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Abstract 

Purpose: Inconclusive interpretation of pathogenicity of variants is a common problem 

in Mendelian disease diagnostics. We hypothesized that some variants of unknown significance 

(VUS) may lead to aberrant pre-mRNA splicing. To address this we have developed a high 

throughput splicing assay (HTSA) than can be utilized to test the effects of 1000s of variants on 

exon recognition. 

Methods: 2296 reference, control and variant sequences from 380 exons of 89 genes 

associated with inherited retinal degenerations (IRDs) were cloned as a pool into a split-GFP 

HTSA construct and expressed in landing pad RCA7 HEK293T cells. Exon inclusion led to 

disruption of GFP and exon skipping led to GFP reconstitution, enabling to separate GFP+ve 

and GFP-ve cells by fluorescence activated cell sorting. After deep sequencing-based 

quantification of studied sequences in each cell pool, exon inclusion index (EII) was determined, 

where EII = GFP-ve oligo count/total oligo count.  

Results: HTSA showed high reproducibility when compared between different biological 

replicates (tetrachoric correlation coefficient r2 = 0.83). Reference exon sequences showed a 

high level of exon recognition (median EII = 0.88) which was significantly reduced by mutations 

to the essential splice sites (donor site variants: median EII=0.06; acceptor site variants: median 

EII=0.48). Of the 748 studied VUSs, 47 variants led to decreased exon inclusion (∆EII ≤ -0.3) 

with 11 variants showing a strong effect (∆EII ≤ -0,6).  Using the HTSA data we were able to 

provide a likely genetic diagnosis to five IRD cases.  

Conclusion: HTSA offers a robust method to study the effects of VUSs on exon 

recognition allowing to provide new diagnoses for patients with Mendelian disorders.  

Key Words: High throughput splicing assay, Mendelian trait, inherited retinal degeneration, 

intronic variant  
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INTRODUCTION 

Despite substantial advances in next-generation sequencing technologies and their decreasing 

costs, genetic diagnoses are often hindered by our limited understanding of gene function, 

gene-disease relationship and uncertain pathogenicity of the uncovered variants1–4. For 

example, in the case of inherited retinal degenerations (IRDs), a Mendelian group of diseases 

affecting 2 million people worldwide5, the cause of disease in ~30% of cases is unknown, 

despite substantial progress in genetic methodology and ~280 known IRD genes6–13. The 

remaining missing diagnoses are in part due to the currently unknown IRD genes, however their 

contribution will be likely small as shown by the limited number of genes discovered within the 

last decade14–34. This suggests that the missing genetic causality largely lies in elusive 

pathogenic variation in the already known IRD genes, including structural and non-coding 

changes of the genome1,35–45. Since next generation sequencing (NGS) produces a vast 

quantity of variants, solutions to some of the unsolved cases may already be available in the 

existing data.  We therefore need robust functional assays to test large numbers of variants 

uncovered in the remaining unsolved cases.  

One of the ways that a variant can lead to disease is by causing aberrant pre-mRNA splicing, 

resulting in transcript degradation due to premature stop codons or deletion of a crucial protein 

domain46. These variants are not always changes of the canonical splice sites, but can be non-

canonical splice site mutations in the proximity of the exon47, deep intronic variants48–52, 

synonymous51,53 or missense changes54. The pathogenicity of these variants is often difficult to 

predict even when using the recently developed machine learning algorithms designed for this 

purpose55,56. Due to the lack of certainty about the variants’ functional consequence, they are 

labeled as variants of unknown significance (VUS) or ignored altogether in the clinical diagnostic 

reports and research. Apart from having an effect on splicing, a VUS may affect transcription or 

transcript stability if they fall within the enhancer, promoter or the untranslated regions (UTRs)57–
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59. Also, despite the existence of a variety of pathogenicity prediction tools60–64, we lack sufficient 

data to interpret with confidence many of the missense variants, which can alter protein 

structure, enzymatic activity or interaction with other proteins or molecules. Our recent study of 

the genetics of IRDs showed that research “solutions” in ~23% of cases are based on one or 

more VUSs13,65. All of these classes of VUSs require sophisticated variant class or protein 

specific assays54,58,66,67, which cannot be undertaken by a single laboratory. However, given the 

recent advances in the gene therapy field, an effort to study these variants is particularly 

important as it can finalize genetic diagnoses for patients, some of whom may be eligible for the 

emerging genetic therapies68–74.  

