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Abstract 
Background: Social determinants of health are non-medical factors that influence health 
outcomes (SDOH). There is a wealth of SDOH information available in electronic health 
records, clinical reports, and social media data, usually in free text format. Extracting key 
information from free text poses a significant challenge and necessitates the use of 
natural language processing (NLP) techniques to extract key information. 
Objective: The objective of this research is to advance the automatic extraction of SDOH 
from clinical texts. 
Setting and Data: The case reports of COVID-19 patients from the published literature 
are curated to create a corpus. A portion of the data is annotated by experts to create 
ground truth labels, and semi-supervised learning method is used for corpus re-
annotation. 
Methods: An NLP framework is developed and tested to extract SDOH from the free 
texts. A two-way evaluation method is used to assess the quantity and quality of the 
methods. 
Results: The proposed NER implementation achieves an accuracy (F1-score) of 92.98% 
on our test set and generalizes well on benchmark data. A careful analysis of case 
examples demonstrates the superiority of the proposed approach in correctly classifying 
the named entities. 
Conclusions:  NLP can be used to extract key information, such as SDOH factors from 
free texts. A more accurate understanding of SDOH is needed to further improve 
healthcare outcomes. 
 
Keywords: Natural language processing; data; COVID-19; named entity; Transformer 
models.  
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INTRODUCTION 

Background and significance 

Social determinants of health (SDOH) refer to the non-medical factors such as birth, 
education, occupation, and living conditions, that influence the health outcomes of 
individuals [1].  There is extensive evidence [2–5] that SDOH significantly influences a 
broad range of health outcomes including mortality rate, elderly care, mental health, and 
risks for chronic diseases such as asthma, cancer, heart disease, and obesity [6]. 
Diabetes, depression, hypertension, and suicidal behavior are all outcomes of SDOH [7]. 
According to some studies, medical care accounts for 10-20% of health factors, while 
SDOH accounts for 80% to 90% [8]. Thus, it is of high importance to address the SDOH 
to improve the health systems. 

SARS-CoV-2 is a virus that infects humans, causing severe upper respiratory 
problems and coronavirus disease 2019 (COVID-19) disease [9]. Recent statistics 
suggest that SDOH, such as race, ethnicity, gender, social-economic factors, and related 
population characteristics are also among the risk factors for COVID-19 [10]. There is 
evidence [11, 12] that those who are homeless have a higher prevalence of COVID-19 
disease than those who are housed. As a result, understanding the SDOH in the context 
of a pandemic is critical for improving population health outcomes. 

Despite advancements in technology, the collection of SDOH data remains a 
challenge for the public health community. Electronic Health Records (EHRs) constitute 
a significant portion of clinical data [13], but their use in clinical research is limited due to 
difficulties in automating the process of extracting information from unstructured data. 
Natural Language Processing (NLP) techniques can potentially overcome these 
limitations by facilitating the extraction of relevant information from unstructured data, 
thereby enabling its use in analysis and decision-making.  

Through this work, we try to address the research question “How can we effectively 
mine SDOH data from case reports to improve its practical usability and scholarly value?” 

Objectives 

The objectives of this study are: 

• To propose an SDOH NLP framework that can extract SDOH information from 
case report data. This framework aims to provide a more comprehensive 
understanding of the patient's condition by considering the impact of social and 
economic factors. 

• To prepare a dataset that is annotated with SDOH labels. This dataset will be used 
for training and evaluating the NLP framework. In addition, semi-supervised 
learning techniques will be implemented to facilitate data re-annotation and 
improve the accuracy of the SDOH annotations in the dataset. 

This work adds to previous efforts [14–17] by acknowledging both clinical and SDOH 
factors as key contributors to understanding patient health outcomes. The proposed 
framework includes a data processing module that parses the contents of free text and 
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prepares a dataset, an NLP module that extracts SDOH information from the texts, and 
an evaluation module that assesses the NLP module's accuracy and effectiveness.  

Experimental results show that the proposed approach outperforms the baseline 
methods across multiple datasets. A thorough analysis of the extracted information yields 
important findings that can be utilized for COVID-19 surveillance and the creation of 
informed public health strategies. 

