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Abstract  

Background: Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, 

namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While 

cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive 

candidate predictors include personality traits, anxiety, and depression, among others. These 

predictors offer non-invasive assessment and exhibit changes during AD development and 

preclinical stages.  

Methods: In a cross-sectional design, we comparatively evaluated the predictive value of 

personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional 

magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) 

genotype, and CSF biomarkers (tTau, pTau181, A42/40 ratio) in a multi-class support vector 

machine classification. Participants included 189 healthy controls (HC), 338 individuals with 

SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal 

Cognitive Impairment and Dementia Study (DELCODE). 

Results: Mean predictive accuracy across all participant groups was highest when utilizing a 

combination of personality, depression, and anxiety scores. HC were best predicted by a feature 

set comprised of depression and anxiety scores and participants with AD were best predicted 

by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI 

was near chance level for all assessed feature sets.  

Conclusion: Our results demonstrate predictive value of personality trait and state scores for 

AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show 

complementary value for classification of AD and its at-risk stages. 

 

Keywords: Alzheimer’s disease, subjective cognitive decline, amnestic mild cognitive 

impairment, biomarker, cerebrospinal fluid, personality, fMRI, resting-state, support vector 

machine, machine learning 
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Key Points 

− Multi-class support vector machine classification was used to compare the predictive 

value of well-established and non-invasive, easy-to-assess candidate variables for 

classifying participants with healthy cognition, subjective cognitive decline, amnestic 

mild cognitive impairment, and mild Alzheimer's disease. 

− Personality traits, geriatric anxiety and depression scores, resting-state functional 

magnetic resonance imaging activity of the default mode network, ApoE genotype, and 

CSF biomarkers were comparatively evaluated. 

− A combination of personality, anxiety, and depression scores provided the highest 

predictive accuracy, comparable to CSF biomarkers, indicating complementary value. 

− Established and candidate predictors had limited success in classifying SCD and aMCI, 

underscoring the heterogeneity of these cognitive states and emphasizing the need for 

standardizing terminology and diagnostic criteria.  
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1 Introduction  

Alzheimer’s disease (AD) is commonly preceded by cognitive impairment states, namely 

subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While MCI requires 

a measurable deviation from normal cognitive performance as assessed by neuropsychological 

testing, SCD does not. As both are recognized risk factors for AD (Albert et al. 2011; Jessen et 

al. 2014), effective treatment for AD requires early intervention (Blennow et al. 2010; Sperling 

et al. 2011; Binnewijzend et al. 2012; Buchhave et al. 2012; Jessen et al. 2014; Badhwar et al. 

2017; Jessen et al. 2018).  

Established biomarkers for the diagnosis of AD and associated risk stages are altered levels of 

amyloid beta (A1-42), total tau (tTau), and phosphorylated tau (pTau181) in cerebrospinal 

fluid (CSF; Blennow et al. 2010; Olsson et al. 2016; Badhwar et al. 2017). Obtaining CSF 

samples requires an invasive lumbar puncture and is typically only performed in cases of 

clinical suspicion. Hence, less invasive measures have been proposed. This study undertook a 

comparative assessment of the predictive value of voxel-wise resting-state functional magnetic 

resonance imaging activity of the default mode network (DMN), personality traits, depression, 

anxiety, apolipoprotein E (ApoE) genotype, and CSF biomarkers. These predictors were 

employed in a machine-learning classification framework to distinguish between different 

groups of participants positioned along the trajectory of Alzheimer's disease or those in a 

cognitively healthy state (Figure 1). 

At an intra-individual level, personality traits (McCrae & Costa 1987) change in premorbid 

cognitive states and in AD itself. Overall, neuroticism has been observed to increase during the 

transition from normal cognition to amnestic MCI, while extraversion, openness, and 

conscientiousness decrease, with limited evidence for lower agreeableness (Mendez Rubio et 

al. 2013; Yoneda et al. 2016; Terracciano et al. 2017; Caselli et al. 2018). Similarly, at an inter-

individual level, individuals with AD display higher neuroticism and lower scores in 

agreeableness, extraversion, conscientiousness, and openness compared to healthy controls in 

both self- and informant ratings (Duchek et al. 2007; Robins Wahlin and Byrne 2011). In 

general, a linear trend reflecting the severity of cognitive decline is apparent in personality trait 

scores, indicating that alterations in AD are more notable and pronounced compared to its 

preceding stages.  

