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Abstract 

Background Functional orientation orients inertial measurement unit (IMU) data (i.e., linear 
accelerations and angular velocities) to interpretable reference frames. To confidently collect reliable 
out-of-lab data, it is important to determine the extent to which we can correct for sensor placement 
variability. Research Question To what extent does a functional orientation method minimize the effect 
of variability in sensor placement on IMU data? Methods Twenty healthy adults (10 younger 28.2±3.7 
years, 10 older 60.8±3.3years) walked overground at preferred speed in a lab. Three IMUs were placed 
per segment on the pelvis, thigh, shank, and foot. IMU data were oriented using an assumed orientation 
and two versions of a walking-based functional orientation (X-functional anchored to axis of rotation 
and Z-functional anchored to gravity). Segment angular excursions were calculated for each orientation 
method and compared between groups and sensor placements. Results and Significance No significant 
interaction was found between sensor placement and group for any orientation method. For assumed 
orientation, segment angular excursion differed between sensor placements for at least 15% and up to 
95% of the gait cycle, depending on segment. For both functional orientation methods, foot and shank 
excursions did not differ between sensors. Thigh excursion differed only for the X-functional orientation 
from 27-68% of the gait cycle. Neither functional orientation fully corrected for differences at the pelvis 
leaving significantly different excursions between 24-50% of the gait cycle. Functional orientation can 
reliably correct for variability in lower extremity IMU sensor placement. These methods can enable 
repeatable real-world IMU data collection in settings where sensors may move within or between days. 
Performing functional orientation periodically throughout a day can minimize the effect of sliding or 
rotating of the sensors on IMU-calculated gait measures and give in-lab quality gait data throughout 
hours of real-world activity to better understand the true movement of participants. 

1. Introduction 

The use of inertial measurement units (IMUs) for gait research has increased in the last decade, largely 
because IMUs allow for affordable and portable measurement of movement. Despite the portability of 
IMUs, most studies using IMUs collect data in labs or controlled, observed settings. Several challenges 
limit the use of IMUs in unobserved, free-living settings. One major hurdle to free-living data collection 
is the ability to reliably orient IMU data to an interpretable reference frame in the absence of direct 
observation of sensor placement or calibration procedures.  

Several methods exist for orienting IMU data to interpretable (e.g., anatomical or functional) reference 
frames [1,2]. Reference frames can be created using various methods, the most common of which are 
assumed, functional, and model-based orientation methods. Assumed orientation, which relies on an 
IMU’s hardware axes being physically aligned with anatomy when place on a body segment, requires no 
postprocessing to reorient IMU data. However, the accuracy of axis orientation in this method is 
sensitive to sensor placement and reliant on the assumption that sensors on the body surface align with 
underlying anatomy [3–5].  Functional orientation uses participant motion to orient IMU data to specific 
axes (e.g., approximately frontal, sagittal, or transverse) [6–8]. Functional orientation methods only 
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require simple motions to implement, but the orientations of the axes depend on the participant’s 
performance of the orientation procedure. Model-based methods use kinematic or statistical models of 
lower extremity degrees of freedom to orient data to anatomical reference frames. While model-based 
orientation minimizes reliance on precise sensor placement, these methods are computationally 
intensive, rely on physical and statistical assumptions of human movement, and may require extensive 
training data [9–12]. Because of assumptions about sensor orientation for assumed orientation and 
requirements of advanced computations or additional data sources for model-based orientation, 
functional orientation methods appear best-suited to free-living data collection.   

Functional orientation can be applied in several ways. Participants may perform a series of controlled 
segment rotations to orient IMU data to sagittal, frontal, and transverse anatomical axes [7,11,13]. 
Accurate axis orientation thus relies on a participant’s ability to precisely perform controlled motions 
about each axis. Alternatively, a combination of static and dynamic data may be used to define 
functionally relevant axes (e.g., vertical and medial-lateral) [14–18]. This procedure doesn’t give 
anatomical sagittal, frontal, or transverse axes. However, a walking-based functional orientation can 
give accurate sagittal plane joint angles and eliminates the need for precise motions about each axis for 
orientation [16]. Walking and standing occur frequently during daily life and thus lower extremity IMU 
data could be oriented to consistent vertical and medial-lateral axes whenever a participant walks, 
regardless of actual sensor location or orientation on a segment.  

The purpose of this study was to determine to what extent a walking- and toe-touch-based functional 
orientation method minimizes the effect of differences in IMU sensor placement on segment angular 
excursions during walking. Because body composition and gait characteristics change with age and 
might affect sensor motion characteristics, a secondary purpose was to determine whether age 
influences the effect of functional orientation.  

2. Methods 
2.1. Participants 

Twenty healthy adults, 10 young (5 male, 28.2±3.7 years) and 10 older (5 male, 60.8±3.3years) 
participated in this study. All subjects had a BMI <30 kg/m2, were able to walk for 30 min without 
assistive devices, and had no history of major traumatic injury, surgery, or chronic pain in the back or 
lower extremities. All individuals completed IRB-approved consent before participating in any study 
procedures. 

2.2. Data Collection 

Three IMUs [Opal v2, APDM] were placed on the pelvis and right thigh, shank, and foot. The three 
sensors were placed to represent a standard, recommended sensor placement (typical), a sensor 
placement that was shifted along a segment relative to typical, and a sensor placement that was rotated 
about a segment relative to typical (Figure 1). The shifted and rotated locations represent differences in 
placement that might occur when non-experts (i.e., participants) place sensors or if sensors shift 
position throughout a long data collection. Pelvis sensors were placed over the sacrum (typical), lateral 
to sacrum (shifted), and medial to the right anterior superior iliac crest (rotated). Thigh and shank 
sensors were placed at the midpoint on the lateral aspect of the segment (typical), proximal to typical 
(shifted), and on the anterior aspect of the segment (rotated). Foot sensors were placed on participants’ 
shoes on the dorsum of the foot (typical), on the lateral instep (shifted), and on the heel (rotated).  
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IMU data were collected continuously as participants completed functional tasks (walking and toe-
touches) and walked overground at a self-selected preferred speed. Walking trials were collected as part 
of a larger study where participants completed 10 successful trials (full foot strike on a force plate) at +/- 
5% of preferred speed.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Data processing 
2.3.1. Reference frame orientation 

Processing began by identifying the data that included functional movements and postures: quiet 
standing, a short bout of straight-line walking, and toe touches. Functional tasks were identified using 
the typical pelvis and shank sensors’ linear acceleration and angular velocity data in the sensor hardware 
reference frames (Figure 2). A short range of pelvis raw linear acceleration and angular velocity data 
centered around zero identified quiet standing. Toe touches included roughly five cycles of pelvis sensor 
angular velocities about the mediolateral axis. Walking was identified as three to five cycles of shank 
angular velocity data about the mediolateral axis. Toe touch and walking data were selected using 
repeating signal peaks to obtain full cycles. After functional data identification, we oriented IMU data for 
each sensor to an assumed reference frame and to two versions of a functional reference frame. 
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Figure 1. IMU placement with hardware sensor axes. Pelvis sensors were 
placed over the sacrum (typical, T), lateral to sacrum (shifted, S), and medial 
to the right anterior superior iliac crest (rotated, R). Thigh and shank sensors 
were placed at the midpoint of the lateral aspect of the segment (T), proximal 
to typical (S), and on the anterior aspect of the segment (R). Foot sensors were 
placed on the dorsum of the foot (T), on the lateral instep (S), and on the heel 
(R). X, Y, and Z sensor axes are red, green, and blue, respectively. Circles with 
an x indicate axis points directly into of the page while dots point out of the 
page.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.22282894doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.29.22282894
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

 

 

Assumed orientation: 

Typical IMU placements represented where a researcher would place sensors and how sensors would be 
assumed to be placed in unobserved data. This orientation assumes that specific sensor hardware axes 
align with anatomical axes (e.g., for the thigh, the sensor +Z axis points laterally, thus, the +Z axis was 
assumed to align with the medial-lateral anatomical axis for all placements). For each segment, the 
typical sensor axis that aligned most closely with the medial-lateral anatomical axis was assumed to be 
the medial-lateral axis for all sensors on that segment (+Z for thigh and shank, +Y for pelvis, -Y for foot) 
(Figure 3a). 

World orientation: 

World orientation aligned the vertical (Z) axis with gravity and makes X and Y axes orthogonal in the 
horizontal plane (Figure 3b). Orientation of IMU data to the world reference frame was performed with 
a manufacturer-provided Kalman filter (APDM, Inc.).   

Functional orientation: 

Functional orientation created reference frames where one axis aligns with the primary axis of segment 
rotation during walking or toe-touches (medial-lateral) and another axis aligns with the primary axis of 
linear acceleration during static standing (longitudinal). Initial axis orientations were defined by setting 
the longitudinal (Z) axis orientation as parallel to gravity during static standing (i.e., longitudinal axis 
aligned with average linear acceleration vector) and setting the medial-lateral (X) axis orientation as the 
primary axis of rotation during straight-line walking (thigh, shank, foot) or toe-touches (pelvis) using 

Figure 2. Calibration section of full data collection (a) including quiet static standing (b), walking (c), and toe 
touches (d). a) Pelvis raw angular velocity to determine ranges of data for static standing, walking, and toe 
touches. b) Pelvis raw acceleration (top) and angular velocity (bottom) used to determine frame with least 
movement for defining quiet standing. c) Shank raw angular velocity, selecting peak to peak for full gait cycles. 
d) Pelvis raw angular velocity, selecting peak to peak for full toe touch cycles.    
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principal component analysis. An anterior-posterior (Y) axis was created by crossing the longitudinal and 
medial-lateral axes (Figure 3c). 

Because the initial longitudinal and medial-lateral axes are not perpendicular, one of these two axes 
must be re-oriented to create an orthogonal reference frame. Thus, there are two ways to define the 
final reference frame. We created an X-functional reference frame by re-orienting the longitudinal axis 
as X×Y and a Z-functional reference frame by re-orienting the medial-lateral axis as Y×Z. 

 

 

 

 

 

 

2.3.2. Walking identification 

We extracted bouts of walking from continuous IMU data based on repeated oscillations of the shank 
sensor (Figure 4). First, data from each axis of the shank sensor raw angular velocity signal was passed 
through a fast Fourier transform (FFT). Then, the frequency power from all three axes were summed to 
determine the total power density. A five second moving window was used to identify ranges of high-
power density within frequencies representative of shank oscillations during walking (0.5 and 2.2 Hz). 
Consecutive identified sections of walking less than 2.5 seconds apart were combined.  

Individual strides were identified using data from the foot sensor. Foot world oriented vertical 
acceleration data were passed through a one-dimensional continuous wavelet transform. Absolute 
value of the first (i.e., highest-frequency) wavelet was low-pass filtered with a second order Butterworth 
filter at 4Hz. Signal peaks above a threshold (half the median magnitude of the peaks of the filtered 
signal) were defined as gait events. Heel strike and toe off were defined using the slope of the vertical 
foot sensor displacement at the time of each identified gait event. A negative slope indicated heel strike 
and positive slope indicated toe off. A stride was created if gait events included a consecutive heel strike 
- toe off - heel strike pattern.  

a) b) c) 

Figure 3. a) IMU hardware axes b) World oriented axes, Z aligned with gravity and X and Y 
orthogonal in the horizontal plane c) Functionally oriented axes, X and Z aligned by walking and 
quiet standing respectively.  
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Figure 4. a) range of raw shank angular velocity data 
that may contain walking. b) Fast Fourier transform of 5 
second windows of data. c) Identified ranges of walking 
based on windows with a frequency power greater than 
1/3 the maximum power and a frequency between 0.5 
and 2.2 Hz. d) Top plot visualizes the foot vertical 
displacement. Black * represents heel strikes and red x 
represents toe offs. Timing of gait events is based on 
spikes in the power of the highest frequency signal from 
a continuous wavelet transform. Type of gait event is 
based on slope of vertical displacement at time of 
frequency power spike (negative = heel strike).   
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This analysis used all straight-line steady-state strides including those without successful force plate 
strikes and outside of preferred speed. On average, 33 strides were included per participant (range = 25-
60). Steady-state, straight-line strides were those with a consecutive inter-stride velocity difference of 
less than 0.1 m/s and angular deviation of less than 10 degrees. Stride displacement was calculated as 
the double integral of the typical foot sensor linear acceleration in the world reference frame. Stride 
length was the net displacement in the horizontal direction between heel strikes. Stride velocity was 
calculated by dividing stride length by the time between heel strikes. Stride angular deviation was 
calculated by taking the inverse tangent of the displacement in the two horizontal world reference axis 
directions.  

2.4. Outcome variable calculation 

Segment angular excursions about the medial-lateral axis were calculated for every stride for each 
sensor (typical, shifted, rotated) for each of the three reference frames: assumed, X-functional, and Z-
functional. Segment angular excursions were calculated by integrating the angular velocity between 
consecutive heel strikes. For the functional orientation methods, we integrated angular velocity about 
the medial-lateral (X) axis. For the assumed orientation method, we integrated angular velocity about 
the sensor axis that was assumed to align with the anatomical medial-lateral axis based on typical 
placement (+Z for thigh and shank, +Y for pelvis, -Y for foot). An average segment angular excursion time 
series per orientation technique per IMU location per subject was included in statistical comparisons. 

2.5. Statistics 

For each orientation method (assumed, X-functional, Z-functional), segment excursion time series data 
were compared across each of the three IMU locations (typical, shifted, and rotated) and between 
groups (young and older) using a continuous 2-way ANOVA via statistical parametric mapping (SPM; 
α=.05). Where significant interactions were found, one-way ANOVAs via SPM were used to determine if 
excursions differed across placements within a group. T-tests via SPM were used to examine post-hocs 
where significant main effects were found.  

3. Results 

No significant interaction was found between age and sensor location for any segment (p>.05). A 
significant main effect was found for sensor location for the assumed orientation for all segment 
excursions as well as the pelvis and thigh X-functional orientation and pelvis Z-functional orientation (all 
p<.001; Figure 5).  
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Figure 5. Segment excursions (mean and SD) from each sensor and orientation method. Boxes indicate 
significant differences between sensor locations. Solid black line = typical sensor location, yellow 
dashed line = shifted, and blue dotted = rotated (see figure 1). 
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Assumed orientation: 
For the assumed orientation, pelvis angular excursions differed between typical and shifted locations (7-
50% and 99-100% gait cycle), between typical and rotated (33-47% & 99-100 % gait cycle), and between 
rotated and shifted locations (8-24% & 99-100% gait cycle). Thigh angular excursion differed between 
typical and rotated locations and shifted and rotated locations (5-100% gait cycle for both comparisons). 
Shank angular excursion differed between typical and rotated locations (1-85% and 93-100% gait cycle) 
and shifted and rotated locations (1-87% and 97-100% gait cycle). Foot angular excursion differed 
between typical and shifted (1-83% and 93-100% gait cycle), typical and rotated (1-86% and 95-97% gait 
cycle), and shifted and rotated locations (43-83% and 97-100% gait cycle). 
 
Functional orientations: 
X-functional oriented angular excursions differed between the pelvis typical and shifted locations (24-
49% gait cycle), between typical and rotated locations (4-11% & 17-59% gait cycle), and between 
rotated and shifted locations (4-12% & 17-59% gait cycle). Thigh angular excursion differed between 
typical and rotated (28-65% gait cycle) and shifted and rotated locations (27-68% gait cycle). No 
differences in X-functional angular excursion were found between sensor locations for the shank or foot. 
 
Z-functional oriented angular excursions differed between the pelvis typical and shifted locations (24-
50% gait cycle), between typical and rotated locations (4-11% & 44-51% gait cycle), and between shifted 
and rotated (6-12% & 17-60% gait cycle). No differences in Z-functional angular excursion were found 
between the thigh, shank, or foot sensor locations. 
 
4. Discussion 
The primary aim of this project was to determine the extent to which a walking- and toe-touch-based 
functional orientation method minimizes the effect of differences in IMU sensor placement on segment 
angular excursions during walking. The secondary aim of this project was to determine whether the 
effect of functional orientation differed by age. The functional orientation method reduced differences 
in angular excursion between IMU placements. While differences in angular excursion for assumed 
orientation method encompassed up to 45% of the gait cycle for the pelvis, 95% for the thigh, 92% for 
the shank, and 93% of the foot, functional orientation reduced these ranges to be 42% of the gait cycle 
for the pelvis, 29% for the thigh, and 0% for the shank and foot. These trends did not change with age.  

X- and Z-functional orientation methods similarly minimized inter-placement excursion differences 
compared to the assumed orientation. The effect of the functional orientation method is best 
demonstrated by the similarity of the data between all sensor locations for the foot and shank sensors 
(Figure 4). These segments had the largest ranges of significantly different assumed orientation angular 
excursions across sensor locations, but had no differences in angular excursion between sensors once 
functionally oriented. This may be due to the foot and shank best mimicking a rigid body making the 
magnitude of the angular velocity similar regardless of sensor location on the segment. 

The orientation methods performed similarly to each other for the thigh except that Z-functional 
performed better than X-functional orientation at correcting for the rotated sensor location. This 
difference may be due to the larger amount of soft tissue artifact and muscle contraction motion found 
on the anterior vs lateral thigh. Soft tissue artifact, particularly from contraction of the quadriceps, likely 
adds angular velocity signal about a non-medial-lateral axis, thus influencing the overall primary axis of 
rotation of the segment-mounted IMU. The Z-functional orientation likely performed better for the 
rotated position due to weighting the longitudinal axis more heavily than the soft-tissue-influenced 
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medial-lateral axis. Differences in pelvis angular excursion were lessened with functional orientation, 
but differences still existed between the shifted sensor location and both the typical and rotated 
locations for both functional orientation methods from mid to late stance. The shifted sensor’s motion 
during toe-touches could have been influenced by deformation of the gluteal muscles during toe-
touches. Therefore, sensors should be placed away from areas that are subject to deformation from 
large muscles or soft tissue.  

In this study, IMU placement represented sensor misplacements or movement during unobserved 
activity. In practice, small shifts or misplacements of sensors can be hard to identify when processing 
unobserved data. The rotated position is an extreme example, but the fact that the functional 
orientation was largely still able to correct for this implies that the effect of smaller shifts or 
misplacements would be effectively minimized with this method. 

Calculating angular excursions assuming sensor axes aligned with the typical IMU orientation may be 
seen as an exaggerated comparison. We calculated excursions in this manner to demonstrate 
differences as if an experimenter were unaware the sensor moved. This assumption is realistic as it 
would be difficult to identify changes in placement because sensor movement is rarely about a single 
axis or of a magnitude approaching 90° about one axis. Additionally, this design allowed us to test the 
extent to which the functional orientation can correct for extreme sensor misplacement. Another 
possible limitation is that both groups were healthy with an absence of gait abnormalities. We believe 
the functional orientation method would work similarly regardless of abnormalities as the orientation is 
based on subject-specific gait patterns.  

Demonstrating the extent to which functional orientation minimizes the effect of varying sensor location 
is an important step towards collecting reliable free-living gait data. The demonstrated walking- and toe-
touch-based functional orientation can correct for shifts in sensor location, as long as sensors avoid 
areas of large soft tissue deformation. This relatively easy-to-implement functional orientation method 
is a promising method for application in unobserved, free-living data collection. 
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