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Abstract6

Virus evolution shapes the epidemiological patterns of infectious disease, particularly via evasion of7

population immunity. At the individual level, host immunity itself may drive viral evolution towards8

antigenic escape. Using compartmental SIR-style models with imperfect vaccination, we allow the9

probability of immune escape to differ in vaccinated and unvaccinated hosts. As the relative contri-10

bution to selection in these different hosts varies, the overall effect of vaccination on the antigenic11

escape pressure at the population level changes.12

We find that this relative contribution to escape is important for understanding the effects of vaccina-13

tion on the escape pressure and we draw out some fairly general patterns. If vaccinated hosts do not14

contribute much more than unvaccinated hosts to the escape pressure, then increasing vaccination15

always reduces the overall escape pressure. In contrast, if vaccinated hosts contribute significantly16

more than unvaccinated hosts to the population level escape pressure, then the escape pressure17

is maximised for intermediate vaccination levels. Past studies find only that the escape pressure is18

maximal for intermediate levels with fixed extreme assumptions about this relative contribution. Here19

we show that this result does not hold across the range of plausible assumptions for the relative20

contribution to escape from vaccinated and unvaccinated hosts.21

We also find that these results depend on the vaccine efficacy against transmission, particularly22

through the partial protection against infection. This work highlights the potential value of understand-23

ing better how the contribution to antigenic escape pressure depends on individual host immunity.24

Keywords: SARS-CoV-2, COVID-19, antigenic escape, vaccine escape pressure, phylodynamics25

1 Introduction26

Vaccines against infectious pathogens reduce incidence and deaths, although there is a risk that they27

could favour new antigenic variants [1]. For example, since population immunity against circulating28

SARS-CoV-2 variants controls virus spread [2], the long-term dynamics of the COVID-19 pandemic29

depend on the evolutionary trajectory of the virus [1]. Here we investigate how vaccination changes30

the appearance probability of strains capable of evading host immunity, relative to the baseline of no31
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vaccination. Antigenic escape is complex, with strains generated and selected on various scales [3].32

We focus exclusively on the generation of escape strains [4], [5], rather than on their establishment33

after they first appear[6], [7]. Our work builds on other mathematical studies of COVID-19 immune34

escape risk [4], [5], [8]. We pay particular attention to selection in vaccinated hosts, relative to the35

unvaccinated.36

Evolution of antigenic traits in SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) [9]37

generates new variants [10]. Some of these variants (B.1.1.7, alpha; B.617.2, delta) appear to have38

a transmission advantage over their precursors [11]. B.1.1.529 —omicron—significantly escapes ex-39

isting immunity [12], but variants with immune escape, at least to some extent, date back to 2020,40

before the roll-out of vaccines (B.1351, beta; B.617.2, delta) [11]. Therefore it is important to under-41

stand how vaccination impacts antigenic drift. Vaccines may affect the evolution of other pathogen42

traits, such as virulence [13], but we focus on immune escape.43

To the best of our knowledge, there is not yet evidence to assess how COVID-19 vaccines impact44

virus genomic diversity in an individual host [14]. Some COVID-19 models assume that escape45

occurs only or primarily in hosts with previous immunity [4], [5]. On the contrary, others assume that46

vaccination entirely prevents infection [8], and thus escape can only occur in unvaccinated hosts.47

Models for pathogens other than SARS-CoV-2 often assume that viruses mutate at the same rate in48

all hosts [7], [15], [16], [17]. However, in human Influenza A, host immunity can select for antigenic49

mutations [18]. This effect may be important [19] for more ambitious vaccination campaigns, such as50

a universal influenza vaccine [20].51

In this paper, we follow the minimal approach of others (for example, [4]) to define an escape pressure52

function proportional to the number of infections. Given that we do not generally know the relative se-53

lective pressures exerted by infections in vaccinated hosts compared to the unvaccinated, we explore54

a range of values for this contribution to escape. We define a parameter (Section 2.2) that measures55

this relative contribution to escape. We use this parameter to express the escape pressure in terms56

of the infections in vaccinated and unvaccinated hosts. We combine this with deterministic compart-57

mental models (Section 2.1) for vaccination that provides lifelong imperfect immunity. We explore two58

scenarios: a single wave and endemic disease. We calculate the resultant escape pressure in each59

of these contexts and describe how it changes as the vaccination coverage varies. We find the trade-60

off between selection and the vaccine efficacies (VEs) in the escape pressure of a fully-vaccinated61

population and the vaccination coverage that maximises the escape pressure (Section 3).62

