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Abstract 

SARS-CoV-2 Omicron has become the predominant variant globally. Current infection models 

are limited by the need for large datasets or calibration to specific contexts, making them 

difficult to cater for different settings. To ensure public health decision-makers can easily 

consider different public health interventions (PHIs) over a wide range of scenarios, we 

propose a generalized multinomial probabilistic model of airborne infection to systematically 

capture group characteristics, epidemiology, viral loads, social activities, environmental 

conditions, and PHIs, with assumptions made on social distancing and contact duration, and 

estimate infectivity over short time-span group gatherings. This study is related to our 2021 

work published in Nature Scientific Reports that modelled airborne SARS-CoV-2 infection 

(Han, Lam, Li, et al., 2021).1  It is differentiated from former works on probabilistic infection 

modelling in terms of the following: (1) predicting new cases arising from more than one 

infectious in a gathering, (2) incorporating additional key infection factors, and (3) evaluating  

the effectiveness of multiple PHIs on SARS-CoV-2 infection simultaneously. Although our 

results reveal that limiting group size has an impact on infection, improving ventilation has a 

much greater positive health impact. Our model is versatile and can flexibly accommodate 

other scenarios by allowing new factors to be added, to support public health decision-making. 
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1. Introduction 

The SARS-CoV-2 Omicron variant, first detected in November 2021 in Botswana, has now 

become the globally dominant variant.2 Omicron carries more than 30 mutations in the spike 

glycoprotein and evades over 85% of tested neutralizing antibodies,3 resulting in a higher risk 

of reinfection due to its greater ability to evade immunity from prior infection and reduced 

vaccine effectiveness.4  

SARS-CoV-2 variants are primarily transmitted through close interpersonal contact.5 

Non-clinical public health interventions (PHI), such as social distancing and lockdowns, have 

been introduced in many countries to reduce transmission,6 but have met with varying degrees 

of success in implementation and enforcement7 and carry economic and social costs. To inform 

public health decisions on the type and timing of PHIs, we have sought to create a simple, 

comprehensive and versatile SARS-CoV-2 infection model that can estimate infections over a 

wide range of scenarios and be easily updated to reflect changing key empirical characteristics 

of SARS-CoV-2, its modes and rate of transmission, and public health measures.  

 

Research Gaps and Aims of the Study:  Current models of SARS-CoV-2 transmission primarily 

rely on viral reproduction rate and Susceptible-Infected-Recovered (SIR) / Susceptible-

Exposed-Infectious-Recovered (SEIR) transmission frameworks/models.8 These models 

compute the instantaneous reproductive numbers, parameterize the contact matrix, and then fit 

the models to epidemic curves. This approach is able to estimate infections across a large 

population group but requires infection case data over a longer time span (i.e. several days). In 

the real-world, data limitations may arise, especially over short time spans – for example, data 

may be delayed, inaccurate, incomplete or even not obtainable at all – and result in a potentially 

severe loss of accuracy. 9 

In contrast, other SARS-COV-2 infection models that statistically estimate viral 

infection risks are often context-based and lack generalizability. For example, Moritz et al. 

(2021) developed a transmission model based on data from an experimental indoor mass 

gathering and computational fluid dynamics model (CFD) simulations10 and Singanayagam et 

al. (2022) estimated the risk of community-based transmission in the United Kingdom.11 

However, their reference to specific contexts/scenarios restricts their transferability to other 

settings and CFD models in particular are highly geometrically-specific and determining 

distribution values across different room settings can be very time-consuming. Additionally, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.02.22282697doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.02.22282697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

both studies were relatively limited in providing a comprehensive and generalizable account 

of the risk factors affecting SARS-CoV-2 transmission/infection in different contexts. 

To date, few probabilistic models have been developed to uncover the transmission 

patterns of SARS-CoV-2, especially for small group activities. One notable example is Tupper 

et al. (2020),12 which proposed a simple mathematical model of transmission rate based on 

social contact (contact rate, duration, and mixing level) and calibrated this for different 

outbreaks. However, the model was limited to new infections arising from a single infectious 

individual only and did not incorporate a broader range of biological, behavioral, and 

environmental risk factors affecting infection in different scenarios, such as variant infectivity, 

vaccination or ventilation conditions. 

In this study, we propose a multinomial probabilistic model to predict infections arising 

from short time span group activities. The model can comprehensively capture key factors 

affecting SAR-CoV-2 infection; be adapted to model different scenarios; and incorporate 

additional factors affecting transmissibility as research and circumstances develop.  

  

Factors Affecting Contacts: Close and prolonged indoor contact can increase viral transmission 

of SARS-CoV-2.13 The longer an infectious person remains in close contact with others, the 

more likely an exposed (or uninfected) person is to become infected. Similarly, more infectious 

people or more people in a room increases the number of close contacts between infectious 

persons and exposed persons and the number of likely infections. 

 

Factors Affecting Transmissibility:  SARS-CoV-2 infection requires a relatively low initial 

infectious dose compared to other respiratory viruses14. Multiple factors affect transmissibility, 

including: the infectivity of the viral variant, the contagiousness of infected individuals, the 

susceptibility of exposed individuals, the nature of contact, the contact environment, and any 

infection reduction measures undertaken.11,14,15  

At the biological level, despite the virology and physiology of SARS-CoV-2 are yet to 

be fully understood, several papers have noted differences in infectivity between SARS-CoV-

2 variants.16-18 Thus, Blanquart et al. (2021) observed a difference in viral loads between 

vaccinated and unvaccinated individuals for Delta, though this was statistically significant only 

for asymptomatic infections.19 The effectiveness of vaccinations against emerging variants is 

the subject of ongoing investigation 11,18,20-23 but studies, such as Levine-Tiefenbrum et al. 

(2021), suggest lower viral loads during breakthrough infections for at least some types of 

vaccine.20 
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At the behavioral level, physical proximity and duration of exposure influence the 

probability of infection,10,24,25,10,24 as does the activity undertaken – for instance, singing 

produces a significantly higher viral load than normal breathing.15,26,27 Wearing face masks or 

using shielding can reduce the risk of infection,10,28-32 with effectiveness depending inter alia 

on mask material and compliance.30,33  

At the environmental level, ventilation plays a critical role in air-borne SARS-CoV-2 

transmission10,15,34-36 by directing, dispersing and diluting expelled infectious 

droplets/aerosols.37 Outdoor settings with better natural air flows than indoor spaces can further 

reduce airborne viral transmission.38 

There are likely further risk factors. In particular, demographic influences are believed 

to be significant in determining infection outcomes,39,40 but since the relationship between 

demographic factors and of SARS-CoV-2 infection risk has not been fully quantified at the 

time of writing this paper, the proposed model does not take demographic factors into account.  

 

Research Questions: Firstly, given M infectious persons and a total of N persons (N-M exposed 

persons) in a room, we consider the number of exposed persons who are expected to become 

infected in a time period T.  Secondly, we examine how partitioning a large group into smaller 

groups affects the average number of exposed persons becoming infected. Thirdly, we 

investigate how the probability of becoming infected is impacted by changes in each of the 

following conditions: the activity of the infectious persons and of the exposed persons 

(including breathing only, speaking, etc.), masking, vaccination, ventilation, viral load, and 

variant infectivity. 

 

Novelties and Significance of Study: The proposed model has a simple and versatile 

multinomial probabilistic structure that can systematically capture known infection risk factors, 

including: group characteristics (group size); biological factors (infectivity of the variant, 

vaccinated/unvaccinated); human behaviours (duration of exposure, activities undertaken, 

masked/unmasked); and environmental conditions (ventilation). The model is readily extended 

to include additional epidemiological risk factors and its bottom-up structure allows a wide 

range of scenarios to be considered. Compared to earlier probabilistic models, the proposed 

model is more comprehensive, capturing cases with one or multiple infectious persons and 

incorporating more key risk factors affecting transmission and infection.  

Our proposed model determines expected infection cases under different circumstances, 

offering, for example, quick and useful public health guidance on how to reduce infections 
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during large group gatherings. This is particularly important at the present time as cities 

increasingly seek to end social distancing policies and resume normal daily social and 

economic activities as much as possible, while minimizing the risks of large-scale infection 

and the resultant adverse health consequences.  

 

2. Results 

2.1 Basic model: M infectious persons in one single group gathering of N persons  

Suppose there are N persons in a room with M infectious persons, i.e., there are N-M exposed 

(healthy) persons, with each infectious person making L contacts at random in a time period T, 

and infecting each exposed (healthy) person, with probability p for each contact.  We are 

interested in I, the number of exposed persons newly infected.  The formulae derived in Eq(1) 

and Eq(2) in the Methods section give the distribution of I and E(I), the expected average of I, 

respectively.    

Figure 1a shows the average number of infections E(I) for group size N ranging from 

1 to 100, for time duration (in hours) T = 1, 2, 3, and 4, and for p = 1. Here we have assumed 

that M = 1, i.e., there is only one infectious person, and that this infectious person will make 

one contact every 15 minutes.  As expected, the average number of infected persons increases 

with the number of persons in the room and with T, until E(I) reaches a saturation point. In 

Figure 1a, for each T, the 10% saturation point is indicated with a diamond and the 5% 

saturation point is indicated with a circle.  A 10% saturation point means the lowest N such 

that when N increases by 1, E(I) increases by less than 10%.  Similarly, a 5% saturation point 

means the lowest N such that when N increases by 1, E(I) increases by less than 5%.  When T 

= 1 (L = 4), 10% and 5% saturation occur at N = 9 and 11, respectively; when T = 4 (L = 16), 

10% and 5% saturation points occur at N = 32 and 44, respectively. Table 1a shows the average 

number of infected persons when the size of the group increases from 50 to 500 for time 

durations from one to four hours. 

Table 1b and  Figure 1b-1d show that given the same duration T, as M/N increases, the 

number of new cases, E(I), due to incoming participants to the room who are infectious, also 

increases, until it reaches a peak. For T = 1, this peak occurs at M/N = 30% for N = 50, 100, 

and 500. For T = 2, 3, and 4, this peak occurs at M/N = 20% for N = 50, 100, and 500. 

Subsequent to the peak, E(I) decreases, as the number of exposed becomes smaller as M/N 

increases. When M/N is 100%, there are no exposed persons to be infected.   Given the same 

group size, N, and an infectious percentage, M/N, a smaller T (e.g., T=1) always produces a 

lower infection number, E(I), as compared to a larger T (e.g., T=2, 3, 4).  
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Table 1a. E(I) vs N, when N = 50, 100, and 500, for T = 1, 2, 3, 4, M=1, and p =1. 
No. of People in a 

Room (N) 
E(I)  

T = 1 T = 2 T = 3 T = 4 
50 3.88 7.45 10.74 13.77 
100 3.94 7.72 11.36 14.84 
500 3.99 7.94 11.87 15.76 

 

Table 1b. E(I) vs M/N, when N = 50, 100, and 500, for M/N=20% and 30%, T = 1, 2, 3, 4, 
M=1, and p =1. 

M/N vs N T=1 T=2 T=3 T=4 

N=50; M/N=20% 22.47 32.31 36.63 38.52 

N=100; M/N=20% 44.49 64.24 73.00 76.89 

N=500; M/N=20% 220.70 319.63 363.97 383.85 

N=50; M/N=30% 24.84 32.05 34.14 34.75 

N =100; M/N=30% 49.30 63.88 68.19 69.46 

N=500; M/N=30% 244.96 318.48 340.54 347.16 

 

  
Figure 1a.  E(I) vs N, for T = 1, 2, 3, and 4, M=1, and p =1 (Diamond indicates 10% saturation 
and circle indicates 5% saturation for a given curve). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.02.22282697doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.02.22282697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

Figure 1b.  E(I) vs M/N, for T = 1, 2, 3, and 4, N=50, and p =1. 
 

 

Figure 1c.  E(I) vs M/N, for T = 1, 2, 3, and 4, N=100, and p =1. 
 

 

Figure 1d.  E(I) vs M/N, for T = 1, 2, 3, and 4, N=500, and p =1. 
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2.2 Partition model: M infectious persons in one single indoor meeting with N persons 

partitioned at random into multiple rooms 

We consider three different group gathering sizes, mimicking different real world social 

settings, such as classrooms, social gatherings, and conferences. The formulae derived in the 

Methods section allow us to determine the average number of persons who become infected 

when a single group gathering of size N with M infectious persons is partitioned at random 

into smaller groups and placed in separate rooms.   

Consider a gathering of size N = 50 and the cases where infectious persons number M 

= 5, 10, and 15 amongst these 50 persons, i.e., M/N = 10%, 20%, and 30% respectively; as all 

individuals are in one room, we consider this as partition size 1, i.e. PAR = 1. Next, repeat but 

randomly partition the group of N = 50 into two separate rooms of 25, i.e. PAR = 2, and 

similarly for five separate rooms of 10, i.e. PAR = 5. Finally, for each case calculate E(I), the 

expected number of persons who become infected. The results, together with those of larger 

groups N = 100 and N = 500, are shown in Table 2 (for p = 1) and demonstrate that partitioning 

has a very limited effect in reducing E(I). The greatest reduction in E(I) is achieved when the 

percentage of infectious persons M/N is 30% (Figure 2). E(I) as a proportion of N declines 

slightly as group size N increases but this is highly constrained. Details of the methodology 

can be found in the Methods section, for the case p = 1.  

 

Table 2. The expected number of people becoming infected E(I) for p = 1, T=1, M/N = 10%, 

20% …, 100%, N = 50, 100, 500 and PAR = 1, 2, 5. 
 No. of 

Parti-
tions 

(PAR) 

Partition 
Size 

E(I) for p = 1 
 

  % Infectious (M/N) 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Small 
Group 

Gathering 
N = 50 

1 50 15.21  22.47 24.84 24.24 21.82 18.32 14.16 9.63 4.88 0 
2 25 14.78 21.92 24.32 23.79 21.46 18.05 13.98 9.55 4.87 0 
5 10  13.45 20.20 22.65 22.37 20.40 17.37 13.66 9.45 4.86 0 

Medium 
Group 

Gathering 
N = 100 

1 100 30.04 44.49 49.30 48.18 43.44 36.50 28.25 19.22 9.74 0 
2 50 29.63 43.96 48.79 47.75 43.09 36.24 28.05 19.10 9.71 0 
5 20 28.38 42.35 47.23 46.40 42.02 35.46 27.61 18.94 9.69 0 

Large 
Group 

Gathering 
N = 500 

1 500 148.72 220.70 244.96 239.72 216.37 181.99 140.96 95.96 48.65 0 
2 250 148.33 220.19 244.47 239.30 216.03 181.72 140.76 95.82 48.56 0 
5 100 147.14 218.66 242.99 238.02 215.00 180.93 140.17 95.42 48.43 0 
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Figure 2. The expected number of people becoming infected for p = 1, T=1, M/N = 10%, 20%, 

…, 100%, N = 50, 100, 500 and PAR = 1, 2, 5. 

 

2.3 Average number of people getting infected in an indoor setting under different values 

of infection probability p  

Our model allows us to explore how E(I) changes for different values of infection probability 

p, reflecting different social, environmental, and public health measures. Tables 3a-3b and 

Figures 3a-3b show the expected number of people infected for different group size N, partition 

size PAR, infection probability p and ratios of infectious persons to total group size M/N, when 

the duration of the gathering is 1 hour (T = 1). Peak E(I)/N is relatively insensitive to group 

size and number of partitions. Peak E(I) is [moderately] sensitive to M/N: for N = 100, PAR = 

1, peak E(I) occurs at M/N = 50% for p = 0.1 and p = 0.3, M/N = 30% for p = 0.5 and p = 1. 

The rate of change in E(I) peaks when p = 0.5, for all group sizes and all number of partitions. 

 

Table 3a. The expected number of people infected E(I) for p = 0.1, 0.3, 0.5; T = 1; M/N = 10%, 
30%, 50%; N = 50, 100, 500 and PAR = 1, 2, 5. 

 No. of 
Partitions 

(PAR) 

Partition 
Size 

E(I) for p = 0.1 E(I) for p = 0.3 E(I) for p = 0.5 
% Infectious (M/N) % Infectious (M/N) % Infectious (M/N) 

10% 30% 50% 10% 30% 50% 10% 30% 50% 
Small Group 

Gathering 
N = 50 

1 50 1.80 4.04 4.62 5.20 10.79 11.47 8.35 16.08 16.04 
2 25 1.79 3.99 4.52 5.15 10.63 11.23 8.21 15.80 15.70 
5 10 1.76 3.86 4.26 4.97 10.13 10.57 7.78 14.92 14.79 

Medium Group 
Gathering 

N = 100 

1 100 3.57 7.99 9.15 10.29 21.37 22.75 16.50 31.87 31.84 
2 50 3.56 7.95 9.06 10.23 21.21 22.51 16.37 31.60 31.51 
5 20 3.53 7.82 8.77 10.06 20.73 21.78 15.97 30.75 30.53 

Large Group 
Gathering 

N = 500 

1 500 17.68 39.66 45.40 51.00 106.02 112.99 81.76 158.20 158.26 
2 250 17.67 39.61 45.31 50.94 105.86 112.75 81.63 157.93 157.94 
5 100 17.64 39.48 45.02 50.78 105.39 112.03 81.24 157.11 156.97 

 

 

T
hreshold (M

/N
) = 0.3  
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Table 3b. The expected number of people infected E(I) for p = 0.7, 0.9, 1.0, T = 1, M/N = 10%, 
30%, 50%, N = 50, 100, 500 and PAR = 1, 2, 5. 

 No. of 
Partitions 

(PAR) 

Partition 
Size 

E(I) for p = 0.7 E(I) for p = 0.9 E(I) for p = 1 
% Infectious (M/N) % Infectious (M/N) % Infectious (M/N) 

10% 30% 50% 10% 30% 50% 10% 30% 50% 
Small Group 

Gathering 
N = 50 

1 50 11.25 20.24 19.07 13.94 23.49 21.08 15.21 24.84 21.82 
2 25 11.01 19.84 18.70 13.58 23.00 20.72 14.78 24.32 21.46 
5 10 10.26 18.60 17.67 12.45 21.46 19.64  13.45 22.65 20.39 

Medium Group 
Gathering 

N = 100 

1 100 22.24 40.13 37.90 27.54 46.60 41.95 30.04 49.30 43.44 
2 50 22.01 39.74 37.54 27.20 46.13 41.59 29.63 48.79 43.09 
5 20 21.31 38.56 36.46 26.14 44.68 40.50 28.38 47.23 42.02 

Large Group 
Gathering 

N = 500 

1 500 110.16 199.24 188.58 136.37 231.51 208.89 148.72 244.96 216.37 
2 250 109.93 198.87 188.23 136.04 231.05 208.54 148.33 244.47 216.03 
5 100 109.26 197.73 187.16 135.04 229.67 207.48 147.14 242.99 215.00 

    

 
Figure 3a. The expected number of people infected E(I) for p = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 (y-
axis), under T = 1; group size N = 50, 100, 500; PAR = 1; M/N = 10%, 30%, 50% 
 

 
Figure 3b. The expected number of people infected E(I) for M/N = 10%, 30%, 50% (y-axis), 
under T = 1; group size N = 50, 100, 500; PAR = 1; p = 0.1, 0.3, 0.5, 0.7, 0.9 
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2.4 The probability of infection p under different interaction activities and public health 

interventions  

Table 4a shows the probability of infection p under four different indoor "activities", namely: 

(1) neither exposed persons nor infectious persons speak (i.e. they only breathe passively), (2) 

exposed persons do not speak but infectious persons do, (3) exposed persons speak but 

infectious persons do not speak, and (4) both exposed persons and infectious persons speak. 

Each scenario is considered under 8 different public health interventions (PHIs), reflecting 

different parameter values for Masking Factor (MF), Vaccination Factor (VAF), Ventilation 

Factor (VEF), and Variant Infectivity Factor (CVF). For each of the resultant 32 scenarios, the 

probability of infection, p, and the relative reduction in p (i.e. the ratio of p under that particular 

scenario to p under the applicable baseline scenario), p-ratio, are shown.  For each activity, the 

first row shows the baseline scenario without any public health intervention, namely all persons 

do not wear masks (MF = 1), all persons have not been vaccinated (VAF = 1), the room has 

minimum mechanical ventilation (VEF = 1), the variant is Omicron (CVF = 1), and one “quanta” 

of the virus is inhaled (Quantum = 1). Subsequent rows reflect different PHIs and combinations 

of PHI, with scenarios h and k reflecting a hypothetical new SARS-CoV-2 variant that is 10x 

more transmissible than Omicron.  

Our results show that for non-speaking activities, the probability of infection p can be 

substantially reduced from the baseline scenario (Scenario 1a) by 87.75% when three PHIs – 

masking, three-jab vaccination, and maximum ventilation – are implemented (Scenario 1e). 

The same measures lead to similar reductions in p of 78.39% from the baseline scenario 

(Scenarios 3a, 3e) in situations where exposed persons speak but infectious persons do not 

speak.  

However, the effectiveness of these PHIs is severely compromised when infectious 

persons speak. When exposed persons do not speak but infectious persons do, the reduction in 

p from the baseline scenario (Scenario 2a) drops to 35.37% (Scenario 2e), while when both 

exposed persons and infectious persons speak, the reduction from the baseline scenario 

(Scenario 4a) drops to 5.33% (Scenario 4e), such that neither individual nor a combination of 

public health interventions lead to any meaningful reduction in the probability of infection.  

We also consider the effect of individual PHIs on the probability of infection. Their 

ordinal ranking is consistent across activities, with maximum mechanical ventilation (MaxMV) 

having the greatest effect on reducing p, followed by masking (Mask), and vaccination (VAC). 

As above, these have a meaningful effect only when infectious persons do not speak. When 

infectious persons speak, then even MaxMV reduces p by only 1.83% (Scenario 2d) from the 
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baseline scenario (Scenario 2a) and when both infectious persons and exposed persons speak, 

then no PHI is effective (Scenarios 4a, 4d).  

 If variant infectivity (CVF) is increased ten-fold from Omicron, then even in the most 

favorable situation of infectious and exposed persons doing nothing but breathing, the strongest 

PHI combination (Mask plus Vac plus MaxMV) reduces p by just 12.48% (Scenario 1h), as 

compared to the Baseline (Scenario 1a) with no PHIs. In all other situations, PHIs cease to have 

any meaningful impact in reducing infections (Scenarios 2h, 3h, and 4h). 
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Table 4a. The p-ratio and reduction in p for different situations and public health interventions  

1.  Scenario 1: Exposed Persons and Infectious Persons – Both No Speaking  

Public Health Interventions (PHIs) AFE AFI MF VAF VEF CVF 
Viral Load 
(Quanta) p p-ratio 

Reduction 
in p due to PHIs 

1a. Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63 1.00 
 

1b. Mask 1.00 1.00 0.41 1.00 1.00 1.00 0.41 0.34 0.53 47.00% 

1c. Vac 1.00 1.00 1.00 0.64 1.00 1.00 0.64 0.47 0.75 25.47% 

1d. MaxMV 1.00 1.00 1.00 1.00 0.31 1.00 0.31 0.27 0.42 57.83% 

1e. Mask+Vac+MaxMV 1.00 1.00 0.41 0.64 0.31 1.00 0.08 0.08 0.12 87.75% 

1f. Mask+Vac+MedMV 1.00 1.00 0.41 0.64 0.51 1.00 0.13 0.12 0.20 80.40% 

1g. Mask+Vac+NatV 1.00 1.00 0.41 0.64 0.82 1.00 0.21 0.19 0.30 69.70% 

1h. Mask+Vac+MaxMV+NewVariant 1.00 1.00 0.41 0.64 0.31 10.00 0.81 0.55 0.88 12.48% 

1i. Outdoor 1.00 1.00 1.00 1.00 0.03 1.00 0.03 0.03 0.05 94.65% 

1j. Mask+Vac+Outdoor 1.00 1.00 0.41 0.64 0.03 1.00 0.01 0.01 0.01 98.59% 

1k. Mask+Vac+Outdoor+NewVariant 1.00 1.00 0.41 0.64 0.03 10.00 0.09 0.09 0.14 86.47% 
 

2.    Scenario 2: Exposed Persons No Speaking and Infectious Persons Speaking  

Public Health Interventions (PHIs) AFE AFI MF VAF VEF CVF 
Viral Load 
(Quanta) p p-ratio 

Reduction 
in p due to PHIs 

2a. Baseline 1.00 12.90 1.00 1.00 1.00 1.00 12.90 1.00 1.00 
 

2b. Mask 1.00 12.90 0.41 1.00 1.00 1.00 5.26 0.99 0.99 0.52% 

2c. Vac 1.00 12.90 1.00 0.64 1.00 1.00 8.22 1.00 1.00 0.03% 

2d. MaxMV 1.00 12.90 1.00 1.00 0.31 1.00 4.00 0.98 0.98 1.83% 

2e. Mask+Vac+MaxMV 1.00 12.90 0.41 0.64 0.31 1.00 1.04 0.65 0.65 35.37% 

2f. Mask+Vac+MedMV 1.00 12.90 0.41 0.64 0.51 1.00 1.71 0.82 0.82 18.15% 

2g. Mask+Vac+NatV 1.00 12.90 0.41 0.64 0.82 1.00 2.74 0.94 0.94 6.44% 

2h. Mask+Vac+MaxMV+New Variant 1.00 12.90 0.41 0.64 0.31 10.00 10.39 1.00 1.00 0.00% 

2i. Outdoor 1.00 12.90 1.00 1.00 0.03 1.00 0.44 0.36 0.36 64.16% 

2j. Mask+Vac+Outdoor 1.00 12.90 0.41 0.64 0.03 1.00 0.12 0.11 0.11 89.11% 

2k.Mask+Vac+Outdoor+NewVariant 1.00 12.90 0.41 0.64 0.03 10.00 1.15 0.68 0.68 31.56% 
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3.   Scenario 3: Exposed Persons Speaking and Infectious Persons No Speaking  

Public Health Interventions (PHIs) AFE AFI MF VAF VEF CVF 
Viral Load 
(Quanta) p p-ratio 

Reduction 
in p due to PHIs 

3a. Baseline 2.82 1.00 1.00 1.00 1.00 1.00 2.82 0.94 1.00 
 

3b. Mask 2.82 1.00 0.41 1.00 1.00 1.00 1.15 0.68 0.73 27.31% 

3c. Vac 2.82 1.00 1.00 0.64 1.00 1.00 1.80 0.83 0.89 11.30% 

3d. MaxMV 2.82 1.00 1.00 1.00 0.31 1.00 0.87 0.58 0.62 38.03% 

3e. Mask+Vac+MaxMV 2.82 1.00 0.41 0.64 0.31 1.00 0.23 0.20 0.22 78.39% 

3f. Mask+Vac+MedMV 2.82 1.00 0.41 0.64 0.51 1.00 0.37 0.31 0.33 66.89% 

3g. Mask+Vac+NatV 2.82 1.00 0.41 0.64 0.82 1.00 0.60 0.45 0.48 52.05% 

3h.Mask+Vac+MaxMV+NewVariant 2.82 1.00 0.41 0.64 0.31 10.00 2.27 0.90 0.95 4.63% 

3i. Outdoor 2.82 1.00 1.00 1.00 0.03 1.00 0.10 0.09 0.10 90.17% 

3j. Mask+Vac+Outdoor 2.82 1.00 0.41 0.64 0.03 1.00 0.03 0.02 0.03 97.35% 

3k.Mask+Vac+Outdoor+NewVariant 2.82 1.00 0.41 0.64 0.03 10.00 0.25 0.22 0.24 76.30% 

4.  Scenario 4: Exposed Persons and Infectious Persons – Both Speaking  

Public Health Interventions (PHIs) AFE AFI MF VAF VEF CVF 
Viral Load 
(Quanta) p p-ratio 

Reduction 
in p due to PHIs 

4a. Baseline 2.82 12.90 1.00 1.00 1.00 1.00 36.38 1.00 1.00 
 

4b. Mask 2.82 12.90 0.41 1.00 1.00 1.00 14.84 1.00 1.00 0.00% 

4c. Vac 2.82 12.90 1.00 0.64 1.00 1.00 23.17 1.00 1.00 0.00% 

4d. MaxMV 2.82 12.90 1.00 1.00 0.31 1.00 11.28 1.00 1.00 0.00% 

4e. Mask+Vac+MaxMV 2.82 12.90 0.41 0.64 0.31 1.00 2.93 0.95 0.95 5.33% 

4f. Mask+Vac+MedMV 2.82 12.90 0.41 0.64 0.51 1.00 4.81 0.99 0.99 0.81% 

4g. Mask+Vac+NatV 2.82 12.90 0.41 0.64 0.82 1.00 7.73 1.00 1.00 0.04% 

4h. Mask+Vac+MaxMV+NewVariant 2.82 12.90 0.41 0.64 0.31 10.00 29.31 1.00 1.00 0.00% 

4i. Outdoor 2.82 12.90 1.00 1.00 0.03 1.00 1.25 0.71 0.71 28.61% 

4j. Mask+Vac+Outdoor 2.82 12.90 0.41 0.64 0.03 1.00 0.33 0.28 0.28 72.24% 

4k. Mask+Vac+Outdoor+NewVariant 2.82 12.90 0.41 0.64 0.03 10.00 3.25 0.96 0.96 3.87% 
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Table 4b. E(I) for different activities and public health interventions, for fixed parameter values of group size N, duration T and ratio of infectious 

persons to total persons M/N 

1.  Scenarios for Exposed-Breathing and Infectious-Breathing Only 
Public Health Interventions (PHIs) AFE AFI MF VAF VEF CVF Viral Load 

(Quanta) 
p E(I) w. N=50 (500), 

M/N=0.3, T=1 
E(I) w. N=50 (500), 

M/N=0.5, T=1 
1a. Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.632 18.94 (186.38) 18.17 (179.60) 
1e. Mask+Vac+MaxMV 1.000 1.000 0.408 0.637 0.310 1.000 0.081 0.077 0.30 (2.93) 0.35 (3.48) 
 
2.    Scenarios for Exposed-Breathing and Infectious-Speaking Only 
2a. Baseline 1.000 12.90 1.000 1.000 1.000 1.000 12.90 1.000 24.8 (244.96) 21.8 (216.37) 
2e. Mask+Vac+MaxMV 1.000 12.90 0.408 0.637 0.310 1.000 1.039 0.646 19.21 (189.11) 18.37 (181.55) 
3.   Scenarios for Exposed-Speaking and Infectious-Breathing Only 
3a. Baseline 2.820 1.000 1.000 1.000 1.000 1.000 2.820 0.940 24.05 (237.09) 21.40 (212.06) 
3e. Mask+Vac+MaxMV 2.820 1.000 0.408 0.637 0.310 1.000 0.227 0.203 7.72 (75.82) 8.49 (83.57) 
4.  Scenarios for Exposed-Speaking and Infectious-Speaking Only 
4a. Baseline 2.820 12.90 1.000 1.000 1.000 1.000 36.39 1.000 24.8 (244.96) 21.8 (216.37) 
4e. Mask+Vac+MaxMV 2.820 12.90 0.408 0.637 0.310 1.000 2.931 0.947 24.15 (238.04) 21.44 (212.59) 
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3. Discussion and Conclusions 
 
3.1 Time spent indoors 

For a given number of infectious persons M in a room with a total of N persons, the expected 

number of infected persons E(I) always increases with time T spent in the room. All other 

factors being equal, shorter gatherings are preferred.  

The incremental increase in E(I) for an additional period varies with M/N. From Figures 

1b-1d (reflecting p = 1), for T = 1, E(I) initially increases with M/N until E(I) peaks at M/N = 

30% and then decreases for higher M/N. Dividing the curve into 3 sections – a left-hand section 

where E(I) is increasing, peak E(I), and a right-hand section where E(I) is decreasing – it can 

be seen that as T increases, the left-hand section shifts up and flattens, peak E(I) increases and 

shifts leftwards (i.e. occurs at lower values of M/N), and the right-hand section more rapidly 

approaches linear decline. As meetings become longer, there is less sensitivity as to whether a 

single infectious person or multiple infectious persons are initially present because the increase 

in exposure time tends towards saturation, such that everyone will be infected either way. This 

shifts policy emphasis; it is always desirable to have fewer infectious persons in a room but, 

whereas in shorter meetings there is benefit in reducing M/N, in longer meetings most benefit 

occurs from ensuring M/N = 0. As a consequence, longer meetings would benefit from more 

stringent control measures, such as prior PCR testing of individuals rather than rapid antibody 

tests (RAT), to ensure that M = 0, as well as smaller groups to limit the probability of a single 

infectious person entering the room – a risk that increases with group size.  

Finally, the impact of N on E(I) is highly constrained which can be seen visually from 

the similarity across Figures 1b, 1c and 1d for N = 50, 100 and 500 respectively.  

 

3.2 Group partitioning  

The effect of group partitioning or restricting group sizes is very modest. Referring to Table 

3a, we illustrate this for N = 100 and p = 0.5. For M/N = 30%, E(I) falls from 31.87 for 1 

partition (PAR = 1) to 30.75 when the group is divided into 5 partitions (PAR = 5), i.e., an 

absolute decrease of 1.12 or relative decrease of 3.51%. Intuitively, the effect is limited because 

partitioning does not directly stop infection. Instead, the effect is achieved via reducing the 

probability of finding a new person to infect for a given total group size: more partitions mean 

fewer people within each partition and hence a reduced maximum number of people that a 

given infectious person can infect, so saturation within a partitioned group occurs more 

quickly.  
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 For cases where the infected proportion of the group is low, reaching saturation is 

relatively unlikely, so partitioning has little effect. Higher p causes saturation to be more likely, 

increasing the effect of partitioning. Thus, for N = 100 and M/N = 10%, the relative decrease 

in E(I) for PAR = 1 to PAR = 5 is 1.12% for p = 0.1 but increases to 5.53% for p = 1. 

 For cases where the infected proportion of the group is already high, reaching saturation 

is relatively likely, so partitioning again has little effect. Since lower p causes saturation to be 

less likely, this increases the effect of partitioning. Thus, for N = 100 and M/N = 50%, the 

relative decrease in E(I) for PAR = 1 to PAR = 5 is 4.15% for p = 0.1 but decreases to 3.27% 

for p = 1. 

 Notwithstanding the limited effectiveness of restricting group size, the use of such 

measures should consider the phase of infection cycle and probability of infection. For 

example, for a highly infectious variant (p à 1), restricting group size is relatively more 

effective during the early phases of an outbreak, whereas for a less infectious variant (p à 0), 

restricting group size is relatively more effective during later phases.  

 In the real-world, restrictions on group size have been amongst the most widely 

implemented PHIs to control the pandemic. Several studies have suggested that such measures 

have been effective in reducing transmission, with restrictions on small groups being more 

effective than on large groups. For instance, Sharma et al. (2021) found that restricting 

gatherings to 2 people was considerably more effective than restricting gatherings to 10 people, 

which in turn was slightly more effective than restricting gatherings to 30 people, with stricter 

mask wearing policies being more effective than restricting gatherings to 10 people.41 Haug et 

al. (2020) found that the most effective PHI was cancelling small gatherings (including 

gatherings of up to 50 people, closures of shops and restaurants, and mandatory home 

working).42 There are several reasons for the apparent discrepancy between these findings and 

our model. Most importantly, the studies do not distinguish between frequency and per event 

impact: even a very modest effect repeated many times can have a considerable aggregate 

impact. Although M/N, the proportion of individuals infected early in an outbreak is generally 

small (<0.01), meetings seldom occur with social distancing in place, so there can be a large 

impact as infection spreads through sequential meetings at low N. Additionally, the restrictions 

themselves (especially restricting gatherings to 2 people) are likely to affect people’s behavior 

and reduce the number of gatherings (which is outside the scope of this model’s one-shot 

structure). 

Real-world studies also suggest that the distribution of transmission follows an 

exponential distribution rather than a uniform distribution. For example, Laxminarayan et al. 
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(2020) estimated that 5% of infected individuals accounted for 80% of cases in the Indian states 

of Tamil Nadu and Andhra Pradesh and Adam et al. (2020) found that 19% of cases caused 

80% of local transmissions in Hong Kong.43,44 “Super-spreaders” likely reflect a combination 

of biological, behavioral and environmental factors. Interpreted in the framework of this model, 

super-spreaders may exhibit much greater viral shedding (it has been suggested that individuals 

infected by Omicron may exhale levels of virus 1000 times higher than the levels of Alpha or 

Delta strains45) and be part of larger and more numerous partitions than typical individuals. 

Hence, earlier interventions that restrict group size N and movement (for example, 

geographically isolating areas or quarantining), may act to mitigate such cases and significantly 

reduce transmission, though relative effectiveness may decline as infection rates increase. 

 

3.3 Speaking interactions 

Table 4a shows that speaking has a large effect on the probability of infection p, especially if 

infectious persons speak. In the baseline scenario in which neither infectious persons nor 

exposed persons speak (Scenario 1a), viral load quantum = 1 (by definition) and p = 0.63. By 

comparison, viral load = 2.82 and p = 0.94 when only exposed persons speak (Scenario 3a) and 

viral load = 12.90 and p = 1.00 when only infectious persons speak (Scenario 2a). Since the 

effect of exposed persons speaking and the effect of infectious persons speaking interact 

multiplicatively, when both exposed and infectious persons speak (Scenario 4a), viral load = 

36.38 and p = 1.00.  

 Under maximum PHI (masking, vaccination, and maximum ventilation), when both 

infectious persons and exposed persons speak (Scenario 4e), viral load is reduced to 2.93 and 

p is reduced to 0.95. The reduction in viral load is much larger than the reduction in infection 

probability, reflecting the viral load being far above the minimum needed to cause infection. 

This model treats infection as a binary variable but in practice there may be benefits to lowering 

the viral load, though the relationship between viral load and infection probability-severity is 

not yet definitively understood.12 

For Omicron, infectious persons speaking essentially negates maximum PHI (viral 

loads and infection probability under Scenario 3e are similar to those of no speaking and no 

PHI under Scenario 1a) and both infectious and exposed persons speaking overwhelms 

maximum PHI (viral loads are approximately 3 times higher and probability of infection is 

approximately 50% higher under Scenario 4e than no speaking and no PHI under Scenario 1a).  

This motivates widespread frequent Rapid Antigen Testing (RAT). Even with 

sensitivity rates of 70%, RAT and self-isolation (with considerably less than 100% compliance) 
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is likely to mitigate infection more than maximum levels of PHI in conversational settings (p 

declines from 1.00 with no PHI under Scenario 4a to 0.95 with maximum PHI under Scenario 

4e). If public health authorities seek to control the spread of SARS-CoV-2, this may be the 

only alternative to remote living. The scope and appeal of restricting in-person conversation 

seems limited; conversation is intrinsic to human society and the nature and purpose of most 

in-person gatherings. Modern society is ill-adapted for monastic silence. For the relatively few 

settings in which communication is naturally one-way – for example, meet-and-greet 

receptions and lecturers/teachers in lecture halls/classrooms – it seems prudent for the speaking 

individuals to take additional precautions given the strong asymmetrical effect of an infectious 

person speaking, but as a policy, it seems highly questionable whether PHIs to permit 

gatherings provided verbal communication is one-way would be broadly practical or even 

desirable (in many cases, this would defeat the point of gathering). 

 

3.4 Public health interventions and consideration of outdoor gatherings and potential 

future high-infectivity variants  

As PHIs – masking, vaccination, and ventilation – combine multiplicatively, the greatest 

reduction in probability of infection p comes when all three measures are introduced. The most 

effective individual PHI is maximum ventilation (MaxMV), followed by wearing masks and 

then by vaccination. When there is no speaking (Scenario 1), baseline infection probability is 

0.632 (Scenario 1a), falling to 0.077 under maximum PHI (scenario 1e), 0.267 under MaxMV 

(Scenario 1d), 0.335 under masking (Scenario 1b), and 0.471 under vaccination (Scenario 1c). 

As discussed previously, all interventions are greatly affected by speaking but this ordinal 

ranking is preserved (Scenarios 2-4). In the Supplementary Materials, we consider the 

threshold value of p such that exponential growth is avoided early in an infection cycle; for the 

assumptions here (notably T = 1), threshold p is approximately 0.3. 

Improving ventilation for indoor environments warrants greater public health attention. 

This reduces infection probability by more than face masks or vaccinations and its effect is 

incremental to other PHIs. A similar alternative is the use of air filtration systems, such as 

portable High Efficiency Particulate Air (HEPA) cleaners,12 though efficacy will depend on 

ventilation in the sense of air in the room being well mixed. Addressing ventilation is also 

likely less contentious, since this avoids many issues related to not wearing face masks or being 

vaccinated, and becomes even more important in the absence of masking or vaccination.  

Switching from indoors venues to outdoors (Outdoor) has an effect similar to the impact 

of conversing. Baseline infection probability with no speaking and no PHI is 0.632 (Scenario 
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1a); with speaking and no PHI, infection probability increases to 1.00 (Scenario 4a); but with 

speaking and meeting outdoors, infection probability falls to 0.714 (Scenario 4i). With face 

masks and vaccination, meeting outdoors further reduces infection probability to 0.278 

(Scenario 4j). Clearly, this is subject to weather and climate but when and where appropriate, 

for example in sub-tropical/tropical regions or in warmer months in temperate regions, moving 

outdoors is a quick, effective and low-cost measure. 

Face masks are relatively affordable and now widely available but have met with 

resistance from a significant proportion of Western society and mandatory masking may be 

sufficiently publicly unpopular as to prevent the re-introduction of such measures.  

Vaccines play a crucial role in mitigating the severity of illness but are less effective in 

preventing infection relative to other measures. Additionally, in the developing world, the cost 

of vaccines and limited supporting infrastructure mean vaccination may not be an option, whilst 

in Western countries, there are significant segments of society unwilling to be vaccinated. 

Lastly, we observe that a hypothetical new variant with infectivity an order of 

magnitude greater than Omicron would pose serious challenges to PHIs. In a no speaking 

setting, Omicron has an infection probability of 0.63 with no PHI (Scenario 1a), whilst this 

hypothetical new variant would have an infection probability of 0.55 under maximum PHI 

(masking, vaccination, and maximum ventilation; Scenario 1h), assuming the practical 

challenges discussed above can be overcome. But if both infectious persons and exposed 

persons speak, then even moving outdoors will be insufficient (p = 0.96 under Scenario 4k). 

 

3.5 Limitations 

Practical application of the model would benefit from refining parameterization and the 

introduction of additional parameters, for example to distinguish between different types of 

masks or vaccines. The model structure can be extended to more accurately capture real-world 

dynamics.  One important dimension is heterogeneity, for example to reflect different levels of 

contagiousness and susceptibility as well as non-uniform population distancing and contact 

times. Additionally, the model could be extended from a “one-shot” structure, which ends when 

people leave a room, to a “multi-shot” structure, which considers people leaving a room and 

entering new rooms.  

  

3.6 Conclusions 

We have proposed a multinomial probabilistic model to capture infection dynamics on a 

bottom-up individual basis. This helps to make the model relatively straightforward to 
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understand and easy to adjust for variations in parameters or additional parameters. As 

discussed in the Limitations section, this framework can be further developed but we believe 

it can provide policy-makers with quick and intuitive guidance to assist in scenario planning. 

This model underscores the immense practical challenges of eliminating SARS-CoV-

2, as high SARS-CoV-2 infectivity greatly raises the cost of allowing even a single infectious 

person to come into contact with uninfected individuals. In this regard, whilst frequent mass 

testing and self-isolation can help to control outbreaks, as numbers increase, the probability of 

avoiding such instances may become untenably small.  

Improving ventilation – whether by making physical alterations, moving meetings 

outdoors or using air filtration systems – should be given much greater attention than at present. 

Compared to other public health interventions, ventilation can have a larger impact on reducing 

infection, is incrementally beneficial (not mutually exclusive), and is likely to be less 

challenged in implementation. This is particularly relevant as societies seek to resume normal 

human interaction while controlling the spread of SARS-CoV-2, as our model also suggests 

that in-person conversation has an order of magnitude impact on infection probability (in 

scenarios where this increase is not constrained by the new infection probability approaching 

1) and on viral load.  

Finally, our model suggests partitioning groups has a limited impact on reducing 

transmission within a gathering. To the extent that studies suggest restrictions on group size 

have had an impact, this suggests a large hidden cost since the channel is not via reduced spread 

per event (as commonly perceived) but rather by affecting the number of gatherings.  

 

4. Methods 

4.1 Basic model: M infectious persons in a room with N total persons, with each infectious 

person making L contacts at random in a time period T, and infecting each exposed 

(healthy) person with probability p for each contact  

Suppose we have a room of N persons, M infectious persons, and N-M exposed (healthy) 

persons, labelled 1, 2, …, N-M.  The M infectious persons circulate among the N persons in a 

room, conducted over a duration T, and each infectious person will make L contacts with the 

others in the room at random, with the possibility of meeting another infectious person or with 

an exposed person more than once. Assuming infectious individuals will infect any exposed 

person with probability p each time a contact is made, what is E(I), the expected number of I, 

the number of exposed persons infected? 
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According to the US CDC25, individuals who are within six feet of an infectious person, 

via a face-to-face contact, for a total of 15 minutes or more, will be at risk of infection. Hence, 

we selected 15 minutes as a time of interest.  Hence, in a 1-hour meeting event every infectious 

person entering a room will have an opportunity of contacting four persons.  Therefore, we 

assume if one infectious person moves around the room and talks to different people freely, at 

random, every 15 minutes, he will make four personal contacts.  The infectious person may 

talk to the same person in the room repeatedly.  We assume that the infectious person will 

infect each person with a probability p for every single personal contact, lasting for about 15 

minutes.  

 

4.1.1 Expected number of exposed subjects infected 

Now we compute the probability of no one being infected after one contact. This single contact 

is equally likely to be caused by any of the M infectious persons, i.e., it is caused by infectious 

person 1 with the probability 1/M.  The infectious person 1 will cause zero infection if he/she 

meets another infectious person, with the probability (M-1)/(N-1), or if he/she meets an 

exposed (healthy) person, with probability (N-1-(M-1))/(N-1), and does not infect the exposed 

person, with the probability (1-p).  So the infectious person 1 not causing any infection is given 

by (M-1)/(N-1) + (N-M)/(N-1) ´ (1-p).  Due to the independence between different infectious 

persons, the infectious person 2, 3, ..., M will not cause any new infection with the same 

probability.  So in one contact the probability that no new infection is caused is as follows: 

  

𝑝! =
1
𝑀%

𝑀 − 1
𝑁 − 1 +

𝑁 −𝑀
𝑁 − 1

(1 − 𝑝)+ +⋯+
1
𝑀%

𝑀 − 1
𝑁 − 1 +

𝑁 −𝑀
𝑁 − 1

(1 − 𝑝)+ 

=
𝑀 − 1
𝑁 − 1 +

𝑁 −𝑀
𝑁 − 1

(1 − 𝑝) 

The probability of each of the N-M exposed (healthy) persons being infected should be 

the same as follows:  

𝑝" =
1 − 𝑝!
𝑁 −𝑀 

 

Then we can use a multinomial distribution to determine how many of those exposed 

to SARS-CoV-2 are getting productively infected. In each of the ML contacts, we have N-M+1 

outcomes: Exposed person 1 gets infected with probability 𝑝", exposed person 2 gets infected 

with probability 𝑝",…, exposed person (N-M) gets infected with probability 𝑝", whilst no one 
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gets infected with probability 𝑝!. Note that here we consider only the infections obtained via 

this contact, without considering whether the exposed person has gotten infected before or not. 

Next, we have a multinomial (𝑀𝐿, 𝑝!, 𝑝", . . . , 𝑝") distribution. Let 𝑋! be the number of 

times out of the ML contacts that no one gets infected, 𝑋# be the number of times the exposed 

person j is infected, for j = 1,…, N-M. Then we have 

 

𝑃(𝑋! = 𝐿!, 𝑋" = 𝐿",… ,𝑋%&' = 𝐿%&') =
('))!

)!!)"!⋯)#$%!
𝑝"')&)!𝑝!)!          Eq(1) 

 

Now the number of exposed persons infected is ∑ 𝐼𝑛𝑑(𝐿# > 0)#-!  where 𝐼𝑛𝑑(	) is the 

indicator function. The expected number of people getting infected is: 

𝐸(𝐼) = ∑ ; ('))!
)!!⋯)#$%!

𝑝"')&)!𝑝!)! ∑ 𝐼𝑛𝑑(𝐿# > 0)#-! <)!.⋯.)#$%/')                                  Eq(2)                                   

  

Now we simplify Eq(2) for computational purpose. We separate the situations 

according to the different values of 𝐼.  Let Pi = ℙ(I=i). 

 

First, consider the situation, when 𝐿" = ⋯ = 𝐿%&' = 0 . There is only one 

permutation, i.e.,  𝐿! = 𝑀𝐿, 𝐿" = ⋯ = 𝐿%&' = 0 that satisfies this condition. From Eq(1),  

𝑃! = ℙ(𝐿! = 𝑀𝐿, 𝐿" = ⋯ = 𝐿%&' = 0) 

=	(𝑝!)') 

 

Second, consider the situation, when 𝐿! = 𝑀𝐿 − 𝑗, 𝐿" = 𝑗, 𝐿0 = ⋯ = 𝐿%&' = 0, 

From Eq(1), ℙ(𝐿! = 𝑀𝐿 − 𝑗, 𝐿" = 𝑗, 𝐿0 = ⋯ = 𝐿%&' = 0) = ('))!
(')&#)!#!

𝑝"#𝑝!')&# = 

?')# @ 𝑝"
#𝑝!')&# 

 
Hence , summing over the possible values of j,  

𝑃"=∑ ?')# @ 𝑝"
#𝑝!')&#')

#/"  

= A
(𝑀𝐿)!
𝐿!! 𝐿"!

𝑝"')&)!𝑝!)!
)!.)"/')

− 𝑃! 

= (𝑝" + 𝑝!)') − 𝑃! 

 

Then, given that ℙC𝐿1 ≠ 0	𝑎𝑛𝑑	𝐿# = 0	𝑓𝑜𝑟	𝑗 ≠ 𝑘J = 𝑃" for all ks. 
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Now, consider the situation, when 𝐿" ≠ 0,⋯ , 𝐿1 ≠ 0, 𝐿1." = ⋯ = 𝐿%&' = 0, 

𝑃1 = ℙ(𝐿" ≠ 0,⋯ , 𝐿1 ≠ 0, 𝐿1." = ⋯ = 𝐿%&' = 0) 

= A
(𝑀𝐿)!

𝐿!! 𝐿"!⋯ 𝐿1!
𝑝"')&)!𝑝!)!

)!.⋯.)&/')

− 𝑃! 

= (𝑘𝑝" + 𝑝!)') − 𝐶1"𝑃1&" −⋯− 𝐶11𝑃! 

for 1 < 𝑘 ≤ 𝑚𝑖𝑛(𝑀𝐿,𝑁 −𝑀) 
 

If 𝑀𝐿 < 𝑁 −𝑀, at most ML people will get infected, hence, 𝑃# = 0 for 𝑗 > 𝑀𝐿. 

The expected infection number is: 

𝐸(𝐼) =A𝑃1 × 𝐶%&'1 × 𝑘
1

 

 
4.1.2 Partition model: M infectious persons in one single group gathering of N persons, 

partitioned at random into R multiple rooms 
When computing the expected number of exposed subjects infected for the partition model, we 

assume that each of the M infectious persons are equally likely to be in each of the R rooms 

and enumerate the different cases of how the M infectious persons are distributed in these R 

rooms. For example, suppose there are 5 rooms, the probability of each infectious person in 

each room is 1/5.  If the number of infectious people is 10, then the probability that all the 10 

infectious people are in one room is 5 × (1/5)"! = 1/52. 

To compute the expected number of exposed subjects infected, we compute the 

probabilities of all the enumerated cases, and the expected number of exposed subjects infected 

in each case. Then we can use the law of total expectation to get the result. 

 
4.1.3 Probability of infection p 
 
Our goal is to find the probability p that an exposed person will get infected when he/she is in 

contact with an infectious person.  We want to factor in different scenarios/public health 

measures, such as (1) the activities conducted by the exposed person, and the infectious person, 

(2) masking, (3) vaccination, (4) ventilation, and (5) variant infectivity. 

We start with Eq(3), developed in Buonanno et al.15, using a modified Wells-Riley 
equation: 

p = 1 - 𝑒&34 ∫ 6(7)87'
!                                                    Eq(3) 

 
where IR = inhalation rate of the exposed person (m3/h)  
n(t) = number of quanta/m3 at time t 

T = time of exposure (h) 
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For relatively short exposure times, for instance, a few hours, we assume that n(t) is a constant 

n, and Eq(3) can be reduced to:  

p = 1 − 𝑒&3469 =  1 − 𝑒&6:.		:=	>?@67@	A6B@CD8                     Eq(4) 

From Eq(4), we can see that, by setting the number of quanta inhaled as one,  one virus 

quantum is the dose of airborne droplet nuclei required to cause infection in 1 − 𝑒&"		= 63% of 

exposed persons. 

We can use viral quanta as the variable to study different scenarios of interest by 

properly modifying IR and n. IR will increase with the activity level of the exposed, while n 

(viral quanta/m3 in the air) will increase with the activity level of the infectious person and 

decrease when the infectious person is vaccinated.  n will also decrease with ventilation and 

air filtering. Masking by either the exposed or the infectious person will also decrease the 

effective n as some of the virus will be blocked by masking.   

 Hence Equ. (4) can be modified as follow: 

p = 1 − 𝑒&34´EFG´'F´69´EF3´HEF´HGF´IHF                                                Eq(5) 

where IR has been modified by AFE, the activity factor of the exposed, while n, the 

number of viral quanta emitted by the infectious person is modified by AFI, the activity factor 

of the infectious person, VAF, the vaccination factor of the infectious person, VEF, the 

ventilation and filtering factor, and CVF, the SARS-CoV-2 variant factor. MF is the masking 

factor.  

 Next we study how to determine each of these modifying factors: 

AFE: Buonanno et al. (2020)15 found the inhalation rate of five different activities of 

the exposed in an indoor setting, namely, resting, standing, light exercise, moderate exercise, 

and heavy exercise, averaged between males and females, to be 0.49, 0.54, 1.38, 2.35, and 3.30 

m3/h, respectively.  Thus, if we take resting as the baseline (with an AFE of 1), then the AFE 

for the five activities will be 1, 1.10, 2.82, 4.80, and 6.73, respectively. In Table 4, we assume 

the activity of speaking is similar to light exercise. 

AFI: Coleman et al. (2021)26 compared the different viral loads emitted by the 

infectious person when they are breathing, talking, and singing, and found viral loads of 1960, 

25312, and 32831 virus gene copies, in a period of 30 minutes.  Coleman et al. (2022) actually 

reported the viral loads for the latter two activities for a period of 15 minutes each.  To match 

the value reported for the activity of breathing for 30 minutes, we doubled the reported values 

to get the 30-minute values.  If we take breathing as the baseline, with AFI =1, then the AFI 

for speaking and singing will be 12.9 and 16.8.  
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MF: Talic et al. (2021)46 surveyed 72 studies that assessed the effectiveness of public 

health measures in reducing the incidence of SARS-CoV-2 transmission, and SARS-CoV-2 

mortality, and based on data of 35 of such studies, which evaluated the effect of individual 

health measures, rather than a package of measures, estimated that the reduction of the 

incidence of SARS-CoV-2 with masking is 0.47.  Taking no masking as the baseline, MF for 

masking is 0.408, which is obtained as the ratio of the estimated viral quanta with masking and 

without masking.  

VAF: Accorsi et al. (2022)47 estimated the Ct values for the Delta and Omicron variants 

of SARS-CoV-2, and found that for the Delta variant, the Ct values for unvaccinated and 

vaccinated (three doses) were 18.28 and 19.07, respectively.  The corresponding numbers were 

18.71 and 19.35 for the Omicron variant. Singanayagam et al.11 quoted a conversion equation 

between Ct and viral load, published by Public Health England,  as follow: 

Viral load (copies /ml) = 133e(37.933 - Ct)/1.418 

If the unvaccinated is the baseline, with a VAF of 1, then we can easily calculate the 

VAF for vaccinated infectious person as 0.573 for the Delta variant, and 0.637 for the Omicron 

variant. 

VEF: After a detailed study of the literature covering ventilation rates and SARS-CoV-

2 infections in the US and EU/UK, we have decided to focus our ventilation setting on the 

classroom setting within the US (given the variation in ventilation rates over different 

environmental settings and building codes in different countries).  ACHT is used as the 

ventilation metric, defined as the rate at which room air is replaced by recirculated and outdoor 

air as determined by measuring the decay of a tracer species (such as CO2). From McNeill et 

al. (2022)48, we obtained the values for maximum mechanical ventilation rate (MaxMV) at 

ACHT 8.7, minimum mechanical ventilation rate (MinMV) 2.7, median ventilation rate 

(MedMV) 5.3, and natural ventilation rate (NatV) 3.3 for the school classroom setting based 

in the US. Using the MinMV of 2.7 as the baseline, we can calculate the VEF for MaxMV, 

MedMV, and NatV as 0.310, 0.509, and 0.818, respectively. For outdoor ventilation (Outdoor), 

based on a thorough review of reported Covid-19 cases by Bulfone et al. (2021)38, the odds of 

transmission indoors are 18.7 times higher than outdoors. Using Eq(5), the ratio of Viral Load 

or quantum, Q, between Outdoor and Indoor, is 0.0344, which is derived from the following 

equations: 

pindoor/poutdoor = 18.7 
(1 – e-Qindoor) / (1 – e-Qoutdoor) = 18.7                    
 
where   
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Qindoor = viral quanta indoors 
Qoutdoor = viral quanta outdoors 

 
Using baseline of Qindoor = 1 virus quantum, we have: 
 
1 – e-1 = 18.7 – 18.7 e-Qoutdoor 
18.7 e-Qoutdoor = 18.7 – 1 + e-1 = 18.068 
e-Qoutdoor = 0.9662; Qoutdoor = 0.0344 
Qoutdoor/Qindoor = 0.0344 
 

CVF:  It is well-known that different SARS-CoV-2 variants will have different levels 

of infectivity.  A recent study by the University of Hong Kong17 found that that Omicron infects 

and multiplies 70 times faster than the Delta variant and the original coronavirus in the human 

bronchus, which may explain why Omicron may transmit faster between humans than previous 

variants.   Thus, if the baseline of Omicron is assigned a CVF of 1, then the CVF of Delta will 

be 1/70.  In the future, we may have variants that are even more infectious than Omicron, in 

which case the CVF of such a variant will be bigger than 1. 

Based on these factors, we can compute p-ratio, the ratio of p compared to the baseline, 

for four sets of scenarios, as summarized in Table 4 above. 
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