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Abstract:  
 

Patients with chronic anemia, or low blood hemoglobin levels, are frequently 
subjected to the cost, inconvenience, and discomfort of traditional hematology analyzer-
based measurements of blood hemoglobin levels via complete blood counts. Elimination 
of the need for complete blood count testing for hemoglobin screening is an unmet clinical 
need that we previously addressed by developing a non-invasive smartphone app that 
estimates hemoglobin levels via image analysis of fingernail bed images. In this work, we 
present additional data yielding significant improvement upon our previously established 
technology and describe the clinical validation, and real-world translation of the 
technology into a commercial product. To improve accuracy and create a clinical use 
case, we trained the app algorithm on individuals with chronic anemia to personalize the 
image analysis algorithm for estimating hemoglobin levels. Individual-level differences 
associated with using the app (variations between individuals, how a user captures 
images, the specific smartphone they use, the lighting conditions in the location they take 
the pictures, and biological variability within a population) appear to be the greatest 
source of measurement variability within larger sample sets. Therefore, we hypothesized 
that personalization of the algorithm could correct for user-to-user variability and translate 
to improved accuracy at the individual level.  
 
To test this hypothesis, we trained and tested personalized algorithms for individuals in 
clinical and “real world” settings. We enrolled 35 chronically anemic subjects [a chronic 
kidney disease (CKD) cohort] in a clinical study wherein the app algorithm was trained 
using complete blood count data and paired fingernail bed images, then tested against 
complete blood count data at subsequent study timepoints. After personalization, testing 
data revealed a mean absolute error (MAE) of 0.74 g/dL with a root mean squared error 
(RMSE) of 0.97 g/dL across all testing visits across all subjects, a significant improvement 
when compared to performance without personalization in the same user group (1.36 
g/dL MAE and 1.70 g/dL RMSE, p = 3.13E-11). The app was also used in the “real world” 
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by real app users who self-reported lab/complete blood count blood draw results. App 
performance findings were consistent with analysis of self-reported data from 17 
individuals using our app. After training of the individual app algorithm in the “real world”, 
testing data revealed a mean absolute error (MAE) of 0.62 g/dL with a root mean squared 
error (RMSE) of 0.85 g/dL when 4 training data points were used, an improvement when 
compared to performance of the app without personalization in the same user group (0.71 
g/dL MAE and 1.27 g/dL RMSE). The personalized app accuracy is similar to that of 
other noninvasive Hgb measurement technologies currently on the market as 
medical devices with US Food & Drug Administration (US FDA) clearance. Thus, 
our technology represents a significant step forward towards true personalized 
medicine in a digital healthcare setting. 
 
Introduction: 
 

Anemia, characterized by low hemoglobin (Hgb) levels, affects over 2 billion 
individuals worldwide each year(1). In the US alone, there are over 83 million people at 
high risk for anemia and over 10 million people living with chronic anemia, including those 
with blood disorders, cancer, chronic kidney disease, and nutritional deficiencies(2-5). 
Those with chronic anemia are routinely screened for anemia via invasive blood tests 
(complete blood counts, CBCs) that necessitates travel to a clinic, trained technicians, 
and sophisticated hematology analyzers(6). For some patients, this routine must be 
repeated multiple times per month.  
 
Smartphones are poised to transform the health and wellness industry. As smartphone 
use becomes ubiquitous, and smartphone hardware becomes more advanced, powerful 
computing and imaging technologies are becoming more accessible to global populations 
(7). Tools to leverage the unique capabilities of smartphones are becoming increasingly 
available to those suffering from a variety of health conditions, empowering them to live 
and maintain healthy lifestyles while proactively managing their conditions in collaboration 
with clinicians(8-10). However, the current clinical paradigm for many health conditions 
(particularly those of the blood), is centered around expensive, uncomfortable, and time-
consuming invasive blood-based testing(6, 11). To advance past these traditional clinical 
practices, we view the emergence of smartphones as tools that can supplement, 
enhance, or perhaps even replace existing treatment paradigms, particularly where it 
comes to invasive testing(12-14). This is especially true in today’s COVID-19 pandemic, 
where social distancing and over-filled hospitals have limited the availability and 
accessibility of clinical sites for non-urgent patient visits(15, 16). This is a particularly 
troubling development for those managing chronic illness and chronic symptoms, 
including anemia. Anemia management relies on gold standard testing for Hgb level that 
requires the individual go to a medical facility, undergo an invasive venous blood draw, 
and wait for the result from the laboratory(17). This paradigm is not only costly and 
inconvenient, but also a potentially significant cause of health disparities along 
geographic, age, ethnic, disability, and socio-economic lines(18). With a goal to change 
this paradigm, we recently reported a noninvasive smartphone app to estimate Hgb 
levels(19). This app provides users the ability to estimate their Hgb levels noninvasively, 
from the comfort of their own homes. Access to rapid, Hgb estimates has the potential to 
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enable billions of individuals at high risk for anemia to take more active and proactive 
roles in their healthcare irrespective of geographic, accessibility, and financial hurdles(20, 
21).  
 
The non-invasive smartphone app estimates Hgb levels by quantifying the pallor of 
fingernail beds via image analysis (Figure 1a). The image analysis algorithm has now 
been trained on 1,479 user-acquired images and their paired CBC measurements (Figure 
1b). Previous clinical assessments determined that the smartphone app is accurate within 
+/-2.4 g/dL and is suitable for Hgb screening, which can be important in the maintenance 
of a healthy lifestyle for individuals with typically dysregulated Hgb levels(19). The 
“fingernail selfie” app was released in the US for both iOS and Android powered 
smartphones in December 2021 and has 118,533 user accounts and 571,552 hemoglobin 
estimations completed as of November 30, 2022 at 1:55PM ET (Figure 1b). 
 
Whereas our originally described tool is appropriate for Hgb screening and maintenance 
of a healthy lifestyle, the initial reported accuracy is not sufficient to make diagnoses or 
inform clinical decisions. However, a more precise and accurate tool could have a 
significant positive impact on the population of people with known chronic anemia. 
Individuals who suffer from a variety of conditions such as serious hemoglobinopathies 
and blood disorders, cancer (and associated chemotherapies), or chronic kidney disease, 
require clinically accurate means to measure Hgb levels to make diagnoses, mitigate 
conditions, or inform treatment decisions. We propose that smartphones, enabled with 
high-performing and validated software, can perform as digital health aids that are 
personalized to the single individual. Additionally, individual smartphone users can record 
information pertaining to their specific health condition(s), including symptoms, test 
results, and medications. This information can then be utilized by digital health tools to 
personalize those tools and improve accuracy for the individual user. This true example 
of “personalized medicine” could fundamentally shift the treatment paradigm for a patient 
suffering from a variety of medical conditions worldwide(22, 23).  
 
In the context of a chronic anemia patient, the ability to personalize a tool to measure 
their individual Hgb level would enable tracking of Hgb levels without clinical intervention. 
For example, a transfusion-dependent hemoglobinopathy patient could use this tool to 
coordinate with their physician to determine exactly when they require their transfusion, 
as opposed to the guesswork involved with analysis of historical Hgb levels. 
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c 

“Fingernail selfie” Smartphone App Data Summary 

Fingernail images coupled with CBC Hgb levels that 
power the app algorithm 
1,479* Data points support the algorithm & originate 

from the following clinical settings: 
• Hospital (Inpatient) 
• Geriatrics Clinic 
• Primary Care Clinical 
• Refugee Care Clinic 
• Blood Donation Center 
Smartphone app user base statistics 
118,533* user accounts created (available in the US)  
571,552* real world Hgb level estimates conducted 
*as of 11/30/2022 1:55PM ET 

Figure 1: a. AnemoCheck smartphone app. The AnemoCheck app works by capturing an image of fingernail beds 
and calculating how pale the nailbed is. The paleness in the nailbed is correlated to a Hgb level estimate that is 
displayed on screen. b. Current smartphone app users and usage. The smartphone app used in this study is 
available in the US for both iOS and Android download. Map shows the locations of a random sample of 1,000 
smartphone app users across the United States. The table highlights the data breakdown powering the algorithm, and 
number of app accounts and uses as of November 30, 2022 at 1:55PM ET. c. Personalized algorithm training and 
testing. In this publication, we characterized the effect of training algorithms on the individual level via both a clinically 
validated study and “real world” data collection. Users captured images of nailbeds on the same days as venous blood 
draws with blood Hgb levels that were determined by the current clinical standard, a clinical hematology analyzer. The 
app algorithm was trained by inputting blood Hgb level data with images of nailbeds taken on the same day (training). 
After the algorithm was trained, the user tested the newly customized algorithm (testing). Results from the customized 
algorithm were compared with blood Hgb levels taken or reported within 24 hours of app use to establish accuracy of 
the customized algorithm. Therefore, proof-of-concept was established for improving the app algorithm using 
personalized calibration in both clinical and real-world examples of personalized medicine.  
 
 
 

c. 

b. 
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Our previous data suggest that most of the error associated with app-based 
measurements arises from individual variability as opposed to random errors in the image 
analysis algorithm. Individual variability produces a consistent offset between the app-
measured Hgb level and the lab-determined CBC, which we hypothesized could be 
corrected via individualized algorithm training. To that end, we modified our Hgb 
estimation smartphone app to permit individual, personalization by taking images using 
the app on the same day as a CBC/lab blood draw (Figure 1b). This enables the algorithm 
to be baselined and trained on the individual level, thereby correcting for physiological 
variability of the finger nailbeds, variability in the way a user may capture an image, 
smartphone models, and background lighting conditions. This results in user-specific 
correction factors that are applied to the now-personalized algorithm, thereby improving 
performance for that specific person. This concept was originally tested in a small pilot on 
a healthy male, anemic female, and two chronically anemic males, resulting in 
improvements in the precision and accuracy of the app-obtained Hgb level estimates for 
individual users(19). Since that preliminary work, we have developed and publicly 
launched the app as a health and wellness tool for both the iOS and Android mobile 
environments. In this work, we present additional data and a major technical 
advance from our previously reported technology resulting in significant 
improvement in accuracy, as well as clinical and real-world validation of the tool.  
 
Methods and Materials: 
 
Smartphone app and algorithm: Initial app Hgb measurements were done by adapting 
a previously described algorithm into a smartphone app(19). Hgb calculations are done 
off-device in a cloud-based infrastructure hosted by Amazon Web Services (Amazon, Inc. 
Seattle, WA). Cognito (Amazon, Inc. Seattle, WA) is used as our authorization service. 
Elastic Compute Cloud (EC2, Amazon, Inc. Seattle, WA) instances are used to run the 
off-device app processes (e.g., calculate the Hgb result, return results history, and 
manage data traffic and storage)  All user data is stored in a MySQL (Oracle, Santa Clara, 
CA) relational database service (RDS, Amazon, Inc. Seattle, WA), with the exception of 
user images, which were stored in Simple Storage Service (S3, Amazon, Inc. Seattle, 
WA), with URL links in the RDS. Locally, the app was loaded onto two smartphone models 
iPhone 11 Pro [(Apple, Cupertino, CA) running iOS 14 (Apple, Cupertino, CA)] and 
Samsung Galaxy S20 [(Samsung, Suwon-Si, South Korea) running Android 11 (Google, 
Mountain View, CA)]. In addition to Hgb estimation capabilities, the app had the ability to 
create and verify an account, store results history, accept user-entered lab tests, and 
assign a patient ID.  
 
Clinical Study: The clinical study characterized the improvement in performance in a 
chronically anemic patient population suffering from chronic kidney disease (CKD)(2, 24). 
The clinical team followed patients over the course of eight clinic visits: four “training” 
visits and four “testing” visits. During each visit, study personnel performed both app-
based and CBC Hgb level measurements. During the first four (training) visits, we 
correlated the app’s estimates with the CBC results to incorporate patient-specific 
correction factors into the image analysis algorithm. During the second group of four 
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(testing) visits, study personnel used the newly trained app to obtain app Hgb levels and 
compared them with CBC values obtained via venous blood draw.  
Real World Study: While we were conducting the clinical study, the app was publicly 
available on both the App Store (Apple, Cupertino, CA) and Play Store (Google, Mountain 
View, CA). During this period, users were free to download our app and use the same 
functionality described in this study, namely, the ability to take a test to generate a Hgb 
estimate, as well as enter in laboratory-determined Hgb levels. Utilizing these self-
reported data, we were able to measure the accuracy of the app in a real-world setting, 
ultimately confirming the results we found in the clinical study.  
 
Clinical Study Protocol: The study was divided into 2 phases: Personalized algorithm 
training and personalized algorithm testing.  
 
Phase 1 – Training: Clinical study personnel were trained on how to properly capture 
images with the smartphones according to methods described previously(19). Care was 
taken to ensure camera flash reflections were avoided and that the fingernails were 
centered in frame. Following subject screening and written informed consent, study 
personnel captured images of the subject’s fingernail beds according to instructions 
provided by the app team. The first four visits were used for training. Immediately after 
image collection, subjects received a venipuncture blood draw by a trained clinician or 
lab technician. The resulting blood sample was sent to a 3rd party laboratory (LabCorp – 
Burlington, NC; Quest Diagnostics – Secaucus, NJ; or PathGroup – Brentwood, TN) for 
processing on a hematology analyzer, where a complete blood count (CBC) was 
obtained. When results for the subject were returned, the clinical study coordinator 
reported the data, along with other demographic and diagnostic information about the 
subject to the app team. This process was repeated 3 more times for each subject (every 
2 weeks +/- 7 days) for a total of 4 training visits that yielded images and paired blood 
Hgb data points. 
 
Intermediate step – App Personalization: In between phase 1 and phase 2 of the study, 
we analyzed the 4 training images for each subject to create a correction factor specific 
to each patient (see Data collection and model development section below). This 
correction factor was then used to update the backend Hgb estimation EC2 instance to 
automatically adjust the Hgb estimation algorithm according to the subjects’ individual 
correction factors.  
  
Phase 2 – Testing: Subjects completing Phase 1 were invited to continue the study to 
validate their personalized algorithms. The study allowed for a maximum of 4 testing 
visits. While using the app, the study coordinator selected a patient’s study ID, which 
triggered the app to use the subject-specific customized algorithm. The study coordinator 
then used the app on the subject to determine a Hgb estimate. Immediately after image 
collection, subjects received a venipuncture blood draw by a trained clinician or lab 
technician. The blood sample was sent to a 3rd party laboratory (LabCorp – Burlington, 
NC; Quest Diagnostics – Secaucus, NJ; or PathGroup – Brentwood, TN) for processing 
on a hematology analyzer, where a CBC was obtained. When results for the subject were 
returned, the clinical study coordinator recorded the data, along with other demographic 
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and diagnostic information about the subject to the app team. This process was repeated 
a maximum of 3 more times for each subject (every 2 weeks +/- 7 days) with between 1-
4 testing images and comparison blood Hgb data points being collected. This comparison 
was used to validate each subject’s personalized correction factor. After the final test, the 
study coordinator conducted a closeout survey to complete the study. Subjects were 
compensated $100 per visit for the duration of the study.  
 
In total, 40 subjects were enrolled in this study. Of that cohort, 35 subjects completed 
phase 1 of the study and had at least 1 phase 2 visit. Both phases were completed by 32 
subjects. One subject of those 32 was removed from the study due to fingernail 
discolorations that were determined to meet the exclusion criteria after enrollment and 
data collection. In the original cohort of 40 subjects, two subjects unfortunately passed 
away before completion of the study due to their underlying conditions, and 6 subjects 
voluntarily withdrew from the study at various stages.  

 
Data collection and model development: The data collection process began with the 
capturing of images via the smartphone application in phase 1. The clinical coordinator 
managed this process and notified the study coordinator when each subject visit occurred 
to alert the team to new images and data. Following notification, the study coordinator 
coordinated with our data science team to perform quality assurance on each image. The 
study coordinator then notified the clinical coordinator of any potential issues in the data. 
After passing QA, the data was added to a master study enrollment log containing all 
deidentified patient data. The photos from the subject visit were then added to an image 
database for analysis. 
 
Model adjustment parameters were built for each patient using their phase 1 data. 
Calculation of each patient’s personal adjustment parameter was completed by first 
converting the data for that patient into a .csv file. A script was then used to extract all the 
necessary data required for Hgb measurement(19), which was output a Pandas data 
frame or Python dictionary depending on use. After this processing step, data from three 
replicate images for each phone model at each patient visit were averaged together, and 
from that an offset was computed relative to the base Hgb estimation model. This relative 
offset was computed for each patient visit and the average of the four training visits was 
calculated. The resulting average was a patient-specific correction for each smartphone 
device. These parameters were then recorded and used to update the smartphone 
application source code to implement the subject specific models. For every subsequent 
visit after the fourth visit (phase 2 testing), the corrected model was used to approximate 
the Hgb levels for a patient. 
 
Data privacy and Safety:  Clinical data - All patient data were de-identified by the clinical 
team prior to sharing with the research team. No personally identifiable data were shared 
with the research team. All protocols and procedures for the clinical study were approved 
by an institutional review board (Advarra IRB, Pro00049129).  

 
Subject population - The goal of this study was to enroll 40 patients with CKD within stage 
3-5 to represent a chronically anemic population. The study enrolled 40 patients with CKD 
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of various stages (20 Stage 3, 16 Stage 4, 4 Stage 5). Eighteen patients had diabetes. 
Of this total, 6 subjects voluntarily withdrew from the study prior to completion and 2 
subjects passed away prior to completing the study due to health complications unrelated 
to the study. The following exclusion criteria were used to determine enrollment: 

• Subjects with chronic persistent esophageal reflux disease unless being 
actively treated for it; 

• Patients with known Gastric or Duodenal peptic ulcer disease during the 
previous 6 months;  

• Subjects undergoing chemotherapy for oncologic or auto-immune disorders;  
• Subjects who were wearing, or within 30 days of enrollment had worn, artificial 

nail products (SNS, acrylic nails etc.);  
• Subjects who were wearing traditional nail polish and were unable or unwilling 

to remove nail polish; 
• Subjects with nailbed obstructions or discolorations (e.g., leukonychia, 

melanonychia, bruising, etc.). 
 

Real World (Self-Reported data): Hgb Screening - The currently available smartphone 
app has a feature that allows users to enter laboratory results for tracking purposes. We 
analyzed real-world user data from our app and filtered the data set down to the 765 times 
that a user entered a laboratory Hgb level into the app and received a Hgb level estimate 
using the app within 2 days of that lab Hgb result. Each lab result was compared to its 
closest app result (within 2 days) and accuracy statistics were calculated based on these 
comparisons. Reported app results below 7 g/dL and above 17 g/dL were excluded from 
the study since the underlying algorithm was not trained on data outside that range and 
thus was not designed to evaluate Hgb levels outside of that range. Furthermore, this was 
done to perform quality control on the entered laboratory values (e.g., we received 19 
entered lab results below 1 g/dL, which is highly improbable biologically, and likely was 
the result of user error when manually entering the data). A cutoff of 2 days between app 
test and lab test was chosen to minimize the likelihood of Hgb levels shifting between the 
lab test and app test, which can occur over the timescale of 2 days. Furthermore, this 
timeline helps ensure that the user has an accurate memory of the laboratory test when 
self-reporting.  
 
App Personalization - Of the 538 users who entered their own lab tests, 16 utilized this 
functionality 5 or more times. This allowed us to replicate the methods of our clinical study 
to develop a personalized algorithm correction for those users. We treated the first 4 
entered lab tests as the “training” phase, and the results that followed result 4 as the 
“testing” phase. A total of 64 training points and 40 testing points were acquired across 
all subjects.  
 
Statistical analysis: Paired t-tests for means were used to determine the statistical 
significance of the improvement of app accuracy when calibrated using both real world 
and clinical study data. Two-sample t-tests were used to determine the statistical 
significance of the difference in app accuracy when analyzed by cohort.  
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Results: 
 
App Training improves Hgb estimation: Personalized training of the Hgb estimation 
model led to significant (p = 3.13E-11) improvements in accuracy (Figure 2). Personalized 
corrections were developed using data from phase 1 of the study (half the study 
involvement). A total of 35 chronically anemic subjects (a chronic kidney disease subject 
cohort) completed the pilot study (phase 1: 4 study visits to collect training data and phase 
2: between 1-4 study visits per subject to collect testing data). Testing data revealed that 
the MAE was 0.74 g/dL with a root mean squared error (RMSE) of 0.97 g/dL (n = 34 
subjects) across all testing visits across all subjects, compared to 1.36 g/dL and 1.70 
g/dL, respectively, when untrained (Figure 2a & 2b). This improved performance shows 
that the RSME for the personalized smartphone app is lower than that observed for FDA-
cleared non-invasive Hgb determination methods (RSME of 1.1), suggesting superior 
performance over those clinically validated tools(25).  
 
Increasing the number of training points improves Hgb estimation: We found that 
the number of training points directly correlated with improved accuracy of the Hgb 
estimation model (Figure 2c). As we added training points, Hgb estimation improved from 
a mean absolute (MAE) of 1.39 g/dL and RMSE of 1.78 g/dL to a MAE of 0.64 g/dL and 
RMSE of 0.81 g/dL with 7 training points (n = 31 subjects). Importantly, RMSE drops 
below 1.1 g/dL after only 2 training points, a threshold established by the United 
States Food and Drug Administration as sufficient for clearance as a class II 
medical device for noninvasive hemoglobinometers(25). 
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Figure 2: Performance improves with customized trained app. A total of 40 subjects were enrolled in this study. 
Of that cohort, 35 subjects completed phase 1 of the study and had at least one phase 2 visit. 32 subjects completed 
both phase 1 and phase 2 and one subject was excluded. In the first four visits (Phase 1), images of fingernail beds 
were captured along with a venous blood draw for blood Hgb level. a. First, these data were compared against blood 
Hgb levels to serve as a control for app results without app training (n=35). Then, these data were used to train a 
custom algorithm for each subject. b. In visits five through eight of the study, the personalized algorithm was tested 
and compared with the results of venous blood draws taken during those visits (n=35). The average error of the 
personalized algorithm testing data points (visits 5-8) was 0.74 g/dL with a root mean square error of 0.97. Bias was 
0.16 g/dL, which represented an improvement over the untrained app (n=35). c. App performance improves with 
increasing number of training data points (n=31). Subject data across 8 data points was analyzed assuming different 
numbers of training points and testing points. Average error, root mean squared error, and bias of the testing points 
are shown for the number of training data points. We have also included a data point in the table using the two lowest 
and two highest blood Hgb level data points to train the algorithm. The results indicate that the average error, root 
mean squared error and bias are all smaller when the algorithm is trained with data across a broader Hgb level range. 
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Comorbidities such as CKD severity and diabetes have little impact on Hgb 
estimation: Finally, we show that diabetes and CKD, two major comorbidities with and 
causes of anemia, have little impact on Hgb estimation. In this group of subjects, those 
without diabetes had a statistically negligible improved accuracy compared to those with 
diabetes (MAE 0.77 g/dL and 0.71 g/dL respectively, p = 0.27). When analyzing Hgb 
estimation accuracy by severity of CKD, we again found a statistically negligible 
decreased accuracy as CKD progressed from stage 3 to stage 5 (Stage 3 to Stage 4 - 
MAE = 0.66 g/dL, 0.83 g/dL respectively, p = 0.06. Stage 4 to Stage 5 - MAE = 0.83 g/dL, 
0.75 g/dL respectively, p = 0.33. Stage 3 to Stage 5 - MAE = 0.66 g/dL, 0.75 g/dL 
respectively, p = 0.23) (Table 2). 
 
App performance translates outside of the clinic: Furthermore, we analyzed self-
reported data on 16 users who reported 5 or more laboratory tests with app estimates 
within 2 days and applied this personalized algorithm approach to these subjects (Figure 
3). Personalization of the app improved performance, from an MAE of and 0.71 and a 
RMSE of 1.27 when uncalibrated (Figure 3a), to an MAE of 0.62 g/dL and an RMSE of 
0.85 g/dL following calibration (Figure 3b). This increase in accuracy follows the trend 
reported in the clinical study data and increasing the number of training points improves 
accuracy (Figure 3c). In our previous publication, we described the performance of the 
image analysis algorithm for correlating nailbed pallor to blood Hgb levels, as well as the 
accuracy of Hgb level estimation (Mean Absolute Error (MAE) = ±1.0 g/dL, 95% LOA = 
±2.4 g/dL)(19). In this work, we analyzed Hgb estimates recorded by the app in our 
publicly available wellness tool compared with self-reported Hgb levels and report similar 
performance in Figure 3d. In individuals with Hgb > 10g/dL, the intended target of our 
app, MAE = ±0.6 g/dL, RMSE = ±1.1 g/gL, 95% LOA = ± 2.1 g/dL (n = 673 measurements 
from 474 individuals) 
 

Table 2: Comorbidity impact on Hgb estimation  
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Figure 3: Real world use of the app validates clinical findings. Real world app users and their self-reported data 
were used to complete app training and testing. a. First, 104 data points from 16 users who self-reported at least 5 lab 
tests were used to serve as a control for app results without app training. Comparing these data to the entered lab-
derived Hgb levels resulted in a mean absolute error of the personalized algorithm testing data points was 0.71 g/dL 
with a root mean square error of 1.27 g/dL. Then, the 64 data points corresponding to each user first 4 entered 
laboratory Hgb results were used to train a custom algorithm for each user. b. The newly customized algorithm was 
tested with the next 40 data points and compared with the results of self-reported blood Hgb levels reported within 24 
h of using the app. The mean absolute error of the personalized algorithm testing data points was 0.62 g/dL with a root 
mean square error of 0.85 g/dL, which represented an improvement over the untrained app in the “real world”. c. App 
performance improves with increasing number of training data points. Real world subject data across 8 data points was 
analyzed assuming different numbers of training points and testing points. Average error, root mean squared error and 
bias of the testing points are shown for the number of training data points. d. In total, 474 users entered 673 lab tests 
with Hgb levels > 10 g/dL. In these users, the mean absolute error and RMSE compared to the entered lab results was 
0.61 g/dL and 1.1 g/dL, respectively.  
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Discussion 
 

The previously described uncalibrated algorithm in the app is intended to be used 
for Hgb estimation and screening in the general population and maintenance of a healthy 
lifestyle. In this work, we confirm the accuracy of the healthy lifestyle tool based on self-
reported data in the real world. This is an important result as it displays the versatility of 
the app technology to adapt to numerous introduced sources of error that exist when an 
experimental technology translates from the bench to the bedside. In our previous clinical 
study, results were reported using a single smartphone, with one trained user, in a very 
consistent imaging location (various rooms within an academic medical center), using a 
single gold standard Hgb reference. The current algorithm has been trained on 1,479 data 
points from subjects in the United States as of November 30, 2022 at 1:55PM ET. Since 
the previously described app publication, we have released the app publicly as a wellness 
tool in the US and analyzed data from hundreds of users with different smartphones that 
self-reported their Hgb levels, illustrating the truly translational and personalized nature 
of our technology.   
 

In this work, we take the technology one step further and show that the app can 
be calibrated for individual users in a chronically anemic population. The accuracy of the 
smartphone app when compared to a blood test Hgb level is significantly improved by 
calibrating the app. The primary reason for this significant accuracy improvement lies in 
the ability to compensate for several variables that are very difficult to control for in the 
real world. App personalization leverages the user as their own control and controls for 
individual biological user variability, as well as for the environmental conditions such as 
background lighting, smartphone model, and user experience (i.e., the unique way 
individuals interact with a tool). Furthermore, the consistent results between the clinical 
study on CKD patients and the self-reported study indicates that users are willing and 
able to perform the calibrations necessary, since hundreds of users utilized the “enter lab 
test” functionality when personalization was not even an advertised feature of the app; 
users were unaware of the potential app personalization benefits associated with blood 
test result entry. Personalization improved the Hgb estimation performance of the app, 
yielding an accuracy that is comparable to other noninvasive Hgb determination devices 
that have been cleared by the US FDA for clinical Hgb level measurement(25). Overall, 
the improvement in Hgb estimation accuracy [decreases in root mean squared 
error (RMSE) and decrease in absolute difference between CBC blood Hgb level 
and app Hgb level] brings the performance of this technology in line with 
commercially available, FDA-cleared devices for Hgb level determination, 
significantly enhancing the clinical utility of this technology to aid in diagnosis and 
treatment of anemia. The self-reported data we collected not only supports this 
contention, but it demonstrates the desire of individuals around the country to use 
a tool like this and their ability to successfully do so.   
 
It is also important to note that it only takes 2 training points to bring the accuracy to 
comparable levels to US FDA-cleared methods, with further performance improvements 
associated with the addition of more training points. This provides significant flexibility for 
the user and their healthcare provider. This flexibility has the potential to accommodate 
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many different anemia-causing diseases and conditions with different treatment regimens 
requiring blood draws. This flexibility allows users and their physicians to balance the 
inconvenience of blood draws for app training with accuracy gains derived from them. For 
example, conditions that require less frequent Hgb monitoring can still benefit from a 
trained app that reduces the need for expensive clinical methods. However, if a user’s 
condition necessitates frequent clinical visits and blood draws, they can utilize this to their 
advantage and make significantly improved app just by following their existing blood 
testing schedule. Overall, the findings in this pilot study justify a larger multi-site study to 
test the personalized technology on additional cohorts of subjects with chronic anemia 
against gold standards and other non-invasive methods to confirm clinical utility. 
 
Furthermore, real world testing confirms the translational capability of this technology. As 
of preparation of this manuscript, the publicly available app has been used by over 
100,000 people in the United States. Using self-reported laboratory-determined Hgb 
levels from hundreds of users, we were able to confirm the results of our clinical testing, 
a result made possible by the widespread accessibility of this system. This smartphone 
application is the first of its kind to enable truly personalized medicine, where patients 
with chronic anemia can tailor a completely noninvasive and instantaneous smartphone 
app to measure and track Hgb levels, with an accuracy comparable to clinical methods.  
 
Key limitations of the clinical study include the consistency of the imaging parameters, 
and the small sample size for comorbidity analysis. The clinical study took place at 2 
nearly identical clinical practices. Images were taken on only 2 smartphone models by 
study personnel. This situation negates much of the variability seen in at-home testing 
environments (e.g., different room lighting, user error, device heterogeneity, etc.), the 
intended environment for this app. While the variability introduced by these environments 
has not been tested to date, they can be mitigated. We have previously reported that use 
of the camera flash overpowers background lighting conditions to normalize the 
background brightness of an image(19). Furthermore, the use of a consistent location, 
user, and phone model for training allows for each of these variables to be controlled. A 
user could select a single location (this could even be the clinic setting they receive their 
blood draws in – likely closely matching our study parameters), using their personal 
smartphone, allowing the training phase to take all these variables into account. Key 
limitations of the real world self-reported data are the inability to control or verify that the 
app was used correctly or that the entered lab tests are accurate. However, we would 
expect significantly discordant results if these sources of error were impacting app 
performance. The fact that self-reported results were consistent with clinical study results 
indicates that the impact of these potential errors outside of the clinic is minimal. 
 
The presence of comorbidities with anemia presents a double-edged sword. We show 
that we can tailor our Hgb estimation models for specific diseases, however, the potential 
variability introduced into the system by the comorbidities must be addressed. Our limited 
comorbidity analysis showed trends of worsening app performance with worsening 
disease (i.e., Hgb estimation was less accurate with diabetes than without, and Hgb 
estimation accuracy got worse as CKD severity progressed), however, the observed 
effect was not great enough to produce statistically significant differences. Ultimately, the 
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findings of this limited study support the conclusion that neither diabetes nor CKD 
progression had significant impacts on Hgb estimation accuracy and supports our 
rationale for using fingernail beds as image subjects. As the Hgb in the blood vessels 
within the nailbed are the primary pigment contributor to nailbed color, the cause of 
anemia should not matter, however, further study is needed to confirm the impacts that 
other diseases have on app performance, particularly etiologies that impact fingernail 
color outside of Hgb (e.g., jaundice, cyanosis, poor circulation, etc.)(26-28). 
 
Overall, we have continued to improve upon our original concept for noninvasive 
measurement of Hgb levels using only a smartphone, which could enable billions of 
individuals of users worldwide to track their Hgb levels from the comfort of their own 
homes. Personalization via training of our non-invasive smartphone application for Hgb 
level determination improves the accuracy to that of other US FDA-cleared non-invasive 
Hgb determination methods and findings justify a larger multi-site study to test the 
personalized technology on additional cohorts of subjects with chronic anemia against 
gold standards and other non-invasive methods to validate clinical utility. Results from 
this work support the rationale that patient-obtained clinical results can be incorporated 
into digital health tools to enhance their performance by customizing the functionality of 
those tools. Approaches such as these offer the promise of bringing true “personalized 
medicine” to fruition. The combination of app, methods and results presented here is the 
first of its kind to bring personalized medicine to the realm of blood testing. Furthermore, 
real world use of the app directly illustrates the translational potential of this technology, 
as we have a large userbase currently utilizing the app as well as the functionality that 
enables this personalization. This app has the potential to equip patients and their 
physicians with a tool for managing treatment and care beyond the clinic and empowers 
patients to play a more active role in their health, with a medical tool that is truly unique 
to them. Ultimately, the work presented here has the potential to transform the digital 
health landscape and serve as a model for deploying smartphones as clinical tools in 
personalized medicine. 
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