We find that the relative selection strength from infections in vaccinated and unvaccinated hosts63

shapes the escape pressure. In particular, we find two different qualitative behaviours for how the64

escape pressure depends on the vaccination coverage. These two behaviours are separated by a65

threshold value of this relative contribution to escape, in which vaccinated hosts contribute individually66

somewhat more to escape than the unvaccinated. If the relative contribution to escape is below this67

threshold, vaccination always reduces antigenic escape, as in [15]. However, above this threshold,68

intermediate vaccination levels are the most likely to generate escape strains, as in [4]. We also find69

that the susceptibility reduction provided by the vaccines has a large effect on the escape pressure.70

The reduction in infectiousness is less important, but still lowers escape by reducing prevalence.71

2 Methods72

2.1 Epidemic models73

We use systems of ordinary differential equations (ODEs) to model disease transmission. We as-74

sume that the population is well-mixed and a single-strain infectious disease circulates unaffected by75
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any escape strain it may have generated. We consider two epidemiological scenarios. In scenario76

(a) the outbreak is transient, which can be interpreted as a single epidemic wave. In scenario (b) the77

system is modified so that it reaches a non-zero equilibrium, corresponding to endemic disease.78

We separate individuals by vaccination status and assume that vaccine immunity does not wane.79

We scale time so that the recovery rate is 1. In our models, the vaccines are not assumed to be80

perfect: vaccinated individuals can become infected, albeit at a lower rate, contributing to the escape81

pressure. We split the (imperfect) transmission blocking from vaccines into two components, θS and82

θI , as defined in [4]. θS is the susceptibility reduction (VE against infection): θS = 0 corresponds to83

perfect protection, while θS = 1 corresponds to no protection. Similarly, θI is the infectivity reduction84

(VE against transmission), if an infection occurs. For mathematical convenience, the reduction in85

susceptibility from vaccination is polarised [16]: some vaccinated individuals are entirely immune to86

the infection, while the rest are as susceptible as the unvaccinated. Appendix A.2 shows that the87

same qualitative results hold with an alternative formulation for immunity.88

In both scenarios, SU and SV are the vaccinated and unvaccinated proportions of the population89

susceptible to the disease; IU and IV , the vaccinated or unvaccinated proportions that are infected;90

RU and RV , the vaccinated or unvaccinated recovered proportions. R0 is the basic reproduction91

number and c is the proportion of the population who are vaccinated.92

Scenario (a): transient epidemic93

In the transient scenario, recovered hosts have full permanent immunity and the system is94

ṠU = −SUλ(t) ṠV = −SV λ(t) (1)

İU = SUλ(t)− IU İV = SV λ(t)− IV (2)

ṘU = IU ṘV = IV (3)

with λ(t) = R0(IU + θIIV ), the force of infection. The initial conditions are SU = 1 − c, SV = cθS ,95

RU = 0 = RV , and an infinitesimal number of infected individuals. The remaining c(1−θS) proportion96

of the population has full immunity from vaccination, so they do not appear in the compartments of97

the system. Appendix A.1 shows that for polarised vaccine immunity —and non-assortiative mixing98

as here—, the original proportion between vaccinated and unvaccinated susceptibles is maintained99

and extended to the other compartments:100

(SV , IV , RV ) =
cθS
1− c

(SU , IU , RU ) (4)

This relation (4) reduces the system to:101

ṠU = −SUIUR0

(
1 +

cθSθI
1− c

)
İU = +SUIUR0

(
1 +

cθSθI
1− c

)
− IU (5)