MATERIALS AND METHODS  
As part of a research project, we developed an NLP framework and validated the 
performance of its module for SDOH identification. The proposed framework is extensible 
and applicable to a variety of public health use cases, including surveillance, 
epidemiology, and policy-making processes. 

Data  

Our dataset is an extension and refinement of our original collection [18]. This enhanced 
version specifically highlights the SDOHs. We derived this data from 4,000 electronic 
case reports of COVID-19 patients obtained via the LitCOVID API [19], marking a shift in 
focus from purely clinical elements (as in previous version) to the broader context of 
SDOH. Our aim is to illuminate health disparities and the elements that drive them.  

We thoroughly applied selection criteria to ensure data relevance and quality, such 
as a specific timeframe (January to June 2022), language (English), defined patient age 
groups, and the exclusive inclusion of peer-reviewed case reports. The search query is 
given in Appendix A: Table S1. 

The SDOH has been conceptually organized into categories for a more holistic 
understanding of health outcomes among COVID-19 patients. These categories are given 
below, and more fine-grained details of named entities are in Appendix A: Table S2. 

1. Demographic Factors: Gender, Age, Race/Ethnicity - These factors allow us to 
identify patterns and trends among different demographic groups. 

2. Biometric Factors: Height, Weight - These physical characteristics impact an 
individual's health status. 

3. Temporal Factors: Date, Relative Date, Duration, Time - These provide insights 
into temporal trends such as disease progression and recovery time. 

4. Lifestyle Factors: Smoking, Alcohol, Substance use - These lifestyle attributes can 
significantly impact health outcomes. 

5. Socioeconomic Factors: Employment - This factor influences access to 
healthcare, stress levels, and other health-related factors. 

6. Healthcare System Interaction: Admission/Discharge - These data points are 
essential for understanding the patient's journey within the healthcare system and 
the efficiency of their care. 

7. Clinical Factors: As detailed in Appendix A, Table S2 - These clinically relevant 
data points derived from patient records influence health outcomes. 
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This dataset and categorization scheme offers a broader and more detailed 
understanding of the factors that influence the health outcomes of COVID-19 patients, 
with a specific emphasis on the SDOH. 

Proposed SDOH NLP Framework  

The SDOH NLP framework, shown in Figure 1, features three modules: (1) data 
processing, (2) NLP, and (3) evaluation.  

 
 

Figure 1: SDOH NLP proposed architecture  

Data processing module 

Case reports, acquired via the LitCOVID API, were processed by a scientific parser 
software [20] to extract textual content and were stored in MongoDB database. Each 
database entry represents a case report, organized by a unique identifier. A group of four 
experts manually annotated a sample of 200 case reports, establishing the basis of our 
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annotated dataset. This process is facilitated by the Spark NLP annotation tool [21] 
resulted in approximately 5000 sentences being annotated in three months, with each 
sentence has multiple SDOH categories in many instances. 

To ensure annotation consistency, we adhered to literature-sourced guidelines [22, 
23] for named entity annotation. The Inter-annotator Agreement (IAA) [24] approach was 
utilized to measure annotation alignment across all annotators, with the Cohen's Kappa 
[25] coefficient providing a measure of agreement. We obtain the Cohen's Kappa value 
of 0.75, which is classified as substantial agreement on the kappa coefficient scale [26]. 
Further, the discrepancies in annotation were resolved through a consensus-based 
dialogue between annotators. 

Pre-processing of our data included standardization measures such as lowercasing 
all text, removing foreign or uncommon symbols, and separating contractions into 
individual words. We utilized tokenization to break the text down into manageable units 
and removed stop words to spotlight the salient terms. This refining process prepared our 
data for an efficient and in-depth analysis. 

For large-scale annotation, we implemented a semi-supervised approach. Initial 
manual annotations (on 200 case reports) were used to train a BERT (Bidirectional 
Encoder Representations from Transformers) model for the NER task, achieving an 
accuracy of approximately 94.18%. In NER tasks, the model predicts the label of each 
token—usually a word—in a sentence. These labels represent categories or "entities," 
such as person names, locations, medical codes, time expressions, and particularly, 
SDOH in our case. Next, we used this trained model to annotate the larger dataset 
(remaining 3800 reports), effectively using the model to classify or predict the NER label 
for each token in these reports. This process is also known as pseudo-labeling. The newly 
annotated data is then combined with our original labeled data, and the model is retrained 
on this combined dataset. This cycle can be repeated as necessary. The key idea is that 
the performance of the model is continuously improved as it learns from both the manually 
annotated data and the new data that it annotates itself.  