Personality traits are considered rather stable throughout life, while anxiety and depression are 

transient states. However, anxiety and depression are widely reported to correlate with 

personality traits (Kotov et al. 2010; Klein et al. 2011; Hakulinen et al. 2015) and may be 
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regarded as proxies for neuroticism (Costa Jr. and McCrae 2008; Soto et al. 2009). Higher levels 

of depression and anxiety are consistently associated with subjective cognitive decline (SCD) 

(Hill et al. 2016), aMCI (Ismail et al. 2017; Mirza et al. 2017), and AD (Leung et al. 2021) and 

may be used as predictors for these cognitive states. Comparisons of affective symptoms 

between SCD/MCI and SCD/AD have yielded inconsistent results, but higher prevalence of 

depressive symptoms is observed compared to healthy controls (Hill et al. 2016). Higher 

anxiety and depression levels increase the risk of converting from (a)MCI to AD (Palmer et al. 

2007; Li et al. 2016; Li et al. 2018; Peakman et al. 2020) and treatment of these conditions 

might potentially reduce the conversion rate (Cooper et al. 2015). Additionally, the rate of 

cognitive decline is reported to be influenced by the age of depression onset (Ly et al. 2021). 

There is ongoing debate regarding whether depression constitutes a risk factor or an initial 

manifestation of AD, or both (Panza et al. 2010; Singh-Manoux et al. 2017; Invernizzi et al. 

2021). 

Activity of the DMN (Raichle et al. 2001) can be assessed employing resting-state fMRI 

(Andrews-Hanna et al. 2014) and metrics like PerAF (Jia et al. 2020) by measuring BOLD 

signal fluctuations. Patterns of AD-typical A plaques deposition and disturbances in DMN 

functional connectivity of the DMN show considerable overlap (Mohan et al. 2016). DMN 

functional alterations have been described in individuals with aMCI and AD for a range of 

measures, including amplitude of low frequency fluctuations, therefore holding potential 

diagnostic value for identifying AD and its at-risk states (Blennow et al. 2010; Mevel et al. 

2011; Cha et al. 2013; Badhwar et al. 2017).  

The ε4 allele in the apolipoprotein E (ApoE) gene is a genetic risk factor for AD, showing a 

gene-dose effect of the ApoE ε4 risk allele, with ApoE ε4 homozygotes having a higher risk 

than ApoE ε3/ε4 heterozygotes (Blennow et al. 2010; Sperling et al. 2011; Dubois et al. 2014; 

Jansen et al. 2015; Hansson et al. 2018; Jessen et al. 2018; Leuzy et al. 2021). The ApoE 

genotype is proposed as a risk marker in individuals with SCD (Jessen et al. 2014).  

Previous research has mostly tested the aforementioned predictors individually in 

discriminating cognitively healthy individuals from those at-risk for or with AD. Here, we 

assessed their diagnostic value in a cross-sectional multi-class classification approach (Ramzan 

et al. 2019), including all four participant groups simultaneously. Our primary focus was to 

evaluate the role of personality traits, both individually and in combination with depression and 
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anxiety. Furthermore, we aimed to compare the performance of all assessed feature sets in terms 

of their respective predictive1 accuracies, i.e., class and decoding accuracies. 

Our hypotheses were as follows: 

(1) Measures of personality traits would yield significant predictive accuracies above 

chance across all participant groups. 

(2) Combining personality traits, depression, and anxiety scores would improve predictive 

accuracies compared to personality traits alone. 

(3) A feature set comprising non-invasive predictors (voxel-wise resting-state activity of 

the DMN, personality traits, depression and anxiety scores, and ApoE genotype) would 

yield equal or higher predictive accuracies across all groups compared to a feature set 

consisting of CSF biomarkers (tTau, pTau181, and Aβ42/40 ratio). 

 

Figure 1. Study design. In a cross-sectional design, predictor variables were combined into 

feature sets that were used in the SVM classification to predict participant groups. The feature 

set "confounding variables" was included in all other feature sets and also served as the base 

model. 

 

  

 

1 In this study, the term “predictive” refers to support vector classification performance of feature sets 

differentiating participant groups in a cross-sectional design, not the prediction of a longitudinal diagnostic 

outcome. 
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2 Materials and Methods 

2.1 Participants  

For our cross-sectional study, we used baseline data from participants recruited through the 

DELCODE study. For detailed information on the DELCODE study, see Jessen et al. (2018). 

We included a large cohort of 733 participants that were assigned to four different groups based 

on their entry diagnosis: HC, SCD, aMCI, and mild AD. All participants were aged 60 years or 

older, fluent in German, able to give informed consent, and had a study partner present.  

Participants for the study were recruited either through local newspaper advertisements or from 

memory clinics. Healthy controls self-identified as cognitively healthy and passed a telephone 

screening for SCD. These individuals were included as HC if their memory test performance 

was within 1.5 standard deviations (SD) of the age-, gender-, and education-adjusted normal 

performance on all Consortium to Establish a Registry for Alzheimer's Disease (CERAD) 

subtests and if they did not meet the SCD criteria (Jessen et al. 2014). Conversely, individuals 

expressing cognitive decline concerns to the memory center physician were categorized as 

either SCD or aMCI, based on a comprehensive semi-structured interview following the SCD-

plus criteria (Jessen et al. 2014) and their CERAD performance. SCD participants outperformed 

the -1.5 SD below normal, while aMCI patients underperformed (>1.5 SD) on the "recall word 

list" subtest, thus excluding non-amnestic MCI participants. They did not meet the criteria for 

dementia, and their inclusion was based on the memory clinic diagnoses, which adhered to the 

current research criteria for MCI as defined by the National Institute on Aging-Alzheimer's 

Association (Albert et al. 2011; McKhann et al. 2011). 

Assignment to the AD group was based on both clinical diagnosis and on the Mini Mental 

Status Examination (MMSE). Only participants with mild AD (>18 points and <26 points on 

the MMSE) were included. Aside from HC, all participant groups (SCD, MCI, AD) were 

memory clinic referrals and underwent clinical assessments at their respective memory centers. 

These assessments consisted of a medical history review, psychiatric and neurological 

examinations, neuropsychological testing, blood laboratory analysis, and routine MRI scans. 

Cognitive function was measured using the CERAD neuropsychological test battery, which was 

administered at all memory centers. 
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Table 1. Descriptive statistics of predictor variables 

 HC SCD aMCI AD Statistics 

N 189 338 132 74 - 

age range 60 – 87 yrs  59 – 87 yrs 61 – 86 yrs 60 – 89 yrs - 

mean age ± SD 69.09 ±5.42 

yrs 

70.72 ±6.05 

yrs  

72.86 ±5.61 

yrs 

74.09 ±6.26 

yrs 

H(3) = 52.653, 

p < .001 

gender ratio 81/108 m/f 183/155 m/f 71/61 m/f 33/41 m/f χ²(3, N = 733) 

= 7,79, p = .051 

ApoE risk 

alleles 

N (0/1/2): 

146/36/3 

N (0/1/2): 

220/102/10 

N (0/1/2): 

69/50/9 

N (0/1/2): 

27/31/15 

χ²(6, N = 718) 

= 72,74, p < 

.001 

mean O score* 3.161 

±0.7284 

2.888 

±0.7872 

3.012 

±0.7421 

2.948 

±0.8263 

H(3) = 14.249, 

p = .003 

mean C score* 3.196 

±0.6841 

3.196 ±.6645 3.153 ±.6539 2.910 ±.7067 

 

H(3) = 11.917, 

p = .008 

mean E score* 3.175 

±0.5097 

3.076 

±0.6439 

3.129 

±0.6744 

3.142 

±0.8868 

H(3) = 4.766, 

p = .190 

mean A score* 3.083 

±0.7849 

3.148 

±0.7328 

3.056 

±0.7678 

2.758 

±0.7708 

H(3) = 13.769, 

p = .003 

mean N score* 2.825 

±0.6475 

2.885 

±0.6643 

3.077 

±0.8166 

3.045 

±0.7474 

H(3) = 10.876, 

p = .012 

GDS mean / 

median score* 

0.66 / 0.00 2.04 / 1.00 2.02 / 2.00 2.39 / 2.00 H(3) = 124.69, 

p < .001 

GAI-SF mean / 

median score* 

0.65 / 0.00 1.19 / 1.00 1.05 / 1.00 1.05 / 1.00 H(3) = 24.348, 

p < .001 

mean tTau 

(pg/ml) 

369.47 

±148.70  

374.20 

±185.04 

555.61 

±318.78 

791.96 

±399.94 

H(3) = 62.974, 

p < .001 

mean pTau181 

(pg/ml) 

49.70 ±16.03 54.03 ±23.92 70.74 ±43.02 95.89 ±47.64 H(3) = 53.933, 

p < .001 

mean A42/40 

ratio 

0.09650 

±0.02214 

0.092397 

±0.027371 

0.073111 

±0.030570 

0.050423 

±0.019247 

H(3) = 77.923, 

p < .001 

Note: Demographic information along with statistics from a chi-squared test (gender ratio) and Kruskal-Wallis 

tests (other metrics). Abbreviations: N = sample size; f = female; m = male; O = Openness; C = 

Conscientiousness; E = Extraversion; A = Agreeableness; N = Neuroticism; GDS = Geriatric Depression Scale; 

GAI-SF = Geriatric Anxiety Index, Short Form; pg = picogram; ml = milliliter. *see Figure S1 in the 

Supplementary Information 
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2.2 MRI data acquisition 

Structural and functional MRI data were acquired on 3T Siemens scanners following the 

DELCODE study protocol (Jessen et al. 2018; Düzel et al. 2019). A T1-weighted MPRAGE 

image (TR = 2.5 s, TE = 4.37 ms, flip-α = 7°; 192 slices, 256 x 256 in-plane resolution, voxel 

size = 1 x 1 x 1 mm) was acquired for co-registration and improved spatial normalization. 

The MPRAGE was followed by a 7:54 min resting-state fMRI (rs-fMRI) acquisition, during 

which T2*-weighted echo-planar images (EPI; TR = 2.58 s, TE = 30 ms, flip-α = 80°; 47 axial 

slices, 64 x 64 in-plane resolution, voxel size = 3.5 x 3.5 x 3.5 mm) were acquired in odd-even 

interleaved-ascending slice order. Participants were instructed to lie inside the scanner with 

eyes closed, but without falling asleep. Directly after, phase and magnitude fieldmap images 

were acquired to improve correction for artifacts resulting from magnetic field inhomogeneities 

via unwarping. This was followed by brief co-planar T1-weighted inversion recovery EPIs. 

The complete study protocol included other scanning sequences not used in the analyses 

reported here (Jessen et al. 2018). 

2.3 fMRI data preprocessing and analysis 

Data preprocessing and computation of mPerAF maps were performed using Statistical 

Parametric Mapping (SPM12; Wellcome Trust Center for Neuroimaging, University College 

London, London, UK) and the RESTplus toolbox (Jia et al. 2019), following a recently 

described protocol (Kizilirmak et al. 2022). EPIs were corrected for acquisition time delay (slice 

timing), head motion (realignment), and magnetic field inhomogeneities (unwarping), using 

voxel-displacement maps (VDMs) derived from the fieldmaps. The MPRAGE image was 

spatially co-registered to the mean unwarped image and segmented into six tissue types, using 

the unified segmentation and normalization algorithm implemented in SPM12. The resulting 

forward deformation parameters were used to normalize unwarped EPIs into a standard 

stereotactic reference frame (Montreal Neurological Institute, MNI; voxel size = 3 x 3 x 3 mm). 

Normalized images were spatially smoothed using an isotropic Gaussian kernel of 6 mm full 

width at half maximum. 

PerAF is a voxel-wise, scale-independent measure of low-frequency (0.01-0.08 Hz) BOLD 

signal fluctuations relative to the mean BOLD signal intensity for each time point, averaged 

across the whole time series (Jia et al. 2020). The global-mean-adjusted PerAF (mPerAF) was 
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computed from rs-fMRI using an adapted version2 of the RESTplus toolbox (Jia et al. 2019).  A 

DMN mask (Shirer et al. 2012) was applied, representing a composite of functionally defined 

regions of interest (ROIs), and the resulting mPerAF maps served as voxel-wise mean-centered 

predictor variables. 

2.4 Clinical and risk factor assessments 

Trained study physicians administered the baseline clinical assessments in the DELCODE 

study. These assessments followed a fixed order and were completed within a single day. 

Caregivers of participants with AD were allowed to help complete the questionnaires. Clinical 

assessments included the Geriatric Depression Scale short form (GDS; Sheikh & Yesavage 

1986), the Geriatric Anxiety Inventory short form (GAI-SF; Byrne & Pachana 2011), and the 

Big Five Inventory short form (BFI-10; Rammstedt & John 2007; Rammstedt et al. 2017). 

Scores on the five personality scales (each calculated as the mean of the two respective items) 

were included as five standardized predictors. The sum scores of GDS and GAI-SF were 

included as standardized predictors, respectively.  

2.5 ApoE genotyping  

The single nucleotide polymorphisms (SNPs) rs7412 and rs429358, which define the ε2, ε3, 

and ε4 alleles of the ApoE gene, were determined using a TaqMan® SNP Genotyping Assay 

(ThermoFisher Scientific). ApoE ε4 non-carriers (ε2/ε2, ε2/ε3, ε3/ε3) were coded as 0, 

heterozygotes (ε2/ε4, ε3/ε4) were coded as 1, and homozygotes (ε4/ε4) were coded as 2. 

2.6 Cerebrospinal fluid biomarker assessment 

Cerebrospinal fluid biomarkers (tTau, pTau181, and A42/40 ratio; collectively referred to as 

CSF biomarkers) were measured using commercially available kits according to manufacturers’ 

specifications: V-PLEX Aβ Peptide Panel 1 (6E10) Kit (K15200E) and V-PLEX Human Total 

Tau Kit (K151LAE) (Mesoscale Diagnostics LLC, Rockville, USA), and Innotest Phospho-

Tau(181P) (81581; Fujirebio Germany GmbH, Hannover, Germany).  

2.7 Assessment of confounding features 

Chronological age was included as a standardized predictor (mean = 0, SD = 1). The acquisition 

site predictor used in the DELCODE study included ten distinct sites across Germany, which 

 

2 Since the RESTplus toolbox only provides four default masks, a group-level mask fitting the dimensions and 

voxel sizes of our pre-processed task-based fMRI was generated and added to the mask directory. Additionally, 

the parallel processing mode using outdated MATLAB commands had to be turned off. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2023. ; https://doi.org/10.1101/2022.11.30.22282930doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282930
http://creativecommons.org/licenses/by/4.0/


ML classification of AD and at-risk states using personality scores 

14 

were represented as dummy-coded predictors using ten binary variables. Gender was included 

as a dummy-coded predictor with two binary predictors. 

2.8 Prediction of outcome from predictor variables and performance assessment 

Predictor variables were combined into eight feature sets (Figure 1). In this study, we will 

employ the terms "predictor(s)" and "feature(s)" interchangeably, as well as "group(s)" and 

"class(es)", to represent the same concept. 

1. Base model: age, gender, site 

2. mPerAF: base model, mPerAF  

3. Personality: base model, BFI-10 

4. Depression, anxiety: base model, GDS, GAI-SF 

5. Personality extended: base model, BFI-10, GDS, GAI-SF 

6. ApoE: base model, ApoE genotype 

7. CSF: base model, tTau, pTau181, A42/40 ratio 

8. All w/o CSF: base model, mPerAF, BFI-10, GDS, GAI-SF, ApoE genotype 

To predict the outcome variable (participant group) with the feature sets, we employed Support 

Vector Classification (SVC) using linear Support Vector Machines (SVMs) with soft-margin 

parameter C = 1 and 10-fold cross-validation. All SVM analyses were implemented using 

LibSVM in MATLAB via custom scripts available on GitHub 

(https://github.com/JoramSoch/ML4ML).  

Predictive performance of participant classification was assessed using decoding accuracy 

(DA), that is, the average proportion of correctly classified participants across all groups, and 

class accuracy (CA), that is, the same proportion, separately for each group, each ranging 

between 0 and 1.  

For each feature set, statistically significant differences from chance-level prediction for DA 

and CAs were tested, and pairwise comparisons of each feature set against the base model were 

performed. This was done using one-tailed paired t-tests for the classification performance of 

each feature set against the base model, with each pair consisting of a subsample evaluated 

using both feature sets. Bonferroni-Holm correction was applied for multiple testing. 

Additionally, a subsample-by-subsample correlation matrix of DAs across all permutations was 

computed and incorporated into a general linear model of the pairwise accuracy differences 

across all subsamples. All scripts used to perform the analyses are available at 

https://github.com/jmkizilirmak/DELCODE162. 
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2.9 Handling of missing values and unbalanced class sizes 

Participants with missing data for age, gender, site, mPerAF, BFI-10, GDS, GAI-SF, and ApoE 

genotype were excluded from analysis (N = 663; 179 HC, 308 SCD, 113 aMCI, 63 AD). Due 

to additional missing CSF biomarker values, additional exclusions were made for the "CSF" 

feature set (N = 341; 75 HC, 155 SCD, 71 aMCI, 40 AD) and the “CSF” feature set was 

excluded from inferential comparisons to maintain statistical power. Supplementary 

information provides an alternative analysis with equal sample sizes (N = 311; Table S4) across 

all feature sets, as well as an analysis with SCD and aMCI groups merged into an "at-risk for 

AD" group (Table S2). 

Subsampling was used to ensure equal numbers of participants in each group when performing 

SVC (Puechmaille 2016). The size of each subsample was based on the smallest group (rounded 

off to the nearest 10). A total of 30 subsamples were created, and each subsample was subjected 

to 1000 permutations of group membership to establish a null distribution. Permutations were 

performed to calculate the p-value of the prediction accuracy. 

3 Results 

Classification results are reported in Table 2 and inferential statistical comparisons are reported 

in Table 3. DAs are visualized in Figure 2 and CAs in Figure 3. The four best performing feature 

sets sorted by decoding accuracy are depicted as a confusion matrix in Figure 4.  

3.1 Base model: Low predictive value of combining age, gender, and site 

The “base model” produced the lowest overall DA (DA = .345, p = .047) and no CA was 

significantly different from chance for any group (Figure 3). 
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Figure 2. Decoding accuracies of the evaluated feature sets. The 90% confidence intervals 

were obtained by averaging the confidence intervals of the 30 subsamples (single dots) on 

which SVCs were performed. 

3.2 mPerAF: Low but above-chance performance of resting-state DMN activity 

Feature set “mPerAF” performed significantly above chance (DA = .352, p = .010), along with 

significant CAs for both HC (CA = .417, p = .026) and AD (CA = .446, p = .016). CAs for SCD 

(CA = .287, p = .299) and aMCI (CA = .258, p = .419) were statistically indifferent from chance.  

3.3 Personality trait and affective state scores: Highest prediction accuracies for HC 

and across groups  

Feature set “Personality” was consistently outperformed by “Personality extended”, which 

produced the overall highest DA (DA = .414, p = .001). Combining scores of geriatric 

depression and anxiety demonstrated the overall highest class accuracy for healthy controls (CA 

= .628, p = .003) and the overall third-highest DA (.392, p = .003).  

3.4 ApoE: Third-highest decoding accuracy 

Feature set “ApoE” showed the third-best performance (DA = .402, p = .002). It also 

demonstrated significantly above chance CAs for HC (CA = .522, p = .021) and AD (CA = 

.522, p = .023). 
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Figure 3. Class accuracies of the evaluated feature sets. The dotted line represents the chance 

level. Error bars represent the average 90% confidence interval across all 30 subsamples. 

3.5 Relatively poor performance of combined predictors without CSF biomarkers 

Across all groups and in terms of DA, prediction accuracies of feature set “All w/o CSF” were 

consistently lower than those of “Personality” and “Personality extended” and it was not in the 

top three CAs for any participant group. 
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Table 2. SVM classification results 

Feature set value DA HC SCD aMCI AD 

1. Base model mean accuracy .345 .484 .248 .320 .326 

90% CI [.294, 

.398] 

[.374, 

.596] 

[.163, 

.353] 

[.223, 

.431] 

[.227, 

.438] 

mean p .047 .051 .487 .300 .316 

2. mPerAF mean accuracy .352 .417 .287 .258 .446 

90% CI [.301, 

.406] 

[.310, 

.531] 

[.193, 

.397] 

[.168, 

.366] 

[.336, 

.559] 

mean p .010 .026 .299 .419 .016 

3. Personality mean accuracy .382 .466 .302 .296 .465 

90% CI [.330, 

.436] 

[.355, 

.579] 

[.207, 

.412] 

[.201, 

.406] 

[.355, 

.578] 

mean p .006 .024 .309 .300 .041 

4. Depression, 

anxiety   

mean accuracy .392 .628 .261 .306 .374 

90% CI [.340, 

.447] 

[.515, 

.732] 

[.173, 

.368] 

[.210, 

.416] 

[.271, 

.488] 

mean p .003 .003 .448 .311 .186 

5. Personality 

extended 

mean accuracy .414 .564 .311 .296 .485 

90% CI [.361, 

.469] 

[.451, 

.673] 

[.214, 

.421] 

[.201, 

.407] 

[.374, 

.598] 

mean p .001 .002 .258 .292 .014 

6. ApoE mean accuracy .402 .522 .299 .264 .522 

90% CI [.349, 

.457] 

[.409, 

.633] 

[.206, 

.409] 

[.175, 

.372] 

[.410, 

.633] 

mean p .002 .021 .342 .445 .023 

7. CSF mean accuracy .405 .431 .348 .194 .647 

90% CI [.330, 

.484] 

[.282, 

.591] 

[.210, 

.510] 

[.091, 

.347] 

[.483, 

.787] 

mean p .017 .156 .301 .675 .009 

8. All w/o CSF  mean accuracy .362 .433 .293 .261 .460 

90% CI [.310, 

.416] 

[.325, 

.547] 

[.199, 

.404] 

[.170, 

.369] 

[.350, 

.573] 

mean p .006 .016 .265 .416 .012 

Note. Because four groups were included, chance performance was at .25. Mean accuracy, 90% CI and mean p 

correspond to the average across 30 subsamples. The p-value of each subsample was obtained by comparing the 

accuracy value to the null distribution generated from 1000 permutations. 
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3.6 CSF biomarkers predict AD best, but perform poorly for HC  

Feature set “CSF” exhibited the highest CAs for the groups of SCD (CA = .348, p = .301) and 

AD (CA = .647, p = .009), as well as the second-highest DA (.405, p = .017). CAs for HC (CA= 

.431, p = .156) and aMCI (CA = .194, p = .675) were non-significant above chance.  

3.7 Comparison of feature sets and summary 

The highest performance in terms of DA (Figure 4) were achieved by the feature sets 

“Personality extended” (DA = .414, p = .001) followed by “CSF” (DA = .405, p = .017), 

“ApoE” (DA = .402, p = .002), and “Depression, anxiety” (DA = .392, p = .003). All feature 

sets—except “mPerAF”—performed significantly better than the base model in predicting 

group membership (Table 3). 

 

 

Figure 4. Confusion matrices of best performing feature sets by decoding accuracy. 
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 Table 3. Inferential statistical comparisons of decoding accuracy between feature sets 

Base model vs. t p CI adjusted p 

mPerAF 1.02 .157 [-0.01, 0.02] .157 

Depression, anxiety 6.30 < .001 [0.03, 0.06] < .001 

Personality 5.49 < .001 [0.02, 0.05] < .001 

Personality extended 8.44 < .001 [0.05, 0.08] < .001 

ApoE 9.48 < .001 [0.04, 0.07] < .001 

All w/o CSF 2.41 .011 [0.00, 0.03] .022 

Note. One-tailed t-test results are reported for the difference between the classification performance of each model 

and the performance of the base model. The “CI” column reports the confidence interval for the mean difference 

in decoding accuracy. The “p adjusted” column reports p values corrected for multiple comparisons according to 

the Bonferroni-Holm procedure (Holm 1979). 

 

4 Discussion 

In this cross-sectional study, we aimed to evaluate the diagnostic value of several feature sets 

for Alzheimer’s disease, associated at-risk states (SCD, aMCI), and healthy controls using 

support vector machine classification. We focused on the performance of combining personality 

traits with scores of depression and anxiety, as well as examining the predictive ability of DMN 

BOLD amplitude fluctuation measured through resting-state fMRI, ApoE genotype, and CSF 

biomarkers. All feature sets demonstrated decoding accuracy significantly above chance (Table 

2). 

The highest decoding accuracy was observed in feature sets: (i) "Personality extended," which 

combined personality traits with anxiety and depression scores; (ii) "CSF", consisting of tTau, 

pTau181, and Aβ42/40 ratio; (iii) "ApoE," including the ApoE genotype; and (iv) "Depression, 

anxiety," comprising depression and anxiety scores. The only feature sets not achieving 

significant above-chance classification performance for HC were “Base model” and “CSF”, 

with the latter showing the lowest overall accuracy for the aMCI group. 

4.1 Inferiority of the combined predictor and poor prediction accuracy of resting-state 

activity of the DMN 

Our hypothesis that combining non-invasive predictors (feature set "All w/o CSF") would 

outperform CSF biomarkers in prediction accuracy was not supported by our data. The 

classification accuracies of the "All w/o CSF" feature set were comparably low and similar to 

the "mPerAF" feature set, suggesting that the inclusion of mPerAF paradoxically reduced 
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classification performance. While DMN resting-state mPerAF performed above chance, its 

performance did not significantly differ from the "Base model". 

The predictive ability of resting-state fMRI of the DMN for AD has yielded inconsistent 

findings. While certain studies have reported consistent alterations in DMN activity and 

connectivity in AD (Mevel et al. 2011) and the added value of combining different MRI 

modalities to classify AD (Schouten et al. 2016), other research suggests that neuropsychiatric 

measures may have higher predictive ability (Gill et al. 2020). 

It is important to note that most DMN studies have focused on functional connectivity rather 

than voxel-wise amplitude measures like mPerAF. The divergent results could be attributed to 

our approach of evaluating all groups simultaneously, resembling a fully automated diagnostic 

process, as opposed to making binary decisions between distinct groups. Furthermore, unequal 

sample sizes can introduce bias in classification, and various approaches have been proposed 

to address this issue (Jo et al. 2019).  

4.2 A combination of personality, anxiety, and depression scores yield a relatively high 

overall prediction accuracy  

Personality alone demonstrated class accuracies statistically significant above chance for the 

groups of HC and AD, but not for SCD and aMCI, partially confirming our hypothesis. 

"Personality" was surpassed by the feature set "Personality extended". However, the accuracy 

of correctly classifying the aMCI group was equally high, while class accuracies for the SCD 

and aMCI groups remained nonsignificant, partially supporting our hypothesis. These results 

indicate that depression and anxiety contribute additional predictive value to the decoding 

accuracy of the BFI-10. The highest class accuracy for HC, however, was achieved by a feature 

set containing scores of depression and anxiety, and adding personality traits did not improve 

class accuracy. Previous studies have indicated that depressive episodes can be prodromal 

manifestations of neurodegeneration in AD (Panza et al. 2010; Singh-Manoux et al. 2017; 

Hansen et al. 2021). Possibly, alterations in levels of depression within the SCD and aMCI 

groups surpass changes in personality traits when contrasted with shifts seen in healthy controls. 

The predictive ability of the feature set "Depression, anxiety" for HC may be primarily 

attributed to the GDS as some of the GAI-SF items overlap with those of the BFI-10 neuroticism 

scale, suggesting depression scores to be well-suited in distinguishing between healthy 

individuals and participants with cognitive impairment. AD participants were best classified 

using a combination of CSF biomarkers, consistent with previous findings (Olsson et al. 2016; 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2023. ; https://doi.org/10.1101/2022.11.30.22282930doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282930
http://creativecommons.org/licenses/by/4.0/


ML classification of AD and at-risk states using personality scores 

22 

Lleó et al. 2019; Düzel et al. 2022). The predictive value of combining CSF biomarkers, 

personality traits and scores of depression and anxiety should be investigated further. 

4.3 Poor classification accuracy for SCD and aMCI with any feature set  

Predictions for participant groups with SCD or aMCI were mostly above chance level but not 

statistically significant (Table 2). This trend persisted after merging SCD and aMCI into an “at-

risk for AD” group (Table S2). Neither SCD nor aMCI are specific to AD and can be caused 

by a variety of conditions, including normal aging. Because the underlying conditions causing 

SCD or aMCI in DELCODE participants were not assessed at the study’s outset, it is reasonable 

to assume that a proportion of participants did not actually have preclinical AD (see section 

2.1). Identification of those individuals with SCD or aMCI not due to AD likely largely failed 

as we used predictors that are specific to AD, explaining the poor class accuracies for the groups 

of SCD, aMCI, and “at-risk for AD” (Chételat et al. 2005; Johns et al. 2012; Bessi et al. 2018).  

4.4 Limitations 

Our study has several limitations. CSF biomarkers were only measured in a portion of the 

sample, resulting in different sample sizes for feature sets and exclusion of the "CSF" feature 

set from inferential analysis. Anosognosia is known to be a common occurrence in the early 

stages of AD (Leicht et al. 2010; Orfei et al. 2010; de Ruijter et al. 2020) and may also have 

confounded the assessments of the GDS, the GAI-SF (Starkstein 2014), and the BFI-10 

(Agϋera-Ortiz et al. 2019). Additionally, caregiver influence on self-reports may have affected 

the accuracy of assessments in the aMCI and AD groups. Another important limitation relates 

to the demographics of the groups. Despite being composed of confounding variables only, the 

"Base model" performed above chance. This can be attributed to the association between age 

and dementia risk (Terracciano & Sutin 2019). On average, AD participants were older than 

HC or those with SCD (Table 1). However, because age was included in all feature sets, its 

predictive value was consistently accounted for. Finally, the cross-sectional design is a 

limitation, as it precludes to track personality change across time and assess the validity of the 

markers over the natural progression of the participants. This underscores the need for future 

research to complement our findings with longitudinal data. 

4.5 Conclusions 

Our results show that no single combination of the evaluated features achieved consistently 

superior class accuracies for all assessed participant groups. The combination of depression and 

anxiety scores was most effective in classifying healthy controls, supporting previous findings 

that regard late-life depression as a prodrome of Alzheimer’s disease, while CSF biomarkers 
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were most effective in classifying participants with mild Alzheimer's disease. The highest 

overall prediction accuracies across all participant groups were achieved by a combination of 

personality traits with scores of depression and anxiety, closely followed by CSF biomarkers 

and the ApoE genotype. These findings indicate that a combination of CSF biomarkers, 

personality, depression and anxiety scores, and the ApoE genotype may have complementary 

value for classification of AD and associated at-risk states. Further investigation is needed, 

particularly regarding the predictive value of personality traits and associated affective states 

as low-cost and easily assessable screening tools. Moreover, our findings highlight the 

challenge of accurately classifying SCD and aMCI groups using machine learning approaches 

when the underlying conditions of these cognitive impairments are unknown. Addressing this 

challenge requires adhering to consensus on terminology and conceptual frameworks. 
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5 List of Abbreviations 

A: Amyloid beta; AD: Alzheimer’s disease; aMCI: amnestic mild cognitive impairment; ANOVA: analysis of 

variance; BFI: Big Five Inventory; BFI-10: Big Five Inventory 10-item short form; BOLD: blood oxygenation 

level-dependent; CERAD: Consortium to Establish a Registry for Alzheimer’s Disease; CA: class accuracy; CI: 

confidence interval; CSF: cerebrospinal fluid; DA: decoding accuracy; DMN: default mode network; DELCODE: 

DZNE-Longitudinal Cognitive Impairment and Dementia Study; DZNE: Deutsches Zentrum für 

Neurodegenerative Erkrankungen (English: German Center for Neurodegenerative Diseases); EPI: echo-planar 

imaging; fMRI: functional magnetic resonance imaging; FWHM: full width at half maximum; GAI-SF: Geriatric 

Anxiety Inventory, Short Form; GDS: Geriatric Depression Scale; HC: healthy controls; Hz: Hertz; MCI: mild 

cognitive impairment; NIA: National Institute on Aging; MMSE: Mini Mental Status Examination; MNI: Montreal 

Neurological Institute; mPerAF: mean percent amplitude of fluctuation; MPRAGE: Magnetization Prepared Rapid 

Gradient Echo; MRI: magnetic resonance imaging; NEO PI-R: Revised NEO Personality Inventory; PerAF: 

percent amplitude of fluctuation; pTau181: phosphorylated tau181; ROI: region of interest; rs-fMRI: resting-state 

functional magnetic resonance imaging; SCD: subjective cognitive decline; SD: standard deviation; SPM: 

Statistical Parametric Mapping; SVC: support vector classification; SVM: support vector machine; TE: echo time; 

TR: time to repetition; tTau: total tau; VDM: voxel-displacement map; yrs: years 
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