SU (0) = 1− c IU (0) = ϵ ≪ 1 (6)

where ϵ accounts for the initial cases. (5)-(6) describe a standard SIR model, up to rescaling the102

effective reproduction number and the population size. The initial effective reproduction number103

is Re = R0[1 − c + cθSθI ]. If the vaccination coverage is above c̃ = (1 − R−1
0 )/(1 − θSθI), herd104

immunity prevents an outbreak and prevalence decreases exponentially. From (5)-(6), if c < c̃, the105

cumulative infections in unvaccinated hosts are CU = (1− c)
(
1 +W (−Ree

−Re)/Re

)
, where W is the106

Lambert-W function [21] (see Appendix A.1). Using (4), the cumulative breakthrough infections are107

CV = cθS
(
1 +W (−Ree

−Re)/Re

)
.108
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Scenario (b): endemic disease109

To achieve an endemic scenario, we consider two possible extensions of the SIR model (1)-(3) that110

replace susceptibles. If starting from the same initial conditions as in the transient scenario, these111

extensions reach an endemic state if Re > 1. In both cases, we find the proportions I∗U , I
∗
V of infected112

individuals at the endemic equilibrium. Both models lead the same expressions for the prevalences113

I∗U , I
∗
V , up to an overall constant of proportionality (I∗U , I

∗
V ) ∝ (1− c, cθS)(1− 1/Re).114

In the first extension, we assume that immunity from infections wanes at a constant rate ω, instead of115

being permanent. We still assume that vaccine immunity is lifelong. The modified ODEs are116

ṠU = −SUλ(t) + ωRU ṠV = −SV λ(t) + ωRV (7)

İU = SUλ(t)− IU İV = SV λ(t)− IV (8)

ṘU = IU − ωRU ṘV = IV − ωRV (9)

with λ as before. We use (4), which still holds (see Appendix A.1), to find the endemic state (setting117

to zero the time-derivatives). For Re > 1, there is a stable equilibrium state with I∗U = (1 − c)(1 −118

R−1
e )/(1 + ω−1) = (1− c)I∗V /cθS .119

In the second extension, we include births and deaths, at the same homogeneous per capita rate µ,120

so that the population size is conserved. A proportion c of the population is vaccinated at birth. We121

assume that neither infection nor immunity are maternally transmitted. Therefore, the births appear122

in ṠU and ṠV as µ(1 − c) and µcθS . The number of individuals V with full vaccine immunity obeys123

V̇ = µc(1− θS)− µV with V (0) = c(1− θS), so V (t) = c(1− θS) at all times. The new ODEs are124

ṠU = µ(1− c)− SUλ− µSU ṠV = µcθS − SV λ− µSV (10)

İU = SUλ− IU − µIU İV = SV λ− IV − µIV (11)

ṘU = IU − µRU ṘV = IV − µRV (12)

with λ as before. Condition (4) still holds (see Appendix A.1). For Re > 1 + µ, there is an endemic125

state I∗U = µ(1−c) [1/(1 + µ)− 1/Re] = (1−c)I∗V /cθS . For µ ≪ 1, which corresponds to an infectious126

period much shorter than the host’s life expectancy, (I∗U , I
∗
V ) = µ

[
1−Re

−1
]
(1 − c, cθS) to leading127

order in µ.128

2.2 Escape pressure129

We take a simple approach building on [4] to study the generation of strains at the population-level.130

We assume that the escape pressure P depends linearly on the number of cases at that time, as131

P (t) = IU (t) + θEIV (t) (13)

Underlying this factor is the assumption that each infection contributes very slightly to escape poten-132

tial. We weight the (breakthrough) infections in vaccinated hosts IV , relative to the infections in naı̈ve133

hosts IU , by a factor θE . Only the relative value of P is important (see equations (16), (17)), so we134

only need the relative weighting θE amongst infection in the vaccinated and unvaccinated rather than135

their absolute contribute to escape. θE is comparable to the vaccine efficacies θS , θI of Section 2.1, in136

that it is a factor that reflects a change in a single host induced by vaccination. For example, if θE > 1,137

vaccinated hosts infected with the resident strain would be more likely to pass on escape strains than138

the unvaccinated. Lower viral loads (θI < 1) and shorter infections in the vaccinated [22] could lead139

to fewer mutations [23]. However, escape strains may avoid the vaccine-induced immunity that the140

original strain faces [24], and may be selected within a host enough to be transmitted to others [23].141