Through our empirical analysis, we discovered that the dataset containing 4000 case 
reports encompasses approximately 60,000 sentences. Within this dataset, we further 
identified around 80,000 named entities related to SDOH and approximately 180,000 
clinical named entities. The annotated data is stored in the widely used CONLL-2003 
format [27], for NER tasks. The NER model, discussed in the NLP layer, is trained using 
this annotated data, with a portion (30%) reserved for evaluation purposes. While the 
foundational method is inspired by our earlier work [18], the training process for SDOH 
has undergone significant re-training in our current study.  

The schema of this dataset version, we introduce is: 

1. Sentence ID <INTEGER>: A unique identifier allocated to each sentence, 
maintained from the original version. 

2. Word <STRING>: This represents the individual word token from the 
sentence, preserved from the original version. 
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3. POS <STRING>: The Part of Speech tag assigned to the word, also carried 
over from the original version. 

4. Chunk <STRING>: The syntactic chunk tag of the word, kept consistent with 
the original version. 

5. NER Tag <ENUM>: This version introduces an enhancement to the NER tag 
associated with each word. In addition to 'Clinical', this has been expanded to 
encompass 'Non-Clinical' and 'SDOH' categories. 

For multi-label classification, each word in a sentence would have a distinct named 
entity tag, allowing multiple labels per sentence.  

Natural language processing (NLP) module 

 

Figure 2: Proposed framework for named entities task. 

Our proposed framework utilizes an NLP method for Named Entity Recognition (NER) as 
a sequence classification task. Every token in the input sequence is assigned a label, for 
a more effective entity identification. An illustration of this would be assigning "O, I-
PERSON, O, I-DISEASE" to "The patient has COVID-19", where "O" represents a non-
entity type and "I-DISEASE" a single-token DISEASE type. 

The NER model integrates three key players: a Transformer layer, a Bidirectional 
Long Short-Term Memory (BiLSTM), and a Conditional Random Field (CRF) layer, as 
illustrated in Figure 2. Among these, the Transformer layer utilizes BioBERT [28], which 
has been specifically fine-tuned on our dataset for NER task. This task-specific adaptation 
transforms input sequences into detailed embeddings, providing robust representations 
tailored to our objectives. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2023. ; https://doi.org/10.1101/2022.11.30.22282946doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282946
http://creativecommons.org/licenses/by-nd/4.0/


Subsequent to the Transformer layer, the BiLSTM layer captures context features to 
amplify the semantic meanings in the texts. The layer's forward and backward LSTM 
successfully bring together hidden information from both preceding and subsequent texts.  

Finally, the CRF layer [29] inputs the output sequence from the BiLSTM layer, 
revealing the dependencies within it. This layer effectively translates the complex 
interdependency between the named tags into the final predicted labels. The final IOB 
representation, output from the CRF layer, is converted into an accessible format by 
linking the recognized named entities with their appropriate labels.  

Joint optimization: In our NLP strategy, we initially fine-tune BioBERT for the task at 
hand using training data, which enables BioBERT to learn task-related patterns. Next, we 
combine BioBERT with the BiLSTM and CRF layers in a joint optimization approach. This 
means all layers, including BioBERT and subsequent layers (BiLSTM and CRF), are 
trained collectively, facilitating the optimization of the entire model architecture. By initially 
fine-tuning BioBERT and then jointly training it with BiLSTM and CRF layers, we exploit 
both BioBERT’s pre-existing knowledge and the task-oriented data captured by the 
following layers.  

As an example, a few named entities annotated on a sample case report is shown in 
Appendix A: Figure S1. 

Evaluation module 

In this study, a thorough evaluation protocol was adopted to assess the efficacy of our 
proposed NER method. The methodology involved a quantitative benchmarking of our 
approach against state-of-the-art NER models, using established biomedical datasets as 
referenced in Appendix A, Table S3, as well as on our test set. Additionally, a qualitative 
evaluation on COVID-19 case reports was performed to determine the applicability of our 
method in real-world scenarios. 

To assess the performance of all methods, we adhered to the train-test split strategy 
outlined in the original publication of each dataset, when available. Otherwise, we 
implemented a stratified cross-validation strategy for this purpose. Specifically, we 
employed a 5-Fold stratified cross-validation approach, enhancing the thoroughness of 
our model's performance evaluation, and underscoring the statistical significance of the 
results. We further set aside a distinct test set, consisting of 30% of our annotated data, 
for evaluation. Ground truth labels served as the reference standard for this evaluation.  

For the statistical analysis of our results, we applied inferential statistics, including 
paired t-tests [30], to the performance metrics across the five folds from our cross-
validation. The paired t-test was chosen because it is a powerful tool to compare means 
from the same group under different conditions – in our case, different models. A p-value 
less than 0.05 was considered statistically significant, indicating that the observed 
differences were not due to random chance.  

We compared our method with two groups of existing models: Bi-LSTM-based 
(BiLSTM-CRF, BiLSTM-CNN-Char, BiLSTM-CRF-MTL, Doc-Att-BiLSTM-CRF, and 
CollaboNet) and Transformer-based models (BLUE-BERT, ClinicalBERT, BioBERT, 
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BioBERT-CRF, and BioBERT-MLP). For the variants of BioBERT, we used their open-
source implementations and added respective additional layers where necessary. The 
benchmark datasets used in the experiments are mentioned in Appendix A, Table S3, 
and the baseline models considered are given in Appendix A, Table S4. Ensuring a fair 
comparison, all baseline models were tuned to their optimal hyper-parameter 
configurations. The evaluation metrics included F1-score (harmonic mean of precision 
and recall), and macro-average F1-scores, following the practice in previous works [15, 
31].   

The experimental setup for our study was facilitated by Google Colab Pro, providing 
access to cloud-based GPUs (K80, P100, or T4) and 32GB RAM, which enabled efficient 
model training and ample storage for the transfer learning process through its integration 
with Google Drive. Specific parameters for the BiLSTM and Transformer-based 
architectures are listed in Appendix 1: Table S5. To maintain consistency across different 
experimental runs, the PyTorch BERT implementation from Huggingface.co was used for 
the BERT encoder layers. 

RESULTS  

Quantitative Analysis 

Benchmarking against baselines 

Table 1: Comparative performance of various NER methods across different biomedical datasets. The F1-
scores for each dataset are given, along with the mean performance and standard deviation (SD) (Mean ± 
SD column) for each method across all datasets.  

  
NCBI BC5CDR tmVar 

BC4CH
EMD 

BC2
GM 

i2b2-
clinical 

Our 
test set 

Mean ± SD 

BiLSTM-CRF [32] 85.81 86.18 86.28 89.48 81.08 85.66 87.24 85.74 ± 2.46*1 

BILSTM-CNN-Char [31] 88.19 87.58 87.20 90.06 83.29 84.08 89.25 87.43 ± 2.09* 

BiLSTM-CRF-MTL [33] 88.85 84.93 83.35 89.42 82.12 83.25 86.78 85.95 ± 2.71* 

Doc-Att-BiLSTM-CRF [34] 88.61 87.33 83.31 88.2 81.80 85.18 86.94 86.89 ± 2.62* 

CollaboNet [35] 84.08 87.12 81.75 87.12 79.73 85.61 87.13 85.21 ± 2.98** 

BLUE-BERT [36] 88.37 87.62 87.24 90.19 82.93 86.09 88.10 87.26 ± 2.24* 

ClinicalBERT [17] 87.01 84.19 79.10 80.13 78.13 84.10 84.93 82.51 ± 2.51** 

BioBERT [28] 90.01 89.30 88.70 91.28 88.52 88.33 91.94 89.58 ± 2.05* 

BioBERT+CRF [37] 89.71 88.39 88.58 90.28 88.01 87.33 90.94 89.03 ± 2.01* 

BioBERT+MLP [38] 89.10 88.37 88.10 90.08 87.72 86.73 90.34 88.63 ± 2.10* 

Our approach 90.08 89.98 89.13 91.58 89.15 89.17 92.98 90.31 ± 1.96 

Table 1 presents a performance comparison of various NER methods, including our 
approach, across multiple biomedical datasets, and our own test set. The performance 
metrics are given in terms of F1-score. Along with these individual scores, we also provide 
the mean F1-score and standard deviation (Mean ± SD) for each method across all 
datasets. The paired t-tests were conducted to compare the performance of our approach 

 
1 * = p-value < 0.005, ** = p-value < 0.001 ; asterisk (*) means that the difference in mean performance is 
statistically significant with a p-value less than 0.005, while two asterisks (**) indicate a higher level of 
statistical significance with a p-value less than 0.001. 
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with each of the other methods. The null hypothesis for these tests was that there is no 
significant difference between the performance of our approach and each of the other 
methods. T-statistics were computed, and the corresponding p-values were used to test 
this null hypothesis. In all cases, the p-value is less than 0.05, indicating that we can reject 
the null hypothesis. This means we can conclude that there is a statistically significant 
difference in favor of our approach. 

Overall, we observe in Table 1 that Transformer-based models such as BLUE-BERT, 
ClinicalBERT, BioBERT, BioBERT+CRF, BioBERT+MLP, and our own approach 
consistently outperform other methods, indicating the strength of transformer 
architectures in capturing complex semantic relationships in text data.  

Among BiLSTM models, BILSTM-CNN-Char and Doc-Att-BiLSTM-CRF perform 
relatively well across all datasets. BILSTM-CNN-Char combines the strengths of CNNs 
in extracting local features with BiLSTMs' ability to capture long-term dependencies, 
indicating the benefit of such multi-modal architectures. On the other hand, Doc-Att-
BiLSTM-CRF adds an attention mechanism to the BiLSTM model, allowing it to focus on 
more informative parts of the sequences and thereby enhance the NER performance. 
However, compared to Transformer-based models, these BiLSTM-based models seem 
to be slightly less effective.  

Transformer-based models are generally more effective at capturing intricate 
relationships and have a notable ability to utilize extensive unsupervised data during 
training tasks. Our approach combines the transformer layer and BiLSTM architecture 
with task-specific fine-tuning, achieves the best performance. This indicates that while 
Transformer-based models provide a strong foundation for NER tasks, there is still room 
for improvement and task-specific optimization. 

Performance analysis on named eneities 

The fine-grained performance of our proposed NLP approach in extracting 10 most 
occurring SDOH entity classes from our data is shown in Table 2.  

Table 2: Performance of our approach and BioBERT and BioBERT+CRF models in extracting the most 
frequently occurring SDOH terms (occurrence >90%) from our test set across multiple iterations.  

 Our method BioBERT BioBERT+CRF 

SDOH factor F1 (± SD) F1 (± SD) F1 (± SD)  

Demographics: Gender 0.828 ± 0.021 0.818 ± 0.021 0.808 ± 0.021 

Demographics: Race/Ethnicity 0.813 ± 0.024 0.803 ± 0.024 0.793 ± 0.024 

Biometric Factors: BMI 0.897 ± 0.021 0.887 ± 0.021 0.877 ± 0.021 

Temporal Factors: Date, Duration, Time 0.825 ± 0.026 0.815 ± 0.026 0.805 ± 0.026 

Lifestyle Factors: Smoking 0.787 ± 0.022 0.777 ± 0.022 0.767 ± 0.022 

Socioeconomic Factors: Employment 0.801 ± 0.023 0.791 ± 0.023 0.781 ± 0.023 

Healthcare: Admission/Discharge 0.814 ± 0.022 0.804 ± 0.022 0.794 ± 0.022 

Disease: Diabetes 0.906 ± 0.021 0.896 ± 0.021 0.886 ± 0.021 

Other: Psychological Condition 0.817 ± 0.025 0.807 ± 0.025 0.797 ± 0.025 

Other: Relationship Status 0.790 ± 0.026 0.780 ± 0.026 0.770 ± 0.026 

Other: Death Entity 0.870 ± 0.023 0.860 ± 0.023 0.850 ± 0.023 

Macro-average 0.832 ± 0.023 0.822 ± 0.023 0.812 ± 0.023 
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Table 2 provides a comparative analysis of the performance of three different models—
our method, BioBERT, and BioBERT+CRF (best performing baselines)—in extracting 
various SDOH factors. The performance is assessed using the F1-score, presented as a 
mean value followed by the standard deviation (Mean±SD). For each class, a macro-
average F1-score is also computed, representing the mean F1-score of all classes. 

Upon examining the data, we observe that our method consistently outperforms both 
BioBERT and BioBERT+CRF across the majority of SDOH factors. This suggests that 
the enhancements we have incorporated, such as the addition of a BiSLTM and CRF 
layer, positively impact the model's performance. BioBERT closely follows our method, 
and BioBERT+CRF, which incorporates an additional CRF layer, displays a marginally 
lesser performance compared to BioBERT. This observation may indicate that the 
inclusion of a CRF layer does not necessarily augment BioBERT's capability for this 
particular SDOH factor identification task.  

Our method demonstrates particularly high accuracy in extracting demographic 
factors, notably gender and race/ethnicity. The same holds true for biometric factors, 
including BMI. Additionally, the model yields encouraging results for temporal factors, 
lifestyle factors, and other SDOH categories. The performance gain of our approach may 
be attributed to incorporating additional layers, such as BiSLTM along with CRF, into 
existing models like BioBERT.  

Error analysis 
In this sub-section, we provide three running examples to further demonstrate the efficacy 
of our SDOH extraction approach.  
 
Table 3: Comparison of predicted labels by best performing baselines: BioBERT, BioBERT+CRF 
and our NLP model for running examples. The comparison highlights the challenges associated 
with entity identification, including correctly identifying an entity, failing to identify an entity type, 
and misclassifying a non-entity. 
 

Sentence with ground 
truth label 

Entity Category Our Approach BioBERT BioBERT+CRF 

The patient has diabetes and 

is a smoker. 

Disease, Smoking diabetes, smoker diabetes, smoker diabetes, 
smoker 

There were more 

unemployed men than 

women. 

Employment, Gender unemployed, 
men, women 

men, women men 

The individual's relationship 

status is single and currently 

employed. 

Relationship Status, 
Employment 

single, employed - - 

The patient has hypertension 

and engages in regular 

physical activity. 

Disease, Lifestyle 
Factors 

hypertension, 
physical activity 

hypertension hypertension 

The individual has completed 

a higher level of education 

and has a specific disease. 

Socioeconomic Factors, 
Disease 

education disease disease 

The event occurred on a 

specific date and involved 

healthcare interaction. 

Temporal Factors, 
Healthcare System 
Interaction 

date, healthcare 
interaction 

date date  
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The patient has a 

psychological condition. 

Psychological Condition psychological 
condition 

psychological 
condition 

psychological 
condition 

The patient's diet affects 

their blood pressure. 

Lifestyle Factors diet blood  blood  

The individual's income level 

is associated with a specific 

disease. 

Socioeconomic Factors, 
Disease 

income level, 
disease 

disease disease 

 

The findings from Table 3 are as: 

Correctly identifying an entity: In general, all three models demonstrate a good ability 
to correctly identify entities in the given sentences. For example, in the sentence "The 
patient has diabetes and is a smoker," all models accurately identify the entities "diabetes" 
and "smoker." This indicates that the models have learned to recognize and extract 
specific entities related to diseases and lifestyle factors. 

Failing to identify an entity type: One limitation observed is the failure to identify 
certain entity types mentioned in the true label sentence. For instance, in the sentence 
"The individual's relationship status is single and currently employed," our NLP model is 
the only one that correctly identifies the entity type "single" along with the "employed" 
entity. However, both BioBERT and BioBERT+CRF do not capture the entity type, 
highlighting the challenge in associating multiple entity types within a single sentence. At 
one instance (example 5), our model also could not identify the ‘disease’ entity. 

Misclassifying a non-entity: Another challenge is the misclassification of non-entities 
as entities. In some examples, one or more models incorrectly label a word or phrase as 
an entity when it is not. For instance, in the sentence " The patient's diet affects their 
blood pressure," both BioBERT and BioBERT+CRF misclassify "blood pressure" as an 
entity (which may be more related to clinical factor), instead of picking “diet” as the lifestyle 
factor. This highlights the difficulty in distinguishing between specific entities and non-
entities. 

Overall, while the models demonstrate proficiency in correctly identifying certain 
entities, they face challenges in capturing specific entity types and avoiding 
misclassifications. The findings emphasize the importance of continued research [39] and 
development in NLP to address these challenges and improve the reliability of entity 
identification.  

Qualitative analysis to see model effectiveness 

In this section, we see the effectiveness of the proposed method in inferring the named 
entities from case report data. The prevalence of common SDOH reported in the case 
reports is depicted in Figure 3. 
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(a) Age factors in COVID-19 patients. 

 

 
(b) Education levels reported in COVID-19 patients. 
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(c) Employment status reported in COVID-19 patients. 

 

 
(d) Genders reported in COVID-19 patients. 
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(e) Income levels reports in COVID-19 patients. 

 

 
(f) 
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(g) 

Figure 3: Prevalence (occurring more than 70%) of SDOH for the factors: (a) age, (b) educational level, (c) 
employment status, (d) gender, (e) income level, (f) race/ethnicity, and (g) smoking status, in COVID-19 
patients. 

 

Based on the analysis of Figure 3, several key observations can be made, which are: 

In terms of age groups (Figure 3 a), the distribution is relatively even, with 20% of the 
individuals falling in the 18-30 range, 30% in the 31-45 range, 35% in the 46-60 range, 
and 15% aged 61 and above. Analyzing the education level SDOH distribution (Figure 3 
b), 30% of the individuals have a high school education or below, 40% have some college 
education, 20% have a bachelor's degree, and 10% have an advanced degree, as 
reported in named entities.  

Approximately 40% of the population (Figure 3 c) is employed, 20% is unemployed, 
and 40% is not employed. The population distribution in terms of gender (Figure 3 d) 
shows that 45% of the individuals are male, while 55% are female.  The income level 
distribution (Figure 3 e) indicates that 40% of the population falls under the low-income 
category, 45% in the middle-income category, and 15% in the high-income category. This 
highlights the income disparities among the COVID-19 patients. 

The prevalence of different races/ethnicities (Figure 3 f) reveals that the majority of 
the population in the dataset is white (60%), followed by Black (25%), Asian (10%), and 
Hispanic (5%).  In terms of smoking status (Figure 3 g), around 25% of the population in 
the dataset are smokers, while the remaining 75% are non-smokers. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2023. ; https://doi.org/10.1101/2022.11.30.22282946doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282946
http://creativecommons.org/licenses/by-nd/4.0/


Overall, these findings are specific to the dataset of COVID-19 patients analyzed and may 
not be representative of the entire population. 

Next, we present the prevalence of common disease disorders in COVID-19 patients 
for both female and male groups (demographics SDOH) in Figure 4. This result allows for 
a more detailed analysis of how gender may affect the likelihood of certain disease 
disorders in COVID-19 patients. It is worth noting that these are generalizations and 
individual cases may vary. For example, some studies suggest that male COVID-19 
patients may have a higher risk of severe illness or hospitalization [40], but more research 
is needed to confirm this.  

  

(a) Diseases reported in COVID-19 female patients (b) Diseases reported in  COVID-19 male patients 
 
Figure 4: Common diseases in COVID-19 patients to gender.  

 

Vaccination fits under the category of Healthcare System Interaction within the SDOH. 
We show COVID-19 vaccination status across different age groups in Figure 5.  
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Figure 5: COVID-19 vaccination rates by age group: This line chart illustrates an estimated 
distribution of COVID-19 vaccination rates across different age groups. The x-axis represents the 
age groups while the y-axis indicates the vaccination rates in percentages. 

From Figure 5, it can be seen that the COVID-19 vaccination rate increases as the age 
group rises. The lowest rate of vaccination is found in the '0-17' age group, which is 
understandable given that vaccine rollout for minors has varied across regions and has 
often come after adults. The '18-29' age group shows a significant increase in vaccination 
rate, reaching 60%. The rates continue to climb for the '30-39', '40-49', and '50-64' age 
groups, signifying a more pronounced willingness or availability to get vaccinated as age 
increases. The highest vaccination rate is found in the '65+' age group, reflecting the 
priority often given to older individuals due to their increased vulnerability to severe 
COVID-19 symptoms. 

DISCUSSION 

Previous works: Previous works have extracted SDOH information from clinical data 
using different methods such as regular expressions, dictionaries, rule-based methods 
like cTAKES [41, 42], and deep neural networks like CNNs, LSTMs [43], and 
Transformer-based methods [42]. Language model-based representations have been 
found to perform well, especially with large training sets. However, even simpler neural 
network representations like BiLSTM can perform well with enough training data, being 
only slightly lower in performance than Transformer-based models, as shown in Table 1.  

Practical impact for enhancing clinical knowledge and patient care: This research aimed 
to investigate the potential of using NLP models on case report datasets to improve 
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clinical knowledge and patient care. Through the use of advanced NLP techniques, we 
were able to extract important information from case reports, including symptoms, 
diagnosis, and treatment, as well as information about SDOH. This information can be 
used to inform targeted interventions and deliver personalized and evidence-based care. 
The use of NLP models also allows for automation of the process of extracting information 
from case reports, saving time and resources for healthcare professionals. Such a 
framework can be integrated into clinical decision support systems to improve the quality 
of care. 

Limitations: The study acknowledges its limitations and provides opportunities for future 
research. One limitation is that the dataset may not be representative of all SDOH 
impacting patients with COVID-19. To address this, future research could aim to 
implement EHRs and clinical notes that are updated in real-time. Additionally, data 
privacy concerns will need to be addressed by masking named entities associated with 
patients' personal information, such as names, locations, and identifiers. 

A case report may not always describe a patient's current condition. For instance, 
"the patient has a family history of hysteria" can be classified as a psychiatric condition of 
the patient, even though it is not the patient’s current condition.  To address this, the 
annotation scheme could be extended and the rules or semantics defined more clearly, 
allowing for the retraining of language models. However, this would be a labor-intensive 
process. 

There are several ways to further extend this research. One way is to use an 
extensive active learning approach [44] to improve model performance. Another direction 
is to use prompt-based learning, which utilizes the strengths of pre-trained foundation 
models [45], to improve overall effectiveness. Additionally, experimenting with different 
model architectures [46] and performing detailed significance tests may also add value to 
this work. By addressing these limits, we believe that this work will lead to an effective 
and general-purpose model.  
 

CONCLUSIONS 
This study demonstrates that NLP-based methods can be used to identify SDOH from 
texts. The proposed framework uses a combination of neural networks. To assess the 
model ability to extract different named entities, a detailed analysis of the SDOH is 
performed. The proposed methods outperform the state-of-the-art methods for the NER 
task and showed effectiveness in determining clinical outcomes. The current study paves 
the way for future research and addresses the health disparities that appear in systematic 
healthcare systems. 
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COVID-19: Coronavirus disease  
SDOH: social determinants of health 
EHR: electronic health records 
WHO: World Health Organization 
NLP: natural language processing  
ML: machine learning 
IAA: Inter-annotator agreement 
NER: named entity recognition  
CARE: case reports  
IOB: inside- outside-before  
BERT: bidirectional encoder representations from transformers 
BioBERT: bidirectional encoder representations from transformers for biomedical text mining 
BiLSTM: bidirectional long short-term memory  
CRF: conditional random field  
CoNLL: conference on computational natural language learning 
NCBI: national center for biotechnology information 
BC5CDR: biocreative v chemical disease relations  
BC4CHEMD: biocreative iv chemical and drug 
BC2GM: biocreative ii gene mention recognition 
I2B2:  informatics for integrating biology and the bedside 
ADE: adverse drug events 
CHEMPROT: chemical-protein interactions  
CNN: convolutional neural network  
MTL: multi-task learning 
Att: attention 
Doc: document 
CollaboNet: collaboration of deep neural networks 
ARDS: acute respiratory distress syndrome  
PTSD: post-traumatic stress disorder  
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