mmd", **kwargs)
detector = Detector(reductor=reductor, tester=tester)

detector.fit(x_source, **kwargs)
target_drift = detector.sensitivity_test(

x_target,

)

Listing 7: Initialize Detector with Reductor and TSTester and conduct sensitivity test.

from drift_detector import RollingWindow
from baseline_models.temporal.pytorch.utils import load_checkpoint

model = get_temporal_model("lstm", **kwargs)
model, optimizer, _ = load_checkpoint(MODEL_PATH, model)

rolling_window = RollingWindow(shift_detector=detector, optimizer=optimizer)
drift_metrics = rolling_window.drift(

data_streams, SAMPLE, STAT_WINDOW, LOOKUP_WINDOW, STRIDE
)

Listing 8: Rolling window drift experiment, using the RollingWindow class initialized with the Detector.

dimensionality reduction technique is fit using the source dataset and is subsequently used to transform the target
dataset into a lower dimensional space. Following reduction, the Tester performs the two sample statistical test to detect
distribution shift between the source and target datasets in the lower dimensional space. For the statistical test, users
can choose between TSTester to perform two-sample statistical tests or DCTester for domain classifier-based tests.
Depending on the type of experiment selected by the user, the final output of the pipeline would be either a p-value
sensitivity test plot or a rolling-window plot. The p-value plot indicates the p-value for each test with increasing number
of target samples along with mean and standard deviation of the p-value across multiple runs. The rolling window plot
yields an array of p-values for each test across time for the rolling window scheme specified along with an array that
specifies whether the p-value fell below the threshold for each time-step.

5 Proof of Concepts Experiments

We conducted a series of experiments to demonstrate how the CyclOps framework can be used for building data
extraction, modeling, and drift detection pipelines. The experiments were made for various patient populations, data
modalities, and outcomes.

5.1 General Internal Medicine Unit - GEMINI

GEMINI is a multi-center database comprising information related to patients admitted to general internal medicine
units at 7 large hospitals in the Greater Toronto Area from 2010-2020. GEMINI is a relational database which includes
13 tables and 156 variables comprising administrative and clinical information. We used the GEMINI database ?? to
indicate the usability of the CyclOps framework for three real-life clinical tasks: (1) in-hospital mortality risk prediction,
(2) mortality decompensation prediction. We showcase three clinical use cases that leverage different combinations of

Table 1: Data pipeline summary for the example use cases. The dataset sizes and parameters can be configured by
researchers.

Database Clinical Use Case Queried Data Process API Vectorized Output

static data temporal data Total Count imputation aggregation # samples features time-steps
patients visits window step-size function static temporal

GEMINI Mortality Decompensation demographics, triage level labs, transfusions, imaging (reports), interventions 17378 104268 ffill + bfill 144h 24h mean 88496 8 100 6
In Hospital Mortality

MIMIC IV Mortality Decompensation age, sex, admission location and type chart events (labs, vitals, respiratory, alarms, etc) 190277 454311 ffill + bfill 144h 24h mean 66732 102 23 6

9
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(a) (b)

Figure 5: Drift detection experiments using the Detector for a GBT model trained on community hospitals evaluated
on in-distribution data from community hospitals (blue) and out-of-distribution data from academic hospitals (red).
Sensitivity across increasing number of samples from test data for a) drift p-values and b) performance (AUROC)

input data, ML modeling, clinical outcomes, and drift detection experiments to build robust clinical AI systems using
CyclOps.

5.1.1 In-hospital mortality risk prediction

We used the data and drift detection pipelines of the CyclOps framework for the task of in-hospital mortality risk
prediction. The data pipeline as shown in Table 1, was used to create vectorized data to be used by the ML classifier
which is a Gradient Boosted Tree (GBT) to predict in hospital mortality. Given the non-temporal nature of the GBT
model, the input data to the model is the combination of vectorized static data and temporal features aggregated over
the first six days of patients’ stay in the GIM unit in the hospital. Only patients’ data whose length of stay (LOS) in the
hospital was more than 24 hours were included in this clinical task. In total 17,365 data records were created by the
data pipeline where a subset was used for GBT training and the rest for model evaluation and drift detection analysis.

The framework’s drift detection pipeline was then leveraged to evaluate the GBT’s robustness across changing season,
location, and the COVID-19 outbreak as shown in Table 2. For each drift detection experiment, the GBT model was
built on source data and evaluated on out-of-distribution target data. The source and target data splits were created
by the ClinicalShiftApplicator under the Shift Applicator module in the pipeline 4. As the results in Table 2
indicate, the performance of the model trained on community hospitals deteriorated when used to predict in-patient
mortality in academic hospitals. To statistically measure data drift in a label-agnostic manner we used the CyclOps
Detector module with a trained BBSE as the Reductor and MMD as the TSTester. Figure 5 depicts the p-value
sensitivity test plot produced by the drift detection pipeline.

Table 2: Gradient Boosted Tree (GBT) model performance across dataset shift experiments.
Splits Clinical Applicator # records auROC auPRC

1 Source pre-COVID 885 0.880 0.875
Target COVID 1082 0.909 0.921

2 Source Summer 2425 0.901 0.911
Target Winter 5255 0.899 0.895

3 Source Community 1076 0.936 0.971
Target Academic 9830 0.672 0.574

5.1.2 Mortality Decompensation Prediction

We used CyclOps framework to build a dynamic model for predicting patient’s functional health deterioration over time.
To predict functional deterioration which is risk of mortality in our case, we stepped forward through each patient’s
longitudinal data, and made predictions every 24 hours for the risk of mortality within the next two weeks starting
24 hours after admission. Patient’s longitudinal data included temporal clinical measures for six consecutive days at
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(a)

Figure 6: Monitoring data shifts in mortality decompensation prediction from 03/2019 to 07/2020 using a 30-day
RollingWindow. It can be seen that drift is detected in 03/2020 (red), which corresponds to when Ontario declared the
COVID-19 pandemic a state of emergency and entered a province-wide lockdown.

the GIM unit. For the classification task, we used varying length LSTM model using the target replication approach
[10] to predict mortality at every time step (24 hours). In addition to patient’s longitudinal clinical measures, baseline
demographics as static variables are also used at every time step for the prediction task.

CyclOps data pipeline as detailed in Table 1 was used to create patients data for the prediction task. Out of 88,496
vectorized records generated by the pipeline, 46,975 was used for model development which was captured up to January
(pre-COVID-19) and the rest was used for comprehensive evaluation and drift detection. The LSTM model was trained
on 46,975 observations and tested on 29,738 observations with an AUROC score of 0.793 on pre-COVID-19 test data.

Following the model development, drift detection pipeline was used for rigorous evaluation of the model across time
and mainly during the COVID19 time through rolling window analysis. Figure 6 illustrates the rolling window plots
generated by the framework which includes trajectories across 15 months for drift: distance and p-value, and model
performance: sensitivity, PPV, AUROC, and AUPRC. The p-values are produced by the Detector module in the drift
detection pipeline using a BBSE (trained LSTM model) for the Reductor and MMD test for the Tester.

5.2 Medical Information Mart for Intensive Care (MIMIC)-IV

MIMIC-IV is a single-center database comprising information relating to a diverse and very large population of ICU
patients between 2001 and 2012. The database includes static (e.g., demographics and baseline measures) and temporal
information (e.g.,vitals, medications, and interventions) extracted from several sources including archives from critical
care information systems, hospital EMR, and Social Security Administration Death Master File. MIMIC-IV is a
relational database consisting of 26 tables and is freely available to researchers worldwide.

5.2.1 Mortality Decompensation Prediction

We used the MIMIC-IV database to demonstrate the usability of CyclOps framework for mortality decompensation
prediction task among critical care patients. Details of the queried data, process API parameters, and the vectorized
data are shown in Table 1. Modeling was performed with the same setting as in mortality decompensation prediction
for GIM patients, however we made use of chart events which includes observational data obtained both from GIM
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(a) (b)

Figure 7: Drift Detection experiments on NIH Chest X-Ray data. a) Gaussian noise injection experiments for an
increasing amount of Gaussian noise. b) Categorical shift experiment to simulate population shifts based on categorical
metadata.

as well ICU environments. The LSTM model was trained on 53,386 records and evaluated on 6,673 records with an
AUROC score of 0.86.

5.3 NIH Chest X-Ray Dataset

We utilized the chest X-ray dataset from NIH [23] to demonstrate the usability of CyclOps framework for detecting
distribution shift in medical imaging data. The dataset contains 112,120 frontal-view X-ray images of 30,805 unique
patients with fourteen disease image labels extracted from the corresponding text-based radiology reports. The creators
of the dataset have already split the data into a training set of 80,000 images, a validation set of 10,000 images, and a
test set of 10,000 images. Using the drift detection pipeline, we performed two synthetic shift experiments where the
images in the test set were synthetically perturbed using the SyntheticShiftApplicator. In our first experiment,
we corrupted the samples in the test set with varying levels of Gaussian noise which formed our target dataset. In our
second experiment, we performed categorical shifts by sub-sampling the target dataset based on patients’ demographics
information (age, gender, or ethnicity). This would artificially change the distribution of patients’ demographics
across observed classes. For both experiments, we initialized the Reductor with a pre-trained autoencoder from the
TorchXrayVision library [1] to reduce the dimensions of the images, and MMD as for the Tester. Using the Detector
we configured with the Reductor and TSTester, we performed sensitivity tests and obtained the p-values shown in
Figure 7.

6 Conclusion

In this paper, we introduced the CyclOps framework, its design principles, and its usability across various use cases and
datasets at the intersection of ML and health. CyclOps is an extensible, modifiable, and reusable framework which
was designed to facilitate the adoption of ML models at scale and enable building sophisticated ML models on large
volumes of data. More importantly, CyclOps was intended to empower operationalizing ML workflows through its
cyclical development consisting of data, model development and monitoring pipelines.
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