There is no prior reason to exclude any value θE ≥ 0, so we explore the full range.142
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The escape pressure as in equation (13) is time-dependent. P (t) scales roughly with the total number143

of cases. For the models of Section 2.1 with polarised immunity, the number of infected individuals in144

the unvaccinated and vaccinated compartments, IU (t), IV (t) are proportional to each other (equation145

(4)). Therefore, for fixed θE and vaccination coverage, P (t) is proportional to the prevalence. This146

scaling fails if equation (4) does not hold (for example in the model with leaky immunity of Appendix147

A.2). In general, the escape pressure as a function of time is a linear superposition of the curves for148

infections in vaccinated and unvaccinated hosts. Nonetheless, our main interest is how the escape149

pressure depends on the vaccination coverage c and θE . Hence, we need a reasonable way to150

eliminate the time-dependency of P (t). For the transient scenario, we consider the cumulative escape151

pressure throughout the full wave Pa(c) =
∫∞
0 P (t)dt = CU + θECV . For the endemic scenario, we152

study the asymptotic value of P at the endemic equilibrium Pb(c) = limt→∞ P (t) = I∗U + θEI
∗
V . With153

the expressions for CU , CV , I
∗
U , I

∗
V from Section 2.1,154

Pa(c) = CU + θECV = (1− c+ θSθEc)

(
1 +

1

Re
W
(
−Ree

−Re
))

if Re > 1, else zero (14)

Pb(c) = I∗U + θEI
∗
V ∝ (1− c(1− θSθE))

(
1− 1

Re

)
if Re > 1, else zero (15)

To study the differential effect of the vaccination coverage on the escape pressure, we normalise the155

expressions (14) and (15) by their value at c = 0 (in the absence of vaccination):156

P̂a(c) =
Pa(c)

Pa(0)
= (1− c(1− θSθE))

1 +W (−Ree
−Re)R−1

e

1 +W (−R0e−R0)R−1
0

if Re > 1, else zero (16)

P̂b(c) =
Pb(c)

Pb(0)
= (1− c(1− θSθE))

1−R−1
e

1−R−1
0

if Re > 1, else zero (17)

If P̂∗(c) > 1 (where ∗ is a or b), the vaccination coverage c increases the escape pressure from no157

vaccination (in scenario (a) or (b), respectively). Expressions (16), (17) are similar, but P̂a and P̂b158

should not be compared between each other. They correspond to distinct epidemiological scenarios159

and have different derivations from the time-dependent escape pressure P (t) of equation (13).160

3 Results161

First, we focus on the effects of θE on the escape pressure in a fully vaccinated population. We vary162

θS , θI and θE , and fix the vaccination coverage at c = 1. If vaccination does not prevent the epidemic,163

i.e., R0θSθI < 1:164

P̂a(1) = θSθE

(
1 + 1

R0θSθI
W
(
−R0θSθIe

−R0θSθI
)

1 + 1
R0

W (−R0e−R0)

)
, P̂b(1) = θSθE

(
1− 1

R0θSθI

1− 1
R0

)
(18)

and P̂∗(1) = 0 for R0θSθI ≥ 1. Both expressions in (18) depend only on R0, θSθI and θSθE , but this165

dependence changes for “leaky” immunity (see Appendix A.2). Figures 1a, S1a show how the escape166

pressure in a fully vaccinated population P̂∗(1) depends on the vaccine parameters θS , θI and θE . As167

expected, it is unchanged relative to no vaccination (P̂∗(1) = 1) when θE = 1 = θS = θI , because168

then vaccines have no effect in our model. For a fixed VE, the escape pressure increases with θSθE ,169

because escape becomes more likely in the vaccinated. Similarly, for fixed θSθE , the escape pressure170

decreases as the vaccines become more effective, because fewer infections reduce the opportunities171

for escape mutations. Therefore, the escape pressure in a fully-vaccinated population is less than172

in an unvaccinated population (P̂∗(1) < 1) if the population is close enough to herd-immunity. As173
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category item description

vaccine
parameters

θS ∈ [0, 1] susceptibility reduction (VE against infection)
θI ∈ [0, 1] infectivity reduction (VE against transmission)
θE ∈ [0,∞] relative escape contribution of breakthrough infections

epidemiological
parameters

R0 ∈ [0,∞) initial basic reproduction number, here assumed R0 > 1
c ∈ [0, 1] vaccination coverage of the population

Re(c) ∈ [0,∞) initial effective basic reproduction number, assumed Re > 1
c̃ ∈ [0, 1] vaccination coverage c threshold for Re = 1

escape
pressure

P (t) unscaled and time-dependent, as defined in equation (13)
P̂a(c) normalized and cumulative (transient polarised scenario)
P̂a′(c) normalized and cumulative (transient leaky model of A.2)
P̂b(c) normalized and asymptotic (endemic polarised scenario)

output
parameters

cm vaccination level c that maximises the escape pressure
c∞m vaccination level c that maximises breakthrough cases
θ̂E threshold value of θE , defined by dP̂∗/dc = 0 at c = 0

θ̂S threshold value of θS , defined by dP̂∗/dc = 0 at c = 0

θ̂I threshold value of θI , defined by dP̂∗/dc = 0 at c = 0

Table 1: Parameters and functions from our model that appear in the results section. For the
input vaccine and epidemiological parameters, we specify their ranges of feasible values. The
realised values of the output parameters (bottom block of the table) differ between scenarios.

a consequence, θSθE < 1 is not necessary for P̂∗(1) < 1. It is sufficient, because if θEθS < 1,174

vaccination blocks the expected escape so P̂∗(1) < 1 unsurprisingly. Our results shows that vaccines175

can reduce the total escape pressure even if θSθE > 1.176

Next, we consider how the escape pressure changes with a variable vaccination coverage c, and177

how this is affected by θE . We keep θS and θI fixed for simplicity. Figures 1b, S1b show the escape178

pressure P̂∗ as a function of c and θE , for fixed VEs. Intuitively, the escape pressure decreases to179

zero as the vaccination coverage approaches c̃, the herd immunity threshold (c̃ < 1 here). When vac-180

cination is slightly below c̃, the outbreak is small (a few infections are enough to build herd immunity)181

so there are fewer opportunities for escape. It is helpful to consider the vaccination coverage that182

maximises the escape pressure, which we call cm, as it depends on θE . If θE is below a threshold183

θ̂E , then cm = 0. The escape pressure simply decreases with c, because reducing cases outweighs184

the escape pressure from breakthrough cases. If θE > θ̂E , then cm > 0. Breakthrough infections can185

drive evolution and reducing cases may not suffice to reduce the escape pressure, which has a uni-186

modal shape. We can characterise these results analytically. Here we refer to the endemic scenario187

(Appendix A.1 discusses the transient scenario). Since Pb(c) is concave (d2Pb/dc
2 < 0), by (17), the188

condition for a peak of the escape pressure at a non-zero vaccination level (cm > 0) is189

0 <
dPb

dc

∣∣∣∣
c=0

=
1

R0
((θEθS − 1)(R0 − 1)− (1− θSθI)) ⇐⇒ 1

θS

R0 − θSθI
R0 − 1

=: θ̂E (19)

Figure S5 plots θ̂E , as given by (19). Interpreting 1 − θSθI as the transmission-blocking and θEθS −190

1 as the escape boost provided by the vaccines, the condition (19) can be rewritten as (escape191

boost)×(R0 − 1) >(transmission-blocking). If (19) is satisfied, we solve dPb/dc = 0 for the maximiser192

of the escape pressure cm = (1 − θSθI)
−1
[
1−

√
1 + (1− θSθI)/(θSθE − 1)/

√
R0

]
. As expected,193

cm continuously increases with θE from zero (at θE = θ̂E). In the limit θE → ∞ only breakthrough194

infections contribute to Pb, the analytical expression for cm tends to
(
1− 1/

√
R0

)
/(1 − θSθI) =:195

c∞m . This number c∞m can be obtained directly as the vaccination coverage that maximises the total196

number of infections in vaccinated hosts. If herd-immunity from vaccination alone is not possible197
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(a) Relative escape pressure P̂b(1). (b) Relative escape pressure P̂b(c).

Figure 1: (a): Escape pressure P̂b(1) in a fully vaccinated population relative to an unvac-
cinated population. White dotted curve (P̂b(1) = 1): vaccine parameters that give the same
escape as in an unvaccinated population. White dashed line: VE that prevents an epidemic in
a fully vaccinated population (the horizontal axis is scaled to above this value). R0 = 1.4. (b):
Escape pressure P̂b(c) for variable vaccination coverage c and relative contribution to escape
θE from the vaccinated, relative to an unvaccinated population. White solid curve: the vacci-
nation coverage, cm, at which the escape pressure peaks, as a function of θE . White dotted
curve (P̂b(c) = 1): combination of c and θE that give the same escape in a population as in
an unvaccinated population. Dashed line: vaccination coverage for herd-immunity threshold
(the horizontal axis only shows values of c below this). θS , θI = 0.6, R0 = 1.4.

(c̃ > 1), Figure S6 shows that a fully vaccinated population (c = 1) can have the largest escape198

pressure. However, this does not happen (c∞m < 1) if and only if
√
R0θSθI < 1, which holds if the199

threshold coverage for Re < 1 is less than one (c̃ < 1), because then R0θSθI < 1 < R0. Therefore,200

unsurprisingly, the escape pressure cannot peak at c = 1 if c̃ < 1 (since c = 1 prevents the epidemic).201

Finally, we study how each of θS , θI affects the escape pressure as the vaccination coverage varies.202

When infections in the vaccinated drive selection (θE is large), θS contributes more to the escape203

pressure than θI . Both reduce the total number of cases at the same rate, through Re = R0(1− c(1−204

θSθI)). Additionally, θS (partially) protects the vaccinated from infections, so it lowers the proportion205

of the total cases in the vaccinated. Hence, if θE > 1, a vaccine that reduces susceptibility has a206

quantitatively stronger effect on the escape pressure than a vaccine that reduces infectivity. Figures 2,207

S2, S3, S4 demonstrate that the escape pressure is more sensitive to θS than θI . In particular, Figures208

2, S2 show that a sufficiently low θS can lead to the escape pressure peaking at no vaccination209

(cm = 0), while for the same background parameter values the escape pressure peaks at intermediate210

vaccination levels (cm > 0), regardless of θI . We can define thresholds values θ̂× (× = S, I) similar211

to θ̂E (see Figure 1b, S5), such that θ× < θ̂× is the condition for the escape pressure to peak at no212

vaccination (cm = 0). Figures 2a, S2a, S3a all have θ̂S ∈ (0, 1), while θ̂I ∈ (0, 1) only appears in213

Figure S3b. In the endemic scenario, (19) gives θ̂S = R0/(θE(R0 − 1) + θI) and θ̂I = (1 − (θEθS −214

1)(R0 − 1)))/θS . The expression for θ̂I can be negative, but θI is always positive. Therefore, if θ̂I is215

negative, the escape pressure peaks at intermediate levels, as in Figure 2b. On the contrary, θ̂S is216

always positive, so if vaccines fully prevent infection (θS = 0), vaccination always reduces the escape217

pressure (cm = 0).218
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(a) Relative escape pressure P̂b(c). (b) Relative escape pressure P̂b(c).

Figure 2: Relative escape pressure P̂b(c) at fixed R0 = 1.4 and a high relative contribution
to escape from the vaccinated, θE = 10. (a) has fixed θI = 0.6 and the susceptibility VE θS
varies. (b) has fixed θI = 0.6 and the infectiousness VE θI varies. On both (a) and (b), the
white solid curves mark the vaccination coverage, cm, at which the escape pressure peaks;
the dashed lines give the herd-immunity threshold. Considered together, (a) and (b) show
that there is more variation in the relative escape pressure if θS varies and θI is fixed.

4 Discussion219

4.1 Summary of findings220

Introducing a new parameter, θE , we have explored the effect of the contribution to immune escape221

of cases in vaccinated hosts, relative to the unvaccinated. Taking a parsimonious modelling ap-222

proach we have studied how the population escape pressure depends on the vaccination coverage,223

the vaccine efficacies and θE . We have found that θE is critical to determine how the escape pres-224

sure depends on the vaccination coverage. If θE is low, escape decreases with vaccination. As θE225

increases, so that vaccinated hosts contribute relatively more to escape, escape is largest at inter-226

mediate vaccination levels. Therefore, our results show that models of immune escape should take227

into account the relative contribution to escape of cases in hosts with imperfect immunity. Our results228

also show mathematically that vaccines which are effective in reducing transmission can generally229

reduce the population escape pressure, even if they favour escape strains in individual hosts.230

4.2 Implications for modelling evolution with imperfect immunity231

Our results highlight not only the importance of θE itself, but also the role in reducing escape of232

θS , the susceptibility vaccine efficacy (VE), especially when vaccinated hosts contribute relatively233

more to escape (θE > 1). Our results show mathematically the need to consider separately the VEs234

against infection (susceptibility) and onwards transmission (infectiousness). A purely epidemic model235

which does not consider immune-induced escape only needs the overall transmission-blocking VE236

[4]. However, our escape pressure is more sensitive to a reduction in susceptibility than infectivity.237

The suceptibility VE not only reduces infections but specifically protects the vaccinated, who may238

exert more selection pressure. Traditional models assume that partial immunity confers only reduced239

susceptibility or infectivity [16]. Often the dynamics are qualitatively the same [25], so the choice of VE240
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is usually based on tractability [16]. Our work suggests that evolutionary models should split infections241

by immune status, so that θE can be used, and consider the susceptibility VE separately from the242

transmisibility VE, so that θS and θE can regulate together the escape pressure. These points may243

also apply in multi-strain models where partial cross-immunity drives evolution [16]. Furthermore,244

the contribution to escape of an infected host may change with different vaccine types or number of245

doses, so along different VEs, different θEs may be needed. Parameters akin to θE could also be246

appropriate for other phylodynamic models.247

4.3 Relation to existing results248

As in previous work [8], [3], in our models intermediate vaccination levels could lead to the largest249

selection pressure for antigenic escape. The same conclusion holds for a wide range of θS and θI250

values [4] when dividing the population in two subgroups with different contact rates. This population-251

level result is analogous [4] to the within-host phylodynamic trade-off between viral load and selection252

pressure [23]. Our works shows that a population-level trade-off can appear without mixing hetero-253

geneity, stochasticity, or detailed within-host dynamics. Past work implicitly uses fixed choices of θE254

or the VEs (or both). We instead specify the region of (θE , θS , θI) parameter space in which interme-255

diate vaccination levels maximise the escape pressure. Beyond this region, vaccination reduces the256

escape pressure, as in [15].257

4.4 Limitations and further work258

Due to the simplicity of our approach, many epidemiological and evolutionary processes could mod-259

ify our results. We assume that there are no changing mitigation measures, behavioural changes260

or seasonality effects. Vaccination comes through a single dose of a unique vaccine, administered261

before the outbreak or at birth. Further work could consider ongoing vaccination, as in [8]. We also262

neglect the waning of vaccine immunity and assume complete immunity after infection. Infections in263

individuals with partial or waned immunity may contribute with a different weight to the escape pres-264

sure [5]. Heterogeneity in mixing, susceptibility and transmissibility could all play a role in evolution. It265

may be best to vaccinate first those with more contacts [4], or immunocompromised hosts, who might266

contribute significantly more to the escape pressure [26]. Moreover, unlike in COVID-19 [22], both267

scenarios explained here assume that vaccination does not change the recovery rate and that the268

disease is not fatal. Disease-induced mortality, different infectious periods and hospitalisations would269

break the proportionality (4), since these effects would be larger in the unvaccinated. Similarly, lifting270

the well-mixing assumption and including any age or spatial structure could change these patterns.271

These assumptions are a tradeoff in favour of tractability and simplicity: the main objective of our of272

work is to gain as much insight as possible about the qualitative effect of θE on the escape pressure.273

Our escape pressure (13) is just a minimal abstraction of the interplay between vaccination and274

vaccine escape that might occur in real-life. Our work ignores the invