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ABSTRACT 36 

 37 

BACKGROUND. Lower respiratory tract infection (LRTI) is a leading cause of death in 38 

children worldwide. LRTI diagnosis is challenging since non-infectious respiratory illnesses 39 

appear clinically similar and existing microbiologic tests are often falsely negative or detect 40 

incidentally-carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower 41 

airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether 42 

it can be applied at scale and in a pediatric population to enable improved diagnosis and treatment 43 

remains unclear.  44 

METHODS. We used tracheal aspirate RNA-sequencing to profile host gene expression 45 

and respiratory microbiota in 261 children with acute respiratory failure. We developed a gene 46 

expression classifier for LRTI by training on patients with an established diagnosis of LRTI 47 

(n=117) or of non-infectious respiratory failure (n=50). We then developed a classifier that 48 

integrates the host LRTI probability, abundance of respiratory viruses, and dominance in the lung 49 

microbiome of bacteria/fungi considered pathogenic by a rules-based algorithm.  50 

RESULTS. The host classifier achieved a median AUC of 0.967 by cross-validation, 51 

driven by activation markers of T cells, alveolar macrophages and the interferon response. The 52 

integrated classifier achieved a median AUC of 0.986 and increased the confidence of patient 53 

classifications. When applied to patients with an uncertain diagnosis (n=94), the integrated 54 

classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those. 55 

CONCLUSIONS. Lower airway metagenomics enables accurate LRTI diagnosis and 56 

pathogen identification in a heterogeneous cohort of critically ill children through integration of 57 

host, pathogen, and microbiome features. 58 

59 
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INTRODUCTION 60 

Lower respiratory tract infection (LRTI) causes more deaths each year than any other type 61 

of infection and disproportionately impacts children(1–4). The ability to accurately determine 62 

whether LRTI underlies or contributes to respiratory failure in the intensive care unit and to identify 63 

the etiologic pathogens is critical for effective and targeted treatments. However, LRTI diagnosis 64 

is challenging since non-infectious respiratory conditions can appear clinically similar. Moreover, 65 

no microbiologic diagnosis is obtained in many cases of suspected LRTI since standard tests 66 

(such as bacterial culture) suffer from a narrow spectrum of targets and limited sensitivity (3, 5–67 

8). At the same time, children are especially susceptible to false positive diagnoses due to 68 

frequent incidental carriage of potentially pathogenic microbes(3, 5, 9–12). As such, LRTI 69 

treatment is often empirical, leading to antimicrobial overuse, selection for resistant pathogens, 70 

and adverse outcomes(13–15).  71 

Profiling host gene expression in the blood has shown promise as an innovative modality 72 

for diagnosing respiratory infection in hospitalized patients(16, 17). However, this approach has 73 

not been well studied in the diagnostically challenging critically ill pediatric population. Moreover, 74 

while blood gene expression can in some cases distinguish between the response to viral and 75 

bacterial infection(16–21), it cannot pinpoint the specific pathogens active in the respiratory tract, 76 

which is critical for optimal antimicrobial therapy. 77 

Metagenomic next generation sequencing (mNGS) of lower airway samples (e.g., tracheal 78 

aspirate) has the potential to detect pathogens and host gene expression signatures of LRTI(22). 79 

Whether such an approach can be successfully applied at scale for the purpose of clinical 80 

diagnosis remains unclear. Its applicability in a pediatric population has also never been examined 81 

despite well-established age-related differences in LRTI epidemiology(3, 9), rates of incidental 82 

pathogen carriage(3, 5, 9), and the immune response to infection(23, 24). Furthermore, to our 83 

knowledge, no metagenomic approach for LRTI diagnosis thus far integrates host and microbial 84 

features into a single diagnostic output, a crucial step toward streamlined clinical application. 85 
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Here, we perform metagenomic RNA sequencing of tracheal aspirate in a prospective 86 

cohort of 261 children with acute respiratory failure requiring mechanical ventilation. We develop 87 

a host gene expression classifier for LRTI by training on patients with an LRTI diagnosis supported 88 

by clinical microbiologic testing and patients with respiratory failure due to non-infectious causes. 89 

We then develop a classifier that integrates host, pathogen, and microbiome features to 90 

accurately diagnose LRTI and identify the likely causal pathogens, including in cases with 91 

negative clinical microbiologic testing. Our results demonstrate the feasibility of lower airway 92 

metagenomics for improved LRTI diagnosis in a large and heterogeneous cohort and reveal the 93 

importance of profiling both the pulmonary immune response and microbiome in a pediatric 94 

population. 95 

 96 

RESULTS 97 

Patient cohort and LRTI adjudication 98 

We enrolled children with acute respiratory failure requiring mechanical ventilation at eight 99 

hospitals in the United States between February 2015 and December 2017, as previously 100 

described(9, 25). Tracheal aspirate (TA) was collected within 24 hours of intubation and 101 

underwent metagenomic next generation sequencing (mNGS) of RNA to assay host gene 102 

expression and detect respiratory microbiota (Figure 1). High-quality host gene expression and 103 

microbial data was obtained for 261 patients.  104 

Adjudication of LRTI status was blinded to mNGS results and depended on the 105 

combination of two elements: i) a retrospective clinical diagnosis made by study-site clinicians, 106 

who reviewed all clinical, laboratory and imaging data available at the end of the admission, and 107 

ii) any standard-of-care respiratory microbiologic diagnostics performed during the admission 108 

(nasopharyngeal swab viral PCR and/or TA culture). Patients were assigned to one of four LRTI 109 

status groups, as follows: i) Definite, if clinicians made a diagnosis of LRTI and the patient had 110 

clinical microbiologic findings (n=117); ii) Suspected, if clinicians made a diagnosis of LRTI but 111 
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there were no microbiologic findings (n=57); iii) Indeterminate, if no diagnosis of LRTI was made 112 

despite some microbiologic findings (n=37); and iv) No Evidence, if clinicians identified a clear 113 

non-infectious cause of acute respiratory failure and no clinical or microbiologic suspicion of LRTI 114 

arose (n=50) (Figure 1). We note that comprehensive microbiologic testing was not always 115 

performed in the No Evidence group in the absence of clinical suspicion.   116 

The Definite and No Evidence groups were used to develop the metagenomic classifiers 117 

and to evaluate their performance by cross-validation due to the high degree of confidence in their 118 

clinical diagnoses (Figure 1). The patients in the Definite group were 39% female with a median 119 

age of 0.5 years (IQR 0.2-1.8) while the patients in the No Evidence group were 50% female with 120 

a median age of 6.5 years (IQR 1.5-12.9) (Table 1; Supplemental Figure 1). The difference in 121 

the age distribution of the two groups (p < 0.001, Mann-Whitney test) reflected recognized 122 

epidemiological distinctions in the conditions typically leading to respiratory failure in very young 123 

versus older children(3, 5).  124 

Within the Definite group, 95% of patients were intubated by two days from hospital 125 

admission, indicative of community-acquired infection (Table 1). Clinical microbiologic testing 126 

identified viral infection alone in 46% of patients, bacterial infection alone in 14% of patients, and 127 

viral/bacterial co-infection in 40% of patients. The most common pathogens were respiratory 128 

syncytial virus (RSV) and Haemophilus influenzae, which frequently co-occurred(9). Diagnoses 129 

in the No Evidence group included trauma, neurological conditions, cardiovascular disease, 130 

airway abnormalities, ingestion of drugs/toxins, and sepsis that was clearly unconnected to LRTI. 131 

Nevertheless, most patients received antibiotic treatment by the time of TA sample collection in 132 

both the Definite (96%) and No Evidence (84%) groups (Table 1). 133 

Classification of LRTI status based on TA host gene expression features 134 

We first compared TA host gene expression between the Definite and No Evidence groups 135 

to determine whether it could distinguish patients based on LRTI status, regardless of the 136 
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underlying cause of infection. We identified 4,718 differentially expressed genes at a Benjamini-137 

Hochberg adjusted p < 0.05 (Supplemental Figure 2A; Supplemental Data 2). As expected, 138 

gene set enrichment analysis identified elevated expression of pathways involved in the immune 139 

response to infection in the Definite group (Supplemental Figure 2B; Supplemental Data 3). 140 

Pathways related to the interferon response, a hallmark of anti-viral innate immunity, were most 141 

strongly upregulated, consistent with the high prevalence of viral infections in the Definite group. 142 

Additional immune pathways upregulated in this group included toll-like receptor signaling, 143 

cytokine signaling, inflammasome activation, neutrophil degranulation, antigen processing, and B 144 

cell and T cell receptor signaling. Conversely, pathways with reduced expression in the Definite 145 

group included translation, cilium assembly and lipid metabolism (Supplemental Figure 2B; 146 

Supplemental Data 3). 147 

Since we observed a clear host signature of infection, we developed a classification 148 

approach to distinguish the Definite and No Evidence patients based on gene expression and 149 

evaluated its performance by 5-fold cross-validation. For each train/test split, we: i) used lasso 150 

logistic regression on the samples in the training folds to select a parsimonious set of informative 151 

genes, ii) trained a random forest classifier using the selected genes, and iii) applied it to the 152 

samples in the test fold to obtain a host probability of LRTI.  153 

Our approach yielded a median area under the receiver operating characteristic curve 154 

(AUC) of 0.967 (range: 0.953-0.996), with the number of genes selected for use in the classifier 155 

ranging from 11 to 25 across the five train/test splits (Figure 2A; Supplemental Table 1). Using 156 

a 50% out-of-fold probability threshold to classify a patient as suffering from LRTI (LRTI+), the 157 

classifier assigned 92% of Definite patients and 80% of No Evidence patients according to their 158 

clinical LRTI adjudication (Figure 2B). 159 

Having validated the performance of our approach by cross-validation, we then applied 160 

lasso logistic regression to all the Definite and No Evidence patients to select a final set of genes 161 

(n=14) for later classification of patients with Suspected or Indeterminate LRTI status (Figure 2C; 162 
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Supplemental Table 2). As expected, the genes in the final classifier set that were assigned high 163 

absolute regression coefficients were also repeatedly selected in the cross-validation procedure 164 

(Supplemental Table 2).  165 

The selected genes with the most positive regression coefficients, corresponding to higher 166 

expression in the Definite group, were: GNLY, encoding an anti-bacterial peptide present in 167 

cytolytic granules of cytotoxic T cells and natural killer cells(26); SLC38A2, encoding a glutamine 168 

transporter upregulated in CD28-stimulated T cells(27, 28); FFAR3, encoding a G protein-coupled 169 

receptor activated by short-chain fatty acids that is induced by alveolar macrophages upon 170 

infection(29); and the interferon-stimulated genes PSMB8, ISG15 and IRF1 (Figure 2C; 171 

Supplemental Table 2). 172 

The selected genes with the most negative regression coefficients, corresponding to lower 173 

expression in the Definite group, were: FABP4, encoding a fatty acid-binding protein considered 174 

a marker of alveolar macrophages, whose expression in the lung decreases in patients with LRTI, 175 

including COVID-19 (30–32); and RBP4, encoding a retinol-binding protein, whose expression in 176 

the lung has also been shown to sharply decrease following onset of LRTI(30) and whose 177 

expression by macrophages in vitro is depressed by inflammatory stimuli(33) (Figure 2C; 178 

Supplemental Table 2). 179 

We examined the expression of the final classifier genes as a function of patient age to 180 

confirm that their selection was not influenced by the different age distributions of the Definite and 181 

No Evidence groups (Supplemental Figure 3). Reassuringly, we found no significant difference 182 

in the expression of the 14 genes when comparing No Evidence patients under the age of four 183 

(n=23; median age 1.3 years) and over the age of four (n=27; median age 12.5) (Supplemental 184 

Table 3A). Further, we found that expression of 12 of the genes remained significantly different 185 

when comparing only children under the age of four in the Definite (n=100; median age 0.4) and 186 

No Evidence (n=23; median age 1.3) groups (Supplemental Table 3B).  187 
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Detection of pathogens by mNGS and definition of microbial classification features  188 

We proceeded to analyze the microbial mNGS data to nominate likely pathogens whose 189 

features could be integrated into the LRTI classifier to increase confidence in the results and 190 

whose identity could be used to guide treatment. We processed the TA samples alongside water 191 

controls through the CZ-ID metagenomic analysis pipeline to obtain a count matrix of microbial 192 

taxa. The water controls allowed us to generate a background count distribution for each taxon, 193 

which modeled the contribution of contamination by microbes present in the laboratory 194 

environment or reagents.  195 

Viruses with known ability to cause LRTI that were present at an abundance statistically 196 

exceeding their background distribution were considered probable pathogens. By this criterion, 197 

we detected viruses in the lungs of 107/117 (91%) Definite patients, with RSV the most prevalent 198 

(Figure 3A). Among No Evidence patients, 8/50 (16%) also had viruses detected by mNGS, 199 

which were probably missed clinically in the absence of characteristic symptoms. We defined the 200 

summed abundance of all pathogenic viruses detected in a patient, measured in reads-per-million 201 

(rpM), as the patient’s ‘viral score’ for later use in an integrated host/microbe classifier (Figure 202 

3B).   203 

Because most Definite patients had a positive nasopharyngeal (NP) swab viral PCR test, 204 

we could compare the viruses detected by PCR and mNGS (Supplemental Data 4). The 205 

comparison was complicated, however, by the fact that PCR was performed on upper airway 206 

samples, so a virus detected by PCR was not necessarily present in the lower airway. Bearing 207 

this in mind, we found that 99/101 (98%) Definite patients with a viral PCR hit also had a virus 208 

detected by mNGS, and both approaches detected at least one virus in common in 91 (92%) of 209 

those patients (Supplemental Figure 4A). Most cases where NP swab PCR detected a virus, 210 

but mNGS did not, involved adenovirus (Supplemental Figure 4B). mNGS alone detected 211 

viruses in 8/16 (50%) Definite patients lacking a viral PCR hit (Supplemental Figure 4A). In a 212 
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subset of Definite patients where we performed viral PCR on the same TA samples subjected to 213 

mNGS (n=21), 96% of PCR hits were detected by mNGS (Supplemental Table 4).  214 

Bacterial and fungal taxa in the mNGS data also underwent background filtering to retain 215 

only those present at an abundance statistically exceeding their background distribution based 216 

on water controls. Because incidental carriage of potentially pathogenic bacteria is common in 217 

children, we additionally applied a previously published algorithm to distinguish possible 218 

pathogens from commensals, called the rules-based model (RBM)(9, 22). The RBM identifies 219 

bacteria and fungi with known pathogenic potential that are relatively dominant in a sample 220 

(Figure 3, C and D), based on the principle that uncontrolled growth of a pathogen leads to 221 

reduced lung microbiome alpha diversity in the context of LRTI(22, 34–36) (Supplemental Figure 222 

4, C and D).  223 

The RBM identified possible bacterial/fungal pathogens in 78/117 (66%) Definite patients, 224 

with the most common being H. influenzae, Moraxella catarrhalis and Streptococcus pneumoniae 225 

(Figure 3E). The RBM also identified potential bacterial/fungal pathogens in 17/50 (34%) No 226 

Evidence patients. Patients in the Definite group with an RBM-identified pathogen exhibited 227 

markedly lower bacterial alpha diversity compared to Definite patients without an RBM-identified 228 

pathogen and compared to No Evidence patients (Supplemental Figure 4D). In contrast, No 229 

Evidence patients with an RBM-identified pathogen did not typically exhibit a loss of bacterial 230 

alpha diversity (Supplemental Figure 4D), and in such cases the RBM-identified species was far 231 

less dominant (Figure 3F). We therefore defined the patient’s ‘bacterial score’ for use in an 232 

integrated host/microbe classifier as the proportion of the RBM-identified pathogens out of all non-233 

host counts, a measure of relative dominance (Figure 3F).  234 

We next sought to compare the bacterial and fungal pathogens identified by mNGS with 235 

those found by culture of TA samples in the Definite patients (Supplemental Data 4). Importantly, 236 

mNGS can detect organisms that are challenging to grow in culture or are inhibited by previous 237 

antibiotic treatment, and the RBM selects the likeliest pathogen based on a global view of the 238 
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microbiome. Despite these inherent differences between culture and the RBM, we found that in 239 

44/63 (70%) Definite patients who had a positive culture, at least one pathogen identified by the 240 

RBM was also found by culture (Supplemental Figure 4E). In the remaining 19 patients, the 241 

RBM identified a different species than culture (n=7), or no pathogen at all (n=12). Even in these 242 

cases, the species grown in culture was usually present in the mNGS data, but other species 243 

were more dominant (Supplemental Figure 4E). The RBM also identified a potential pathogen 244 

in 27/54 (50%) Definite patients lacking a positive culture (Supplemental Figure 4E). Most cases 245 

where the species grown in culture was absent from the mNGS data after background filtering 246 

involved Staphylococcus aureus, Streptococcus species other than S. pneumoniae, and 247 

Escherichia coli (Supplemental Figure 4F).  248 

Host gene expression differences between viral and bacterial LRTI 249 

 Overall, mNGS identified viral and/or bacterial pathogens in 114/117 (97%) Definite 250 

patients. Having established by mNGS which Definite patients had an exclusively bacterial 251 

infection (n=7), an exclusively viral infection (n=36), or a viral/bacterial co-infection (n=71), we 252 

went back and examined how effectively the top host classifier genes captured these different 253 

scenarios (Supplemental Figure 5A). As expected, some of the interferon-stimulated genes 254 

(e.g., ISG15) provided much more discriminating power for Definite patients with a viral infection 255 

as compared to those with a purely bacterial infection. Reassuringly, however, several other 256 

classifier genes behaved similarly regardless of the underlying infection type.  257 

We then asked more broadly whether host gene expression differed between patients with 258 

any bacterial LRTI (including viral co-infection) and patients with purely viral LRTI. We identified 259 

108 differentially expressed genes at a Benjamini-Hochberg adjusted p < 0.05 (Supplemental 260 

Figure 5B; Supplemental Data 2), and found that genes related to neutrophil degranulation and 261 

cytokine signaling were enriched in patients with any bacterial LRTI (Supplemental Figure 5C; 262 
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Supplemental Data 3). These results suggest the potential for developing in future work a rule-263 

out classifier for bacterial infection that could be used to limit unnecessary antibiotic usage. 264 

Classification of LRTI status based on integration of host and microbial features 265 

 Next, we asked whether integrating the host and microbial features could improve the 266 

performance of metagenomic LRTI classification. We fit a logistic regression model on the 267 

following three features: i) the LRTI probability output of the host classifier, ii) the summed 268 

abundance, measured in reads-per-million (rpM), of any pathogenic viruses present after 269 

background filtering (‘viral score’), and iii) the proportion of the potentially pathogenic 270 

bacteria/fungi identified by the RBM out of all non-host read counts (‘bacterial score’) (Figure 4A). 271 

As expected, the host and microbial features were correlated across most samples, but some 272 

notable exceptions were observed (Supplemental Figure 6).  273 

The integrated classifier achieved an AUC of 0.986 (range: 0.953-1.000) when assessed 274 

by 5-fold cross-validation (Figure 4B; Supplemental Table 5), applying the same train/test splits 275 

used in the host-only cross-validation. Using an out-of-fold probability threshold of 50%, the 276 

integrated classifier assigned 109/117 (93%) Definite patients as LRTI+ and 44/50 (88%) No 277 

Evidence patients as LRTI- (Figure 4C; Supplemental Table 6). Compared to the host-only 278 

classifier, a net of five additional patients were now classified according to their clinical 279 

adjudication and the confidence of patient classifications increased, as reflected by more extreme 280 

output probabilities (Figure 4D). We note that at a much lower out-of-fold probability threshold of 281 

15%, the integrated classifier’s sensitivity for LRTI in the Definite group rose to >98%, suggesting 282 

a use-case as a rule-out test for LRTI.  283 

Finally, we trained the integrated host/microbe classifier on all the Definite and No 284 

Evidence patients and then applied it to the Suspected and Indeterminate patients, whose clinical 285 

diagnosis was less certain. The integrated classifier indicated 37/57 (65%) Suspected patients 286 

were LRTI+ compared with 12/37 (32%) Indeterminate patients (Figure 5A), consistent with the 287 
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stronger clinical suspicion of LRTI in the former group. Across all 52 patients classified as LRTI+ 288 

in these two groups, likely pathogens (viral, bacterial, or fungal) were identified in 51 patients 289 

(98%). Pathogens detected included common (e.g., rhinovirus, H. influenzae), uncommon (e.g., 290 

bocavirus, parechovirus), and difficult to culture (e.g., Mycoplasma pneumoniae) microbes 291 

(Figure 5B). We also designed a visual summary incorporating all three inputs of the integrated 292 

classifier and its output LRTI probability (Figure 5C). 293 

 294 

DISCUSSION 295 

Lower respiratory tract infection (LRTI) involves a dynamic relationship between pathogen, 296 

lung microbiome and host response that is not captured by existing clinical diagnostic tests. Here, 297 

we demonstrate that mNGS of lower respiratory samples enables accurate LRTI diagnosis based 298 

on features of each of these key elements in critically ill children, a demographic facing a high 299 

burden of LRTI. We build on proof-of-concept work in adults(22) to develop the first fully integrated 300 

host/microbe LRTI diagnostic classifier, and validate its performance in a large, multicenter 301 

prospective cohort. 302 

Incidental carriage of pathogens in the respiratory tract is common in children(3, 5, 9–12). 303 

Consistent with this, detection of a pathogen by mNGS was in many cases insufficient for accurate 304 

LRTI diagnosis in our cohort. Among No Evidence patients, 40% had potentially pathogenic 305 

microbes detected by mNGS even after application of the RBM (for bacteria and fungi). This is 306 

notably different from adults, for whom both clinical and metagenomic studies have demonstrated 307 

much lower rates of incidental pathogen carriage(7, 22). Profiling the host response is thus 308 

particularly important for pediatric LRTI diagnosis, as it provides evidence of an immune response 309 

to infection.  310 

Remarkably, an LRTI diagnostic classifier based on host gene expression performed very 311 

well on its own, with a median AUC of 0.967 by cross-validation. The host signature was driven 312 

by activation markers of T cells, alveolar macrophages, and the interferon response, and 313 
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successfully captured cases of viral infection, bacterial infection, or co-infection. This performance 314 

suggests the gene signature could be incorporated into a clinical PCR assay as a standalone 315 

rapid diagnostic. It is likely that an even more parsimonious signature than the one used in the 316 

mNGS classifier would suffice, as six genes exhibited the most discriminating power.  317 

The integrated host/microbe classifier achieved a median AUC of 0.986 by cross-318 

validation. The incorporation of microbial features increased the confidence of LRTI classification, 319 

even though relatively few patients switched their assigned diagnosis. It is likely that the integrated 320 

classification approach will prove even more valuable in settings where the host signature may 321 

not perform as well on its own (e.g., immune-compromised patients), and will generalize better to 322 

future cohorts. Moreover, it provides clinicians with a unified framework both for LRTI diagnosis 323 

and etiologic pathogen identification. 324 

Unlike for host gene expression, the microbial features in the integrated classifier were not 325 

automatically selected by training on identified taxa and their features in the Definite and No 326 

Evidence groups. Such an approach was not feasible given the sparse presence of individual 327 

respiratory pathogens across patients in the cohort, especially in the No Evidence group. As larger 328 

datasets are generated, it may be possible to use machine learning approaches to capture the 329 

‘null distribution’ of incidentally carried pathogens in the lower respiratory tract and identify outlier 330 

cases that signal LRTI. Even then, designating a specific microbe as a ‘true’ causal pathogen for 331 

training purposes would be non-trivial, especially in cases of co-infection. Instead, we defined 332 

summary viral and bacterial scores motivated by accumulated clinical and microbiologic 333 

knowledge. For bacteria and fungi, we took advantage of the collapse of lung microbiome diversity 334 

in the setting of pathogen dominance, an established feature of LRTI(22, 34, 35).   335 

Comparison of mNGS and clinical microbiologic testing was complicated by inherent 336 

differences in the anatomical site of testing (upper respiratory viral PCR vs. lower respiratory 337 

mNGS) or the question addressed (growth in culture vs. dominance by mNGS), as well as by 338 

heterogeneity in microbiologic practices among study sites. Nevertheless, when clinical testing 339 
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identified a microbe, it was in most cases present in the mNGS data. A notable exception was 340 

adenovirus, which was consistently absent by mNGS when detected by NP swab PCR. This could 341 

reflect sensitivity limitations of RNA-sequencing for a DNA virus or true absence in the lower 342 

airway. Our secondary analysis revealing higher concordance of PCR and mNGS when 343 

performed on the same lower respiratory specimens, however, argues for the latter possibility. 344 

Future work could examine targeted enrichment strategies(37, 38) to improve detection of this or 345 

any other pathogen that proves challenging to capture by mNGS. Regardless, our findings 346 

highlight the value of concomitant assessment of the host response, which can accurately inform 347 

LRTI status even when pathogens are not detected. 348 

A key advantage of mNGS is the capacity to provide a microbiologic diagnosis when 349 

traditional clinical testing returns negative, as in an estimated 20-60% of suspected community- 350 

or hospital-acquired pneumonia cases(3, 6–8). Indeed, the integrated mNGS classifier confirmed 351 

LRTI in 65% of children with suspected infection but negative clinician-ordered testing in our 352 

cohort, and in 32% of patients with respiratory failure of indeterminate etiology. It also provided a 353 

microbiologic diagnosis in all but one of these patients, highlighting the potential to inform 354 

pathogen-targeted versus empirical treatment.  355 

Acute respiratory illnesses are a leading contributor to inappropriate antimicrobial use, a 356 

practice driven by challenges distinguishing LRTI from non-infectious causes of respiratory failure 357 

or distinguishing bacterial from viral LRTI. Reflecting this is the observation that 90% of children 358 

in our cohort received empiric antimicrobials by the time of sample collection, including 84% in 359 

the No Evidence group. Host/microbe mNGS offers an opportunity for improved antimicrobial 360 

stewardship, particularly in clinically uncertain cases, by providing a probability of infection and 361 

by nominating the likely pathogen. In fact, we found that the integrated classifier could be tuned 362 

to achieve >98% sensitivity for LRTI detection, highlighting its potential use as a rule-out test to 363 

help exclude the need for antimicrobials. Moreover, our host gene expression analysis revealed 364 

potential for development of a host classifier specifically for bacterial infection.  365 
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Our study has several limitations that should be kept in mind. In developing the mNGS 366 

classifiers, we relied on retrospective clinical adjudication for designating the ‘ground truth’ LRTI 367 

status of patients in the cohort. Retrospective adjudication, which considers the context of patient 368 

trajectory and clinical data not available at the time of initial admission, was the only practical 369 

approach. However, by nature, it is not infallible and was subject to variability in clinical and 370 

microbiologic practices across study sites and to the known limitations of standard microbiologic 371 

diagnostics. Moreover, comprehensive microbiologic testing was not always performed in the No 372 

Evidence group in the absence of clinical suspicion of LRTI, which likely allowed a few patients 373 

into this group who were suffering from unrecognized infection on top of their primary diagnosis. 374 

It is thus likely that some No Evidence patients deemed LRTI+ by the mNGS classifier were not 375 

truly misclassified, but rather incorrectly adjudicated. Study limitations also include the different 376 

age distributions of comparator groups and the relative paucity of purely bacterial infections. 377 

mNGS provides a broad screen for bacteria, viruses, and other pathogens to overcome 378 

the limitations of traditional clinical microbiologic tests. Assays utilizing this technique are already 379 

in use in hospitals for microbe detection in typically sterile compartments, such as blood (sepsis) 380 

and cerebrospinal fluid (meningitis), with turnaround of ≤48 hours(39, 40). mNGS promises to 381 

improve the diagnosis and treatment of respiratory infections as well(9, 22, 41–45), but has not 382 

yet seen clinical translation in this area. Respiratory samples present a special challenge since 383 

they harbor microbial communities, including potential pathogens, even in states of health. Host 384 

gene expression can help distinguish bona fide infection, and several studies have demonstrated 385 

the utility of blood transcriptional profiling for this purpose(16, 17, 20). However, this approach 386 

precludes identification of the etiologic respiratory pathogens. Simultaneous analysis of host and 387 

microbe in respiratory samples informs both questions, and is increasingly being applied in 388 

studies of the upper and lower airway(22, 46–48). Our work now provides the first fully integrated 389 

host/microbe LRTI diagnostic classifier from lower airway mNGS, applicable across pathogen 390 

types, thus setting the stage for clinical implementation in the relatively near future. 391 
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We envision the approach for LRTI diagnosis by lower airway host/microbe mNGS 392 

outlined in this study being used at the time of intubation for critically ill children with acute 393 

respiratory failure, as a complement to traditional culture and PCR-based microbiologic testing. 394 

Our approach would need to be independently validated and its impact on clinical outcomes would 395 

need to be evaluated in a randomized clinical trial before deployment in the hospital. Future work 396 

should also examine the trajectory of patient LRTI classification over time, as infection resolves, 397 

and how well the classifier might generalize to a similarly large and heterogeneous adult cohort. 398 

 399 

METHODS 400 

Study cohort 401 

We conducted a secondary analysis of a prospective cohort study of mechanically 402 

ventilated children admitted to eight Pediatric Intensive Care units in the National Institute of Child 403 

Health and Human Development’s Collaborative Pediatric Critical Care Research Network 404 

(CPCCRN) from February 2015 to December 2017(9, 25).  405 

We enrolled children aged 31 days to 18 years who were expected to require mechanical 406 

ventilation (MV) via endotracheal tube (ETT) for at least 72 hours. Exclusion criteria included 407 

inability to obtain a tracheal aspirate (TA) sample from the subject within 24 hours of intubation; 408 

presence of a tracheostomy tube or plans to place one; any condition in which deep tracheal 409 

suctioning was contraindicated; previous episode of MV during the hospitalization; family/team 410 

lack of commitment to aggressive intensive care as indicated by ‘do not resuscitate’ orders and/or 411 

other limitation of care; or previous enrollment into this study. Some patients were ultimately 412 

excluded from the present analysis based on sequencing metrics, as described in the following. 413 

Parents or other legal guardians of eligible patients were approached for consent by study-414 

trained staff as soon as possible after intubation. Waiver of consent was granted for TA samples 415 

to be obtained from standard-of-care suctioning of the ETT until the parents or guardians could 416 

be approached for informed consent.  417 
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Prospectively collected clinical data were recorded in a web-based research database 418 

maintained by the CPCCRN data coordinating center at the University of Utah.   419 

Clinical microbiologic diagnostics 420 

Enrolled patients received standard-of-care clinical respiratory microbiologic diagnostics, 421 

as ordered by treating clinicians at each study site. These diagnostics included nasopharyngeal 422 

(NP) swab respiratory viral testing by multiplex PCR and/or tracheal aspirate (TA) bacterial and 423 

fungal semi-quantitative cultures. Clinical diagnostic tests on samples obtained within 48 hours of 424 

intubation were included in the analyses. Microbes reported by the clinical laboratory as 425 

representing laboratory, skin, or environmental contaminants, or reported as mixed upper 426 

respiratory flora, were excluded.  427 

Adjudication of LRTI status 428 

Adjudication of LRTI status was blinded to the mNGS results and depended on the 429 

combination of two elements: i) a retrospective clinical diagnosis made by study-site clinicians, 430 

who reviewed all clinical, laboratory and imaging data available at the end of the admission, and 431 

ii) any standard-of-care microbiologic diagnostics performed during the admission 432 

(nasopharyngeal swab viral PCR and/or TA culture). Following a recently described approach(9, 433 

16, 22), study team physicians ultimately assigned patients into one of four groups: i) Definite, if 434 

clinicians made a diagnosis of LRTI and the patient had clinical microbiologic findings; ii) 435 

Suspected, if clinicians made a diagnosis of LRTI but there were no microbiologic findings; iii) 436 

Indeterminate, if no diagnosis of LRTI was made despite some microbiologic findings; and iv) No 437 

Evidence, if clinicians identified a clear non-infectious cause of acute respiratory failure and no 438 

clinical or microbiologic suspicion of LRTI arose. We note that comprehensive microbiologic 439 

testing was not always performed in the No Evidence group in the absence of clinical suspicion.   440 
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Sample collection, processing and mNGS  441 

Tracheal aspirate (TA) was collected within 24 hours of intubation, mixed 1:1 with 442 

DNA/RNA Shield (Zymo) and frozen at -80°C. RNA was extracted from 300µl of patient TA using 443 

bead-based lysis and the Allprep DNA/RNA kit (Qiagen), which included a DNase treatment step. 444 

RNA was reverse transcribed to generate cDNA, and sequencing library preparation was 445 

performed using the NEBNext Ultra II Library Prep Kit. RNA-Seq libraries underwent 150bp 446 

paired-end sequencing on an Illumina Novaseq 6000 instrument. 447 

Host gene expression analysis 448 

Following de-multiplexing, sequencing reads were pseudo-aligned with kallisto(49) 449 

(including bias correction) to an index consisting of all transcripts associated with human protein 450 

coding and long non-coding RNA genes (ENSEMBL v.99). We excluded samples with less than 451 

500,000 estimated counts associated with transcripts of protein-coding genes. Gene-level counts 452 

were generated from the transcript-level abundance estimates using the R package tximport(50), 453 

with the scaledTPM method. 454 

Genes were retained for differential expression (DE) analysis if they had at least 10 counts 455 

in at least 20% of the samples included in the analysis. DE analyses were performed with the R 456 

package limma(51), using quantile normalization and the voom method. P-values were calculated 457 

using moderated t-tests, as implemented in limma, and adjusted for multiple hypothesis testing 458 

with the Benjamini-Hochberg method. Tests with p < 0.05 were considered significant. Full DE 459 

results comparing: i) Definite and No Evidence patients, and ii) Definite patients with any bacterial 460 

LRTI and with purely viral LRTI are provided as Supplemental Data 2.  461 

Gene set enrichment analyses (GSEA)(52) were performed using the fgseaMultilevel 462 

function in the R package fgsea(53), which calculates pathway p-values using an adaptive, 463 

multilevel splitting Monte Carlo approach. The analysis was applied to REACTOME(54) pathways 464 

with a minimum size of 10 genes and a maximum size of 1,500 genes. All genes from the 465 

respective DE analysis were included as input, pre-ranked by the DE test statistic. The gene sets 466 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2023. ; https://doi.org/10.1101/2022.12.01.22282994doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22282994
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

shown in the figures were manually selected to reduce redundancy and highlight diverse 467 

biological functions from among those with a Benjamini-Hochberg adjusted p < 0.05. Full GSEA 468 

results are provided as Supplemental Data 3.   469 

Classification of LRTI status based on host gene expression features 

Genes with at least 10 counts in at least 20% of the Definite (n=117) and No Evidence 470 

(n=50) patients were used as input for the host-based LRTI classification (n=13,323). We applied 471 

a variance-stabilizing transformation to the gene counts, as implemented in the R package 472 

DESeq2(55).  473 

We implemented a 5-fold cross-validation procedure such that in each train/test split, we 474 

i) used lasso logistic regression on the samples in the training folds for feature (gene) selection, 475 

ii) trained a random forest classifier on the samples in the training folds using only the selected 476 

features, and iii) applied the random forest classifier to the samples in the test fold to obtain an 477 

out-of-fold host probability of LRTI. We required at least 9 No Evidence patients in each of the 478 

folds to ensure sufficient negative samples in each test set. 479 

Simple lasso logistic regression was fit using the cv.glmnet(family=’binomial’) function 480 

from the R package glmnet(56), leaving all other parameters at their defaults. We used the 1se 481 

criterion for selecting the tuning parameter, which picks the sparsest value of the tuning parameter 482 

that lies within 1 standard error of the optimum. When evaluating test error, we selected the tuning 483 

parameter via nested cross-validation within the training set only.  484 

Random forest was implemented using the R package randomForest(57). We used 485 

10,000 trees and left all parameters at their defaults.  486 

The area under the receiver operating characteristic curve (AUC) for each test fold was 487 

calculated using the R package pROC(58) with default behavior. Sensitivity and specificity were 488 

calculated using a pre-determined 50% out-of-fold LRTI probability threshold.  489 
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Detection of microbes by mNGS and background filtering 490 

We processed patient TA samples alongside water controls through the open-source CZ-491 

ID (formerly called IDSeq) metagenomic analysis pipeline(59). The pipeline performs subtractive 492 

alignment of the human genome and then reference-based alignment of the remaining reads at 493 

both the nucleotide and amino acid level against sequences in the National Center for 494 

Biotechnology Information (NCBI) nucleotide (NT) and non-redundant (NR) databases, 495 

respectively. This is followed by assembly of the reads matching each taxon. Taxa with ≥5 read 496 

counts in the NT alignment and an average assembly nucleotide alignment ≥70bp were retained 497 

for downstream analysis.  498 

Water controls enabled estimation of the number of background reads expected for each 499 

taxon, as previously described(9, 47). This was done by modeling the number of background 500 

reads as a negative binomial distribution with mean and dispersion fitted on the water controls. 501 

For each batch (sequencing run) and taxon, we estimated the mean parameter of the negative 502 

binomial distribution by averaging the read counts across the water controls after normalizing by 503 

the total non-host reads, slightly regularizing this estimate by including the global average (across 504 

all batches) as an additional sample. We estimated a single dispersion parameter across all taxa 505 

and batches using the functions glm.nb() and theta.md() from the R package MASS(60). Taxa 506 

were then tested for whether they exceeded the count expected from the background distribution, 507 

and a Benjamini-Hochberg adjustment was applied to all tests performed in the same sample. 508 

Taxa were considered present in a sample if they achieved an adjusted p < 0.05.  509 

Any virus with known ability to cause LRTI, based on a previously conducted literature 510 

curation(22), that was present in a patient sample after background filtering was considered a 511 

probable pathogen.  512 

Rules-based model (RBM) 513 

For bacteria and fungi that were present after background filtering, we additionally applied 514 

a rules-based algorithm for distinguishing potential pathogens from likely commensals, which was 515 
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slightly adapted from its previously published version(22). Application of the RBM in each sample 516 

involved the following steps: 517 

1. We retained only the most abundant bacterial/fungal species from each genus. In case a 518 

less abundant species in the genus had known ability to cause LRTI, based on a previously 519 

conducted literature curation(22), we retained it too.  520 

2. We then ranked the retained species from greatest to least overall abundance in the sample 521 

and limited, at most, to the top 15.  522 

3. The largest drop in abundance between the ranked species in the sample was identified.  523 

4. If any species above the largest drop in abundance had known ability to cause LRTI, it was 524 

deemed a potential pathogen.  525 

Analysis of microbiome diversity 526 

The Shannon diversity index was calculated using either all viral and bacterial taxa, or 527 

only bacterial taxa, that were present after background filtering using the R package Vegan(61). 528 

Two-sided Mann-Whitney tests with Bonferroni correction were used to evaluate statistical 529 

significance of group differences. Tests with p < 0.05 were considered significant. 530 

Classification of LRTI status based on integration of host and microbial features 531 

For the integrated host/microbe LRTI classifier, we fit a logistic regression model on the 532 

following features: i) the host LRTI probability; ii) the summed abundance, measured in reads-533 

per-million (rpM), of any pathogenic viruses present after background filtering (‘viral score’); and 534 

iii) the proportion of any potentially pathogenic bacteria/fungi identified by the RBM out of all non-535 

host read counts (‘bacterial score’). To avoid any leakage from the test set affecting the host 536 

probabilities, we always used the out-of-bag ‘votes’ from the host random forest classifier as the 537 

host probabilities of the training samples.  538 

Before fitting the integrated classifier, we applied transformations to all three features. A 539 

logistic (log-odds) transformation was applied to the host probabilities: ln 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
1−𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

. To facilitate 540 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2023. ; https://doi.org/10.1101/2022.12.01.22282994doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22282994
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

this transformation, we first slightly regularized the host probabilities and their complementary 541 

probabilities away from 0 and 1 by a quantity inversely proportional to the number of random 542 

forest trees used in the host classifier (𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 10,000):  543 

𝑃𝑃(𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿) ← 𝑃𝑃(𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿) ∙
𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 1
+

1
𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 1

 544 

[1 − 𝑃𝑃(𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿)] ← [1 − 𝑃𝑃(𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿)] ∙
𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 1
+

1
𝑅𝑅𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 1

 545 

For the viral/bacterial scores, we applied a log10 transformation. In order to avoid taking 546 

the log of 0, we added a small uniform quantity to the scores of all the samples, which was 547 

calculated by taking the minimum non-zero viral or bacterial score, respectively, in the 548 

corresponding training set and dividing it by 10.  549 

Performance of the integrated classifier was evaluated on the Definite and No Evidence 550 

patients using 5-fold cross-validation, with the same train/test splits and the same per-split host 551 

classifiers as in the host-only cross-validation. The area under the receiver operating 552 

characteristic curve (AUC) for each test fold was calculated using the R package pROC(58) with 553 

default behavior. Sensitivity and specificity were calculated using a pre-determined 50% out-of-554 

fold LRTI probability threshold. 555 

The integrated classifier was then trained on all the Definite and No Evidence patients and 556 

applied to the Suspected and Indeterminate patients.  557 

 558 

Statistics 559 

This study implemented a 5-fold cross-validation scheme to develop and evaluate 560 

performance of a binary classifier using samples with presumed known labels. Algorithms used 561 

in the classification procedure included logistic regression and random forest, which generate a 562 

probabilistic classification output. The area under the receiver operating characteristic curve, as 563 

well as sensitivity and specificity at a pre-determined probability threshold of 0.5, were used as 564 
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performance metrics. Detailed descriptions of each statistical analysis are included in the 565 

corresponding sections of the Methods and in the figure and table legends. 566 

  567 

Study approval 568 

The original cohort study was approved by the Collaborative Pediatric Critical Care 569 

Research IRB at the University of Utah (protocol #00088656). Informed consent was obtained 570 

from parents or other legal guardians, which included permission for collected specimens and 571 

data to be used in future studies. 572 

 573 

Data and code availability 574 

 Raw FASTQ files are protected due to patient privacy concerns. Processed host gene 575 

counts are available in the NCBI Gene Expression Omnibus (GEO) database under accession 576 

GSE212532. FASTQ files containing non-host reads identified by the CZ-ID pipeline, following 577 

subtraction of reads aligning to the human genome, are available in the NCBI Sequence Read 578 

Archive (SRA) database under BioProject accession PRJNA875913. All data, code, and results 579 

related to development and validation of the mNGS classifier, including the microbial taxon 580 

counts, are available at: https://github.com/eranmick/pediatric-mNGS-LRTI-classifier. 581 

Supplementary data files are provided with this publication. 582 
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Table 1: Demographic and clinical cohort characteristics. 769 
 
 Definite 

(n=117) 
No Evidence 

(n=50) P-value* Suspected 
(n=57) 

Indeterminate 
(n=37) 

Female, n (%) 45 (38.5%) 25 (50.0%) 0.18 26 (45.6%) 16 (43.2%) 
Age, median [IQR] 0.5 [0.2, 1.8] 6.5 [1.5, 12.9] <0.001 1.7 [0.5, 6.0] 1.5 [0.6, 10.8] 
Race, n (%)      
White 69 (59.0%) 30 (60.0%) 0.99 33 (57.9%) 20 (54.1%) 
Black/African American 26 (22.2%) 7 (14.0%) 0.29 11 (19.3%) 10 (27.0%) 
Asian 5 (4.3%) 6 (12.0%) 0.088 2 (3.5%) 2 (5.4%) 
American Indian or Alaskan 
Native 1 (0.9%) 1 (2.0%) 0.99 1 (1.8%) 0 (0.0%) 
Native Hawaiian/Other Pacific 
Islander 1 (0.9%) 0 (0.0%) 0.99 0 (0.0%) 0 (0.0%) 
More than one race 3 (2.6%) 1 (2.0%) 0.99 1 (1.8%) 1 (0.03%) 
Unknown 12 (10.3%) 5 (10.0%) 0.99 9 (15.8%) 4 (10.8%) 
Hispanic or Latino, n (%) 17 (14.5%) 6 (12.0%) 0.81 14 (24.6%) 7 (18.9%) 
Comorbidities (CCC)†, n (%) 38 (32.5%) 26 (52.0%) 0.024 34 (59.7%) 14 (37.8%) 
Immunosuppressed, n (%) 3 (2.6%) 7 (14.0%) 0.0085 5 (8.8%) 6 (16.2%) 
Admission category, n (%)      
Medical 117 (100.0%) 28 (56.0%) p<0.001 57 (100.0%) 29 (78.4%) 
Surgical 0 (0.0%) 15 (30.0%) p<0.001 0 (0.0%) 3 (8.1%) 
Trauma 0 (0.0%) 7 (14.0%) p<0.001 0 (0.0%) 4 (10.8%) 
Time from hospital 
admission to intubation 
(hours), median [IQR] 

4.8 [0.0, 23.6] 3.5 [0.0, 20.9] 0.60 2.6 [0.0, 15.9] 1.0 [0.0, 26.5] 
Abx on or before sample 
date‡, n(%) 112 (95.7%) 42 (84.0%) 0.022 51 (89.5%) 30 (69.8%) 

 
 
*Nominal p-values comparing Definite and No Evidence patients. Mann-Whitney test used for all 770 
continuous variables. Fisher’s exact test used for all categorical variables.  771 
†Complex Chronic Conditions(62).  772 
‡Antibiotic treatment started on or prior to the date of sample collection.  773 
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Figure legends 774 
 775 
 776 
Figure 1: Study overview.  777 
Pediatric patients with acute respiratory failure requiring mechanical ventilation were clinically 778 
adjudicated into four LRTI status groups. The Definite and No Evidence groups, whose LRTI 779 
status was presumed to be known, were used to develop an integrated host/microbe mNGS 780 
classifier for LRTI and to evaluate its performance by cross-validation. The classifier was then 781 
applied to the Suspected and Indeterminate groups, whose LRTI status was considered 782 
uncertain. The integrated mNGS classifier combines a host probability of LRTI derived from the 783 
host gene counts, and features of any viral or bacterial/fungal pathogens derived from the non-784 
host (microbial) taxon counts. 785 
 786 
Figure 2: Host gene expression classifier for LRTI diagnosis.  787 
A) Receiver operating characteristic (ROC) curve of the host gene expression classifier in each 788 
of the test folds. The median and range of the area under the curve (AUC) are indicated. B) Bar 789 
plot showing the number and percentage of Definite and No Evidence patients that were classified 790 
according to their clinical adjudication using a 50% out-of-fold probability threshold. C) Heatmap 791 
showing standardized variance-stabilized expression values across all patients (columns) for the 792 
14 final classifier genes (rows) selected from the full Definite and No Evidence dataset. Shown 793 
are the LRTI adjudication (top colored horizontal bar) and out-of-fold LRTI probability (top dot plot) 794 
of each patient, and the regression coefficient of each selected gene (side bar plot). 795 
 796 
Figure 3: Metagenomic identification of respiratory pathogens.  797 
A) Bar plot showing the distribution of viruses detected by mNGS after background filtering in the 798 
Definite and No Evidence patients. RSV, respiratory syncytial virus; HRV, human rhinovirus; PIV, 799 
parainfluenza virus; HMPV, human metapneumovirus; HCoV, human coronavirus; IV, influenza 800 
virus; ADV, adenovirus; HBoV, human bocavirus; CMV, cytomegalovirus. B) Boxplot showing the 801 
log10-transformed summed abundance, measured in reads-per-million (rpM), of all pathogenic 802 
viruses detected in each patient, separated by group. Prior to log10-transformation, the minimum 803 
non-zero rpM value in the dataset was divided by 10 and added to all the samples. Horizontal 804 
lines denote the median, box hinges represent the interquartile range (IQR), and whiskers extend 805 
to the most extreme value no greater than 1.5*IQR from the hinges. C) Analysis steps applied as 806 
part of the rules-based model (RBM), a heuristic approach designed to identify potential 807 
bacterial/fungal pathogens in the context of LRTI. D) Graphical illustration of the RBM results in 808 
two representative Definite patients. Each dot is a bacterial/fungal species most abundant in its 809 
respective genus. A species above the maximum drop-off in rpM has a red fill, otherwise the fill 810 
is white. A species on the list of known respiratory pathogens has a black outline, otherwise the 811 
outline is gray. E) Bar plot showing the distribution of bacteria/fungi called as potential pathogens 812 
by the RBM in the Definite and No Evidence patients. Strep. spp., Streptococcus species other 813 
than S. pneumoniae. F) Boxplot showing the proportion of the RBM-identified pathogen(s) out of 814 
all non-host counts in each patient, separated by group. Horizontal lines denote the median, box 815 
hinges represent the interquartile range (IQR), and whiskers extend to the most extreme value no 816 
greater than 1.5*IQR from the hinges.  817 
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Figure 4: Integrated host/microbe classifier for LRTI diagnosis.  818 
A) Schematic of the integrated host/microbe classifier. B) Receiver operating characteristic (ROC) 819 
curve of the integrated classifier in each of the test folds. The median and range of the area under 820 
the curve (AUC) are indicated. C) Bar plot showing the number and percentage of Definite and 821 
No Evidence patients that were classified according to their clinical adjudication using a 50% out-822 
of-fold probability threshold. D) The shift in out-of-fold LRTI probability from the host classifier to 823 
the integrated classifier for Definite (left panel) and No Evidence (right panel) patients. Dark 824 
connecting lines represent samples whose LRTI probability shifted across the 50% threshold. 825 
 826 
Figure 5: Application of the integrated classifier to Suspected and Indeterminate patients.  827 
A) Bar plot showing the number and percentage of Suspected and Indeterminate patients that 828 
were classified as LRTI+ by the integrated classifier using a 50% probability threshold.                     829 
B) Viruses detected by mNGS and bacteria/fungi identified by the RBM across the patients 830 
classified as LRTI+ in the Suspected and Indeterminate groups. HRV, human rhinovirus; RSV, 831 
respiratory syncytial virus; PIV, parainfluenza virus; HBoV, human bocavirus; HMPV, human 832 
metapneumovirus; HPeV, human parechovirus; IV, influenza virus; HCoV, human coronavirus. 833 
C) Overview of inputs and output of the integrated classifier for all Suspected and Indeterminate 834 
patients. Top bars denote the integrated probability of LRTI and are colored by patient group; 835 
black dots represent the input host LRTI probability; bottom vertical bars show the input log10-836 
transformed viral and bacterial scores. Dashed lines indicate the 50% LRTI probability threshold 837 
and the 15% rule-out threshold. 838 
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Supplemental Figures 
 

 

 
 
Supplemental Figure 1: Age distribution across the four LRTI status groups. P-value for the 
comparison between Definite and No Evidence patients was calculated using a Mann-Whitney 
test. 
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Supplemental Figure 2: A) Volcano plot highlighting genes differentially expressed (DE) 
between Definite and No Evidence patients. Colored genes reached statistical significance 
(adjusted p-value < 0.05). B) Normalized enrichment scores of selected REACTOME pathways 
that reached statistical significance (adjusted p-value < 0.05) in the GSEA using DE genes 
between Definite and No Evidence patients. 
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Supplemental Figure 3: Expression of eight host classifier genes as a function of age in Definite 
(red) and No Evidence (blue) patients.  
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5 
 

Supplemental Figure 4: A) Diagram depicting the agreement at the patient level between clinical 
upper respiratory PCR viral testing and lower airway mNGS detection after background filtering 
in the Definite group. Agreement between the two methods in a patient was defined as at least 
one virus identified by both. B) Bar plot showing the number of cases of each virus detected by 
clinical upper respiratory PCR testing and the proportion that was also present by mNGS after 
background filtering. RSV, respiratory syncytial virus; ADV, adenovirus; PIV, parainfluenza virus; 
HCoV, human coronavirus; HMPV, human metapneumovirus; HRV, human rhinovirus; IV, 
influenza virus. C) Boxplots of bacterial+viral microbiome alpha diversity, measured by the 
Shannon index, in Definite and No Evidence patients. Horizontal lines denote the median, box 
hinges represent the interquartile range (IQR), and whiskers extend to the most extreme value no 
greater than 1.5*IQR from the hinges. D) Boxplots of bacterial-only alpha diversity measured by 
the Shannon index. Definite and No Evidence patients are split by whether a potential pathogen 
was identified by the RBM. P-values in C) and D) were calculated by a Mann-Whitney test with 
Bonferroni correction. E) Diagram depicting the agreement at the patient level between clinical 
culture and the results of the RBM in the Definite group. Agreement between the two methods in 
a patient was defined as at least one species identified by both. F) Bar plot showing the number 
of cases of each species detected by clinical culture and the proportion that was also present by 
mNGS after background filtering. Streptococcus spp., Streptococcus species other than S. 
pneumoniae.  
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Supplemental Figure 5: A) Expression of eight host classifier genes in Definite patients with only 
bacterial pathogens identified by the RBM (B; n=7), only viral pathogens detected by mNGS (V; 
N=36), viral and bacterial pathogens (V+B; n=71), and the No Evidence patients (n=50) for 
comparison. Three patients from the Definite group are not shown because they did not have any 
pathogens identified by mNGS. One No Evidence sample in the plot of SLC38A2 was omitted 
since it was an extreme outlier. B) Volcano plot highlighting genes differentially expressed (DE) 
between Definite patients with any bacterial infection (bacterial-only + co-infection) and viral-only 
infection. Genes colored in purple reached statistical significance (adjusted p-value < 0.05).           
C) Normalized enrichment scores of selected REACTOME pathways that reached statistical 
significance (adjusted p-value < 0.05) in the GSEA using the DE genes.  
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Supplemental Figure 6: Scatterplot of the host LRTI probability (x-axis) and the sum of the 
log10-transformed microbial scores (y-axis) in the Definite and No Evidence patients. 
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Supplemental Tables 
 
Supplemental Table 1: Host genes selected by lasso logistic regression in each of the 5 cross-
validation train/test splits, and the area under the receiver operating characteristic curve (AUC) of 
a random forest classifier using the selected genes.  
 

Test fold Gene ID Gene symbol Regression 
coefficient AUC 

1 (Intercept) NA -2.0280997 0.996 

1 ENSG00000115523 GNLY 0.40435424   

1 ENSG00000114737 CISH 0.29736499   

1 ENSG00000185897 FFAR3 0.2334893   

1 ENSG00000134294 SLC38A2 0.23225034   

1 ENSG00000204264 PSMB8 0.14737796   

1 ENSG00000133101 CCNA1 0.13698008   

1 ENSG00000125347 IRF1 0.08788657   

1 ENSG00000152766 ANKRD22 0.01618487   

1 ENSG00000103356 EARS2 -0.005208   

1 ENSG00000272168 CASC15 -0.0129449   

1 ENSG00000163710 PCOLCE2 -0.0141204   

1 ENSG00000196139 AKR1C3 -0.0145091   

1 ENSG00000163735 CXCL5 -0.0202633   

1 ENSG00000164631 ZNF12 -0.0296153   

1 ENSG00000162929 KIAA1841 -0.031873   

1 ENSG00000102962 CCL22 -0.0470626   

1 ENSG00000196305 IARS1 -0.0541444   

1 ENSG00000259094 AC013457.1 -0.0642868   

1 ENSG00000203865 ATP1A1-AS1 -0.0785439   

1 ENSG00000115414 FN1 -0.0963792   

1 ENSG00000132300 PTCD3 -0.1094826   

1 ENSG00000273173 SNURF -0.1236364   

1 ENSG00000138207 RBP4 -0.1867265   

1 ENSG00000170323 FABP4 -0.2260672   

1 ENSG00000182141 ZNF708 -0.2407744   

2 (Intercept) NA -0.4183313 0.953 

2 ENSG00000134294 SLC38A2 0.21115084   

2 ENSG00000185897 FFAR3 0.17219249   

2 ENSG00000115523 GNLY 0.15221918   

2 ENSG00000204264 PSMB8 0.0974774   

2 ENSG00000152766 ANKRD22 0.06800369   

2 ENSG00000272821 U62317.2 0.05245633   

2 ENSG00000187608 ISG15 0.03953433   

2 ENSG00000162929 KIAA1841 -0.0224986   

2 ENSG00000196139 AKR1C3 -0.0991982   

2 ENSG00000170323 FABP4 -0.1720699   
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2 ENSG00000253729 PRKDC -0.2010562   

2 ENSG00000138207 RBP4 -0.2940594   

3 (Intercept) NA 0.27758103 0.986 

3 ENSG00000185507 IRF7 0.29760005   

3 ENSG00000133101 CCNA1 0.22848885   

3 ENSG00000115523 GNLY 0.20275662   

3 ENSG00000185897 FFAR3 0.09319602   

3 ENSG00000134294 SLC38A2 0.05523801   

3 ENSG00000272821 U62317.2 0.03959668   

3 ENSG00000196189 SEMA4A 0.03111383   

3 ENSG00000136231 IGF2BP3 0.01793655   

3 ENSG00000114737 CISH 0.01066616   

3 ENSG00000117143 UAP1 -0.0043278   

3 ENSG00000163735 CXCL5 -0.0087013   

3 ENSG00000113068 PFDN1 -0.0087115   

3 ENSG00000149021 SCGB1A1 -0.0088169   

3 ENSG00000232629 HLA-DQB2 -0.0158939   

3 ENSG00000164631 ZNF12 -0.0351792   

3 ENSG00000273173 SNURF -0.0502438   

3 ENSG00000196139 AKR1C3 -0.0532949   

3 ENSG00000170324 FRMPD2 -0.0607793   

3 ENSG00000259094 AC013457.1 -0.0637096   

3 ENSG00000272660 AC090425.2 -0.1024448   

3 ENSG00000008226 DLEC1 -0.1276673   

3 ENSG00000272168 CASC15 -0.1499889   

3 ENSG00000170323 FABP4 -0.4076148   

4 (Intercept) NA -5.181784 0.954 

4 ENSG00000175073 VCPIP1 0.50212823   

4 ENSG00000115523 GNLY 0.23413097   

4 ENSG00000135604 STX11 0.23226792   

4 ENSG00000168394 TAP1 0.13854581   

4 ENSG00000185897 FFAR3 0.13639215   

4 ENSG00000185885 IFITM1 0.07866599   

4 ENSG00000133106 EPSTI1 0.05899777   

4 ENSG00000158769 F11R -0.0055638   

4 ENSG00000163710 PCOLCE2 -0.0206461   

4 ENSG00000149021 SCGB1A1 -0.0263191   

4 ENSG00000182141 ZNF708 -0.1006603   

4 ENSG00000138207 RBP4 -0.1413799   

4 ENSG00000170323 FABP4 -0.2005039   

5 (Intercept) NA 0.5726104 0.967 

5 ENSG00000204264 PSMB8 0.27278452   

5 ENSG00000115523 GNLY 0.0762971   
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5 ENSG00000175073 VCPIP1 0.05579582   

5 ENSG00000185897 FFAR3 0.04184826   

5 ENSG00000188820 CALHM6 0.03110363   

5 ENSG00000133106 EPSTI1 0.02410902   

5 ENSG00000187608 ISG15 0.00687972   

5 ENSG00000163710 PCOLCE2 -0.0191247   

5 ENSG00000151914 DST -0.029031   

5 ENSG00000163735 CXCL5 -0.1149234   

5 ENSG00000170323 FABP4 -0.389078   

 
 
 
Supplemental Table 2: Genes selected for the final host classifier by lasso logistic regression 
applied to all the Definite and No Evidence patients, with their regression coefficients. The number 
of times the gene was selected across the 5 cross-validation (CV) splits is also indicated. 
 

Gene ID Gene symbol Gene product Regression 
coefficient 

Times 
selected in CV 

ENSG00000115523 GNLY Granulysin 0.257 5 

ENSG00000204264 PSMB8 Proteasome subunit beta 8 0.249 3 

ENSG00000185897 FFAR3 Free fatty acid receptor 3 0.224 5 

ENSG00000134294 SLC38A2 Solute carrier family 38 member 2 0.214 3 

ENSG00000187608 ISG15 ISG15 ubiquitin-like modifier 0.070 2 

ENSG00000125347 IRF1 Interferon regulatory factor 1 0.027 1 

ENSG00000162929 
KIAA1841 

(also known as 
SANBR) 

SANT and BTB domain regulator of class 
switch recombination -0.014 2 

ENSG00000272660 AC090425.2 Long non-coding RNA, antisense to 
ACTL6A -0.016 1 

ENSG00000196139 AKR1C3 Aldo-keto reductase family 1 member C3 -0.019 3 

ENSG00000163735 CXCL5 C-X-C motif chemokine ligand 5 -0.019 3 

ENSG00000080546 SESN1 Sestrin 1 -0.033 0 

ENSG00000163710 PCOLCE2 Procollagen C-endopeptidase enhancer 2 -0.033 3 

ENSG00000138207 RBP4 Retinol binding protein 4 -0.167 3 

ENSG00000170323 FABP4 Fatty acid binding protein 4 -0.297 5 

(Intercept) -3.112  
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Supplemental Table 3: Differential expression results for the 14 final classifier genes comparing: 
A) No Evidence patients under four years old (n=23; median age 1.3 years) versus over four 
years old (n=27; median age 12.5), and B) Definite patients under four years old (n=100; median 
age 0.4) versus No Evidence patients under four years old (n=23; median age 1.3).  
A 

Gene 
symbol Log2 fold-change P-value Adjusted P-value 

GNLY -1.14 0.01 0.72 

PSMB8 -0.33 0.21 0.82 

FFAR3 -0.43 0.33 0.87 

SLC38A2 -0.57 0.07 0.75 

ISG15 -1.68 0.01 0.72 

IRF1 -0.30 0.25 0.83 

KIAA1841 0.14 0.59 0.94 

AC090425.2 1.48 0.07 0.76 

AKR1C3 0.81 0.10 0.76 

CXCL5 0.24 0.67 0.95 

SESN1 0.27 0.47 0.91 

PCOLCE2 0.54 0.21 0.81 

RBP4 -0.04 0.95 0.99 

FABP4 -0.56 0.45 0.90 

B 
Gene 

symbol Log2 fold-change P-value Adjusted P-value 

GNLY 2.73 2.11E-08 1.46E-06 

PSMB8 1.11 7.78E-08 4.22E-06 

FFAR3 2.93 9.70E-12 4.25E-09 

SLC38A2 0.60 2.50E-05 4.33E-04 

ISG15 3.49 3.71E-09 3.89E-07 

IRF1 1.52 5.18E-12 2.88E-09 

KIAA1841 -0.89 2.84E-05 4.76E-04 

AC090425.2 -0.18 7.50E-01 8.56E-01 

AKR1C3 -2.48 2.24E-12 1.42E-09 

CXCL5 -2.63 4.62E-09 4.52E-07 

SESN1 -0.53 4.92E-02 1.38E-01 

PCOLCE2 -2.06 2.60E-09 2.93E-07 

RBP4 -3.64 1.51E-17 1.00E-13 

FABP4 -5.54 4.02E-26 5.36E-22 
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Supplemental Table 4: Comparison of mNGS viral detection in TA samples with PCR viral 
detection in nasopharyngeal (NP) swabs or in the same TA samples in a subset of patients.  
 

Definite patients with matched NP 
swab and TA viral PCR testing 
(n=21) 

Agreement of 
mNGS with  

NP swab PCR 

Concordance of 
mNGS and 

 NP swab PCR 

Agreement of 
mNGS with  

TA PCR 

Concordance of 
mNGS and  

TA PCR 
All viruses 22/34 = 64.7% 22/37 = 59.5% 23/24 = 95.8% 23/26 = 88.5% 

     Respiratory syncytial virus 11/12 = 91.7% 11/12 = 91.7% 10/10 = 100% 10/11 = 90.9% 

     Rhinovirus 4/7 = 57.1% 4/10 = 40% 6/6 = 100% 6/7 = 85.7% 

     Adenovirus 0/6 = 0% 0/6 = 0% 0/0 = 100% 0/0 = 100% 

     Coronavirus 2/3 = 66.7% 2/3 = 66.7% 2/2 = 100% 2/2 = 100% 

     Human metapneumovirus 3/3 = 100% 3/3 = 100% 3/3 = 100% 3/3 = 100% 

     Parainfluenza virus 2/3 = 66.7% 2/3 = 66.7% 2/3 = 66.7% 2/3 = 66.7% 

 
Agreement reflects the number of viruses detected by mNGS out of the total number of viruses detected by PCR.    
Concordance reflects the number of viruses detected by both mNGS and PCR out of the total number of viruses detected by at least 
one method. 
 
 
Supplemental Table 5: Per-fold area under the curve (AUC) values for the integrated 
host/microbe logistic regression classifier. 

Test 
fold AUC 

1 1.000 

2 0.953 

3 0.986 

4 0.963 

5 0.988 
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Supplemental Table 6: A) mNGS and clinical microbiology results for the Definite and No 
Evidence patients whose integrated LRTI classification was inconsistent with their adjudication. 
B) Primary diagnoses of the No Evidence patients whose integrated LRTI classification was 
inconsistent with their adjudication. 
 
A 

Patient LRTI 
adjudication 

Host 
P(LRTI) 

Clinical 
microbiology results 

mNGS 
viruses 

Viral 
ΣrpM 

mNGS  
RBM hits 

Dominance 
of RBM hits 

Integ. 
P(LRTI) 

P2 Definite 0.30 S. aureus,  
HRV  0 S. aureus 0.62 0.10 

P3 Definite 0.30 HRV, 
ADV HRV C 2.15  0 0.22 

P6 Definite 0.24 PIV, 
HCoV 

PIV 4, 
HCoV NL63 87.61  0 0.29 

P124 Definite 0.28 
HCoV, 

S. aureus, 
S. viridans 

HCoV 229E 41.58  0 0.41 

P185 Definite 0.07 
S. maltophilia,  

S. pneumoniae,  
K. pneumoniae 

 0 S. maltophilia, 
S. pneumoniae 0.75 0.01 

P189 Definite 0.30 S. aureus CMV 0.38 S. aureus 0.75 0.43 

P195 Definite 0.54 S. viridans, 
E. coli  0  0 0.23 

P218 Definite 0.43 M. catarrhalis  0  0 0.16 
P1 No Evidence 0.67 No testing performed HCoV NL63 44.94 P. aeruginosa 0.31 0.95 

P30 No Evidence 0.35 No culture performed, 
negative PCR HRV C 22.15 M. catarrhalis 0.85 0.68 

P75 No Evidence 0.96 No culture performed, 
negative PCR  RSV 44.53  0 1.00 

P166 No Evidence 0.79 No testing performed  0 S. aureus 0.82 0.92 
P175 No Evidence 0.69 No testing performed HCoV NL63 4.33  0 0.78 

P250 No Evidence 0.78 Negative culture,  
no PCR performed  0  0 0.62 

rpM, reads-per-million; RBM, rules-based model. 
 
ADV, adenovirus 
HCoV, human coronavirus 
CMV, cytomegalovirus 
HRV, human rhinovirus 
PIV, parainfluenza virus 
RSV, respiratory syncytial virus 
 
 
B  

Patient LRTI 
adjudication 

Primary 
diagnosis 

P1 No Evidence Neurological 
P30 No Evidence Trauma 
P75 No Evidence Non-infectious respiratory distress 

P166 No Evidence Ingestion (drug/toxin) 
P175 No Evidence Ingestion (drug/toxin) 
P250 No Evidence Seizures 
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Supplemental Data Files 
 
Supplemental Data File 1. Basic sample metadata. 
 
Supplemental Data File 2. Differential expression (DE) analyses between: i) Definite and No 
Evidence patients; ii) Definite patients with any bacterial LRTI and with purely viral LRTI. 
 
Supplemental Data File 3. Gene set enrichment analysis (GSEA) results from the DE between: 
i) Definite and No Evidence patients; ii) Definite patients with any bacterial LRTI and with purely 
viral LRTI. 
 
Supplemental Data File 4. Pathogens identified in Definite patients by clinical testing and by 
mNGS.  
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