In this study we wanted to address the contribution of VUSs to aberrant splicing75–78.  To 

address this challenge, we developed a high throughput splicing assay (HTSA) to test the effect 

of hundreds of VUSs on aberrant splicing simultaneously. Our assay is an adaptation of a 

previously published methodology by Cheung and colleagues54 with an important alteration that 

allows for studying out-of-frame exons. We have tested our assay on 1131 variants in IRD 

genes and found likely genetic diagnoses for ten patients. 
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MATERIAL AND METHODS 

Ethics declaration. The study was approved by the Institutional Review Board at the 

Massachusetts Eye and Ear (Human Studies Committee MEE, Mass General Brigham, USA) 

and adhered to the tenets of the Declaration of Helsinki. Informed consent was obtained from all 

individuals on whom genetic testing and further molecular evaluations were performed. 

Patient sequencing and annotation. Targeted panel sequencing was performed at MEE 

genomics core and exome sequencing was performed at the Center for Mendelian Genomics at 

the Broad Institute of MIT and Harvard using methodology described previously79. Sequencing 

data was aligned to human genome 38 and variants were called using Genome Analysis Toolkit 

(GATK) HaplotypeCaller package version 380 (https://software.broadinstitute.org/gatk/), and 

annotated using VEP81 and VCFAnno82. CNV predictions were produced using gCNV80.  

Exon selection for splicing assay and oligo design. Internal exons in known IRD genes that 

were 200 base pairs (bp) or less were selected as possible candidates for the splicing assay, 

which allowed for inclusion of at least 40bp of 5’ intron (acceptor site), 30bp of the 3’ intron 

(donor site) and 15 bp flanking adapter sequences containing AgeI and NheI restriction sites. 

After selecting exons that were not longer than 200bp and did not include the AgeI and NheI 

restriction sites, we used an in-house software, Mendelian analysis toolkit (MATK)79 to prioritize 

rare variants in these exons (MAF <0.003) found in the unsolved IRD subjects. Additional rare 

variants in the EYS gene were taken from the gnomAD database83. In total 1131 variants in 380 

IRD exons were selected (Tables S1 and S2). A pool of  ssDNA oligos synthesized on silicone 

array-based method was purchased from a commercial vendor (TWIST Biosciences, USA). 

High throughput splicing assay (HTSA) design.  We have adapted a published approach 

from Cheung and colleagues54, who kindly shared with us the SMN1 intron backbone plasmid 

with split GFP-T2A-mCherry , the Bxb1 integrase plasmid and the HEK2937-RCA7 cell line, that 
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provide a chromosomal landing pad site which allows stable expression of splicing reporter 

library at the adeno-associated virus integration site 1 (AAVS1) safe harbor locus54,84. In our 

design, we altered the SMN1 split GFP-T2A-mCherry plasmid, where we decoupled the 

mCherry and GFP expression to be able to study out-of-frame exons. For the uniform 

expression of both fluorophores, we introduced EF1alpha promoters in front of the split GFP 

and mCherry genes. We will refer to this altered vector as the HTSA vector. The vector also 

contains attB sites for integration into the AAVS1 locus of the HEK293T-RCA7 landing pad cell 

line, as well as a promoter-less puromycin resistance cassette. HEK293T-RCA7 contain an attP 

site and the promoter that allows for the site-specific recombination of the HTSA insert and 

coupling of the promoter and the puromycin resistance gene.   

HTSA library design and cloning. We designed two oligo libraries: 1) control library containing 

380 study exons with reference sequences, acceptor and donor site changes (1140 oligos in 

total); and 2) variant library containing 380 study exons with reference sequences, acceptor site 

changes, donor site changes and study variants (2296 sequences in total). Sequences that 

included the AgeI and NheI restriction sites were excluded. The library was amplified with Fwd-

AgeI primer: 5’-ACGGCCAGTACCGGT-3’ and NheI-Rev primer 5’-GCTATGACCGCTAGC-3’ 

with a high fidelity polymerase (KAPA HiFi HotStart ReadyMix, Roche) for a maximum of 20 

cycles and cloned to the HTSA vector by the AgeI and NheI restriction cloning.  

Cell culture and FACS. After NGS confirmation of the desired diversity (Novaseq 6000, 

Illumina), the libraries were co-transfected with a vector containing Bxb1 integrase into the 

HEK293T-RCA7 landing pad cell line which allowed for the integration of the split GFP exons 

and mCherry reporter at the AAVS1 locus54. Since the integrated constructs enable expression 

of puromycin resistance gene in the landing pad cell line, the cells were selected with puromycin 

and maintained in culture and passaged for 20 days to ensure elimination of non-integrated 

plasmids. Thus the fluorescence signal observed in a single cell should come only from the 
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integrated construct. After 20 days in culture, the cells were fluorescence activated cell sorted 

(FACS) (Sony MA900 Multi-Application Cell Sorter, Broad Institute Cell Sorting Facility) into 

GFP positive and GFP negative bins. All collected cells were mCherry positive. To ensure 

library diversity, at least 1000 cells per oligo in the library were sorted.  

Genomic DNA extraction and deep sequencing. gDNA extraction was performed with a 

commercial kit (Qiagen All-Prep Kit) and the integrated fragments were PCR amplified with 

HTSA-NGS-F primer 5’-CTATATATAGCTATCTATGTCTACCGGT-3’ and HTSA-NGS-R primer 

5’- GGCTGGAACTCTTGCGCTAG-3’ with a high-fidelity polymerase (Primestar GXL 

Polymerase, Takara) for a maximum of 20 cycles. The amplicons from each fluorescent bin 

were multiplexed and deep sequenced with a targeted depth of 500 reads per oligo (250x250 

pair-end reads, Novaseq 6000, Illumina).  

Data analysis and statistics. Test exon sequence reads in each fluorescence bin were 

determined by NGS and matched to the oligo sequences in the corresponding library, counted 

and normalized by coverage (reads per million in each pool) and the FACS fraction of the 

fluorescence bin. Average number of reads per sorted cell was established and sequences with 

coverage representing less than 50 cells (control library) or 150 cells (full library) across both 

pools were excluded. Exon inclusion index (EII) was calculated for each sequence, where EII = 

GFP-ve read count/( GFP negative + GFP positive read counts) (Supplemental Figure 1). The 

impact of the variant was calculated by the difference of exon inclusion of the variant and the 

reference sequence: ∆EII = EIIcontrol - EIIreference. The experiments were performed in duplicate, 

and an average of ∆EII values were calculated. Reproducibility of the assay was calculated from 

two biological replicates using the EII values for each sequence and simple linear regression 

analysis.  

All figures were prepared with Graphpad Prism 8 and Biorender.  
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RESULTS 

Optimization of the high throughput splicing assay (HTSA) 

As the starting point of the assay design we used constructs developed by Cheung and 

colleagues for the multiplexed functional assay of splicing using Sort-seq (MFASS)54. In the 

original MFASS construct a GFP gene is split by 1000bp-long sequence derived from introns 7 

and 8 of the SNM1 transcript (NM_000344), into which test sequences can be cloned in a 

multiplexed fashion using the AgeI and NheI restriction sites (Figure 1A). In the MFASS design 

the split GFP and the control fluorophore mCherry were separated by a self-cleavage 2A 

peptide, which allowed for the study of in-frame exons only, which was an important limitation of 

the assay. To increase the number of possible exons to characterize, we have changed the 

construct by separating expression of the two fluorophores, which are now both under the 

ubiquitous EF1alpha promoter, allowing for testing out-of-frame exons and cryptic exons without 

compromising mCherry expression (Figure 1A). For every mini-gene transcript there are two 

outcomes: 1) an inserted test sequence is recognized as an exon, leading to GFP disruption 

and no green fluorescence; 2) an inserted sequence is not recognized as an exon, leading to 

full reconstitution of GFP and presence of green fluorescence (Figure 1B). The control mCherry 

fluorescence is present regardless of the splicing outcome. 

Other elements of the HTSA are analogous to MFASS54. The multiplexed libraries are 

integrated into the AAVS1 safe harbor locus of the RCA7-HEK293T landing pad human cell line 

by co-transfection with a plasmid carrying the Bxb1 integrase (Figure 1C)54,84. The integrated 

plasmid carries a puromycin resistance gene, which can only be expressed after integration of 

the HTSA construct in the AAVS1 locus. Puromycin selection and multiple passages over 20 

days of cell culture ensure that a single copy of the reporter construct is expressed per cell and 

episomic HTSA plasmids are degraded. This enables fluorescence activated cell sorting (FACS) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2023. ; https://doi.org/10.1101/2022.11.30.22282952doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282952
http://creativecommons.org/licenses/by-nc-nd/4.0/


separation of GFP negative (-ve) and GFP positive (+ve) cells (Figure 1D).  The sequences in 

the GFP-ve and GFP+ve cell pools are subsequently analyzed by deep next generation 

sequencing, and the matching sequences counted and normalized by the read depth and by the 

fraction of cells sorted into the GFP+ve or GFP-ve bins. To determine which variants lead 

predominantly to exon inclusion or exclusion, the exon inclusion index (EII) is calculated for 

each sequence using the normalized oligo sequence count, where EII= GFP-ve read 

count/(GFP-ve + GFP+ve read count) (Figure 1E). EII of 1 signifies complete exon inclusion and 

EII of 0 indicates complete exon skipping.  

Evaluation of HTSA based on 380 IRD gene exons and essential splice site controls 

In the initial experiment we tested 380 exons from 89 IRD genes that were chosen based on 

rare unclassified mutations found in unsolved IRD patient cohort from the MEE clinic (MAF < 

0.003) and additional rare variants found in the gnomAD database (MAF < 0.001). The control 

library consisted of the reference exon sequences and two control sequences for each exon 

with mutated acceptor site (AS) or donor site (DS) (Supplementary Table 1). Owing to the 

improvement of the oligo synthesis methodology we were able to investigate exons up to 200 bp 

in length (median exon length 132 bp) compared to 100 bp long exons studied previously54.  

Of the 380 exons, fifty were not sufficiently represented in both replicates (< 50 cells per 

sequence) and were dropped from the subsequent analyses. For the remaining 330 exons, we 

measured reproducibility of the assay across two biological replicates using the EII values. The 

data showed a bimodal distribution with EII values clustering at 0 - 0.1 (complete or high exon 

skipping) and 0.9 - 1 (complete exon inclusion), and a high level or reproducibility between the 

replicates (simple linear regression r2 = 0.83) (Figure 2A).  

Most of the reference exons showed a high level of exon recognition (median EII = 0.88) with 

260 (79%) reference sequences recognized as exons at least half of the time (EII ≥ 0.5) (Figure 
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2B). Fifty-six (17%) reference sequences showed preferential exon skipping (EII<0.2) and 14 

showed lower than expected exon recognition (0.2 ≤ EII < 0.5).  There was no correlation 

between the length of the studied exons and their performance in the splicing assay (Fig. 2C, 

unpaired T-test: p-value = 0.5).  

Introducing mutations to the essential splice sites reduced exon recognition, where DS controls 

showed stronger effect (median EII=0.06) than AS controls (median EII=0.48) (Figure 2B). To 

evaluate how essential splice site controls performed in comparison to their corresponding 

references, we used a ∆EII metric, where  ∆EII = EIIcontrol - EIIreference. The ∆EII values clustered in 

two major groups: around ∆EII = -1 and around ∆EII = 0, where ∆EII = -1 indicates a complete 

exon skipping due to the mutation in a well performing reference exon, and ∆EII = 0 indicates no 

effect of variant on exon inclusion (Figure 2 D). In a few extreme cases ∆EII showed positive 

values, which indicated a stronger exon inclusion in sequences with an essential splice site 

variant than in the corresponding reference sequence (Figure 2 D). DS controls showed on 

average higher effect on exon recognition (median ∆EII = -0.28), compared to AS controls 

(median ∆EII = -0.09). Based on the bimodal distribution of the ∆EII values, we have determined 

that ∆EII ≤ -0.3 is a reliable cutoff for variants that show effect on exon inclusion and ∆EII ≤ -0.6 

is a reliable cutoff for a strong effect on exon inclusion (Figure 3D).  

Evaluation of the effect on splicing of 1131 variants in IRD genes  

Next, we tested variants of unknown significance in IRD genes. The variant library consisted of 

380 exons, 785 essential splice site controls and 1131 test variants (2296 sequences in total) 

(Supplementary Table 2). First, we determined the reproducibility of the assay comparing two 

biological replicates. Since, our variant library contained over a thousand variants more than a 

control library, the correlation between the two replicates was lower for the same inclusion 

criteria (≥ 50 cells per sequence, r2 = 0.69), we therefore applied more stringent filtering and 
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considered sequences that were present in at least 150 cells as determined by cell sorting and 

sequence coverage (Supplementary Table 2). With these criteria the two replicates were highly 

correlated (r2 = 0.76) (Figure 3A).  Two hundred and ninety-six exons with 748 variants in the 

IRD genes passed this filtering threshold (Supplementary Table 2). Since the control library and 

the variant library contained the same reference and essential splice site control sequences, we 

were able to compare exon inclusion of both libraries across four experiments, demonstrating 

high reproducibility (Figure 3B). Pairwise comparison of the average values of EII for the control 

library and EII for the variant library were highly correlated, demonstrating robustness and 

reproducibility of the assay (r2 = 0.93, Figure 3C). As in the control library before, the DS 

controls exerted on average a higher impact on exon recognition (median ∆EII = -0.26) 

compared to AS controls (median ∆EII = -0.07). The overall effect of tested variants on exon 

inclusion was smaller than that of the positive controls (median ∆EII = -0.03) (Figure 3D).  

Of the 748 tested variants, 47 changes (6.2%) reduced exon recognition by at least 30% (∆EII ≤ 

-0.3) and eleven of these variants (1.4%) showed a strong effect on exon inclusion, reducing 

exon recognition by 60% or more (∆EII ≤ -0.6) (Table 1, Supplementary Table 2). These 

included three synonymous variants, two missense changes and six intronic variants. Five of 

the variants showing a strong exon skipping effect were predicted to have a significant effect on 

splicing by the Splice AI algorithm (∆Splice AI score >0.2)55 (Table 1). 

New genetic solutions in IRD patients 

When assessing pathogenicity of genetic variants that lead to exon skipping, we have to 

consider multiple criteria: 1) the frame of the exon that is eliminated; 2) protein domains that are 

encoded by the in-frame exon; 3) mode of inheritance of a particular trait and the pathogenicity 

of the allele in trans for the recessive genes; 4) gene dosage sensitivity85; 5) extent of exon 

skipping (full or partial). These criteria will allow us to determine if a particular variant leads to a 
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hypomorphic or to a null allele. For example, partial skipping of an out-of-frame exon will lead to 

a hypomorphic allele, which can be pathogenic in a recessive gene, when coupled with a 

pathogenic or likely pathogenic variant in trans 86,87. Skipping of an in-frame exon, will not lead 

to transcript degradation but may lead to a non-functional protein if an important domain is 

deleted. Weighing these criteria, we evaluated variants that showed an effect on exon skipping 

in a cohort of ~3000 IRD cases analyzed by targeted sequencing or exome sequencing13,38. We 

found five cases for whom the splicing results likely lead to new genetic diagnoses, including 

three cases with autosomal recessive gene solutions (ABCA488,89, EYS90,91) and two with X-

linked disease (CHM94, RPGR95) (Table 2).  

Two subjects carried mutations in ABCA4, a gene associated with a number of retinal disorders 

including an inherited macular degeneration (OMIM #248200), cone-rod (OMIM #604116) and 

rod-cone dystrophy (OMIM #601718)88,89. The studied cases were affected with cone-rod 

dystrophy (OGI3781_0052218) and macular degeneration (OGI2923_004508) and they had 

heterozygous variants leading to an out-of-frame exon 40 skipping, which is thought to result in 

nonsense-mediated decay46. Variants c.5693G>A, p.Arg1898His (∆EII = -0.45) and c.5680C>T, 

p.Leu1894= variant (∆EII = -0.33), both lead to a partial exon 40 skipping. These alleles can be 

considered as hypomorphic alleles, which have been shown to lead to ABCA4-associated 

disease86. In both cases the hypomorphic splicing variants were coupled with pathogenic/likely 

pathogenic variants c.4139C>T, p.Pro1380Leu and c.223T>C, p.Cys75Arg respectively (Table 

2)98,100,101 .   

A male subject OGI3782_0052219 with a diagnosis of an X-linked condition of choroideremia 

carried a hemizygous variant c.940G>A, p.(Gly314Arg) in CHM, a gene associated with the 

subject’s condition (OMIM #303100)94. The c.940G>A variant leads to skipping of an out-of-

frame exon 7 in 2/3rd of the transcripts (∆EII = -0.63), is absent in gnomAD and segregated with 

the same phenotype in a maternal male cousin and thus is likely to lead to disease.  At the time 
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of the study the variant was classified as VUS, however recently the classification has changed 

to likely pathogenic, which corroborates our findings98.  

A rod-cone dystrophy case OGI2026_003452 carried two variants in EYS, associated with a 

recessive form of IRD (OMIM # 602772) 90,91. The subject carried a heterozygous deletion of an 

out-of-frame exon 31 and a c.1056+3A>C change leading to skipping of an out-of-frame exon 6 

in over 2/3rd of the transcripts (∆EII = -0.71). These two changes are a very likely cause of 

disease in this subject (Table 2). 

A simplex male patient with rod-cone degeneration was found to carry a hemizygous 

c.310+7T>G variant in RPGR, a gene associated with an X-linked IRD (OMIM # 312610)95. The 

c.310+7T>G variant affected splicing of an in-frame exon 4, leading to exon skipping in up to 

2/3rd of transcripts (∆EII = -0.62). Exon 4 codes for 21 residues that are involved in forming of 

the second regulator of chromosome condensation (RCC1) domain102,103 (Table 2).   
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DISCUSSION 

In this study we have developed an improved version of a high-throughput splicing assay 

(HTSA), which was based on a previously published method54. We used HTSA to study 1131 

variants of unknown significance in 380 exons from 89 IRD genes. However, due to a limited 

library diversity, we were able to study only 748 variants. We observed that 47 (6.2%) variants 

lead to decreased exon inclusion. Of these, 11 variants showed a strong effect, with at least 

60% of transcripts leading to exon skipping compared to the reference sequences. Using the 

splicing assay data we were able to provide a likely genetic diagnosis to ten IRD cases.  

HTSA showed high reproducibility when compared between different biological replicates.  Most 

of the reference exons showed a high level of exon recognition (median EII = 0.88), however in 

70 reference sequences the exon was recognized less than 50% of the times and 56 exons 

were preferentially skipped (EII<0.2). One of the reasons for the poor performance of these 

exons could have been the lack of the crucial intronic context, necessary for the exon 

recognition. However we have not observed a correlation between the size of a studied exon 

(the smaller the exon the larger the flanking exonic sequences in the 270bp oligos) and its 

performance in the splicing assay. 

We have detected 11 variants with strong effects on splicing, however not all of these variants 

led to genetic solutions in our patient cohort, which can be due to a number of reasons. In some 

autosomal recessive cases the second variant in the same gene was determined not to be 

pathogenic, a phenotype didn’t match or a another more likely cause of disease was found. 

Nevertheless in three recessive cases, our HTSA was able to provide additional functional 

evidence to reconsider variants of unknown significance that were coupled with likely 

pathogenic variants in the same gene. In two X-linked male cases, exon skipping led to the 
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deletion of a crucial domain (RCC1 in RPGR) or creation of a frameshift mutation (CHM), which 

were likely causal variants.  

In HTSA we measured the disruption of GFP, which we labeled as exon recognition. However, 

disruption of GFP may also occur when part of an exon is included, or an intron retained, which 

can only be identified by the analysis of HTSA minigene transcript from the GFP-ve pool of 

cells. Therefore it is possible that variants that seemingly showed no effect on exon inclusion, 

actually led to aberrant splicing by one of the above mechanisms. Further studies will be 

undertaken to test this hypothesis. Of the 11 variants that showed a strong effect on exon 

inclusion, only five were predicted to have a significant effect on splicing by the Splice AI 

algorithm (∆Splice AI score >0.2)55. This illustrates the need for improved splicing prediction 

programs especially in regions not typically thought of as splice altering. American College of 

Medical Genetics (ACMG) guidelines often require functional validation to assess the 

pathogenicity of unclassified variants65. However, the cost and effort to individually interrogate 

VUSs is often prohibitive which leaves many variants that may provide the genetic solution as 

unclassified. We present an elegant and robust method for interrogating hundreds to thousands 

of variants and their impact on exon recognition leading to splicing dysfunction. In the current 

study HTSA was employed to investigates the effects of variants in or near exons, however it 

can also be used to study deep intronic variants leading to cryptic exon inclusion48–52,77.  
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TABLES 
 
Table 1. Variants showing a strong effect on exon inclusion 

Gene 
name 

Transcript ID 
Exo

n 
cDNA change 

Protein 
change 

gnomAD 
Average 
∆EII 

SpliceAI Exon frame 

ABCA4 ENST00000370225.3 47 c.6438C>T p.(=) 0.000039 -0.61 0.03 In-frame 

CEP164 ENST00000278935.3 10 c.1233+5G>A intronic variant 0.000007 -0.87 0.95 In-frame 

CHM ENST00000357749.2 7 c.940G>A p.(Gly314Arg) Absent -0.63 0.84 Out-of-frame 

CPLANE1 ENST00000651892.2 27 c.5520T>G p.(=) Absent -0.62 0.06 Out-of-frame 

CRX ENST00000221996.7 3 c.158A>G p.(Glu53Gly) Absent -0.80 0.00 Out-of-frame 

EYS ENST00000370621.7 6 c.1056+3A>C intronic variant Absent -0.71 0.94 Out-of-frame 

EYS ENST00000370621.7 6 c.863-15T>C intronic variant 0.000004 -0.64 0.00 Out-of-frame 

EYS ENST00000370621.7 6 c.863-5T>G intronic variant 0.000029 -0.68 0.12 Out-of-frame 

EYS ENST00000370621.7 6 c.969A>G p.(=) 0.000007 -0.61 0.00 Out-of-frame 

EYS ENST00000370621.7 28 c.5836-11T>G intronic variant 0.0000069 -0.61 0.35 Out-of-frame 

RPGR ENST00000645032.1 4 c.310+7T>G intronic variant Absent -0.65 0.37 In-frame 

 
Notes: *13 hemizygotes are present in gnomAD, indicating that partial defect in exon inclusion is not 
pathogenic or leads to a mild later onset disease, overlooked in the gnomAD cohort. 
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Table 2. New likely genetic solutions  
 

 
 
*Benign by one submitter; ** classification if this variant has recently been changed from VUS to LP in CLinVar. ***this variant is not thought to act 
via exon skipping but it is predicted to be likely damaging by PolyPhen, fathmm and has an elevated CADD and Revel (0.5) scores 
 
 

Patient number Gene gDNA Hg38 HGVSc HGVSp gnomAD v3 CADD ClinVar Average ∆EII 

OGI3781_0052218  
ABCA4 

 

chr1:94010821C>T c.5693G>A p.Arg1898His 0.00147 19.52 
Conflicting 

interpretations  
-0.45 

chr1:94031110G>A c.4139C>T p.Pro1380Leu 0.0002431 25.3 P/LP N/A 

OGI2923_004508 ABCA4 
chr1:94111517A>G c.223T>C p.Cys75Arg absent 29.8 LP N/A 

chr1:94010834G>A c.5680C>T p.(=) absent 5.195 B* -0.34 

OGI3782_0052219 CHM chrX:85957855C>T c.940G>A p.(Gly314Arg) Absent 33 VUS/LP** -0.63 

OGI2026_003452  EYS 

chr6:64230343-
64231073:1 

Exon 31 heterozygous deletion 
Absent 

(gnomADv2-SV) 
N/A  N/A 

chr6:65405171T>G c.1056+3A>C  absent 22.7  -0.71 

OGI1347_002520 
(male) 

RPGR chrX:38321020A>C c.310+7T>G  absent 10.65 VUS 
-0.62 
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FIGURE LEGENDS 
 
Figure 1. High throughput splicing assay (HTSA) experimental design and analysis. A) 

HTSA construct contains GFP split by an SMN1 intron, into which a test exon is cloned by AgeI 

and NheI restriction cloning. mCherry is expressed independently as a background fluorescence 

control. A pool of exons (up to 200 bp in size) and flanking intronic sequences are cloned into a 

sequence derived from SMN1 intron 7 and 8. B) Major splicing outcomes with exon inclusion 

leading to GFP disruption and exon exclusion leading to GFP reconstitution. Other outcomes 

are possible, e.g. partial exon inclusion or intron retention wich will also lead to the GFP 

disruption. C) RCA7 HEK293T landing pad locus contains an attP site and a gene-less promoter 

and the HTSA construct contains split GFP-SMN1 splicing minigene, mCherry and a promotor-

less puromycin resistance gene. Co-transfection of the HTSA construct and a plasmid 

containing the Bxb1 integrase facilitates integration of one HTSA construct into the landing pad 

via the attB | attP pairing. Successful integration enables expression of puromycin resistance 

gene. D) RCA7 HEK293T landing pad cells are transfected with the HTSA plasmid pool and 

Bxb1 integrase. Selection with puromycin ensures elimination of cells without the integrated 

HTSA construct and prolonged cell growth (20 days) ensures elimination of episomal HTSA 

plasmids. Fluorescence activated cell sorting (FACS) leads to a clear separation of GFP+ve and 

GFP-ve cells. E) After isolation of gDNA from the cells, the integrated constructs are PCR-

amplified and deep sequenced. The sequence reads are matched to the library sequences and 

read of each integrated sequence is counted in each cell population separately. The oligo 

counts are subsequently normalized by the sequence depth of the sample (reads per million, 

RPM) and by the FACS sorting cell fraction of the sample. The resulting normalized oligo cell 

counts are then used to calculate exon inclusion index as shown.  

Figure 2. HTSA performance on a control library. A) Reproducibility of exon inclusion 

indexes (EII) from replicate 1 and 2 (linear regression correlation coefficient r2=0.83). B) Exon 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2023. ; https://doi.org/10.1101/2022.11.30.22282952doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282952
http://creativecommons.org/licenses/by-nc-nd/4.0/


inclusion indexes for all control library sequences and separately for reference, acceptor (AS) 

and donor (DS) splice site mutations. C) Distribution of the overall exon lengths included in the 

study, median length = 132 base pairs (bp) and of the reference exon sequences that showed 

high rate of exon recognition (EII ≥ 0.8) or preferential exons skipping (EII < 0.2). D) ∆EII values 

for the essential splice site controls, demonstrating a bimodal distribution of variants around ∆EII 

= 0 and ∆EII = -1. The distribution of data suggests two cutoff point to estimate splicing effects: 

∆EII≤ -0.3 for moderate effect on exon inclusion and ∆EII ≤ -0.6 for strong effect on exon 

inclusion. 

 

Figure 3. Measuring the effects of variants of unknown significance on exon recognition.  

A) Reproducibility of exon inclusion indexes (EII) from replicate 1 and 2 from a library containing 

2166 different sequences of references, essential splice site controls and VUSs (linear 

regression correlation coefficient r2=0.76). B) A heatmap showing reproducibility of EII in control 

sequences (reference and essential splice site controls) from four biological experiments. C) 

Reproducibility of the averaged exon inclusion indexes (EII) for the control library and the 

control sequences from the full library (linear regression correlation coefficient r2=0.93) D) Delta 

exon inclusion indexes (∆EII) for variant library sequences (essential splice site controls and 

tested variants) and separately for acceptor (AS), donor (DS) and tested variants (VAR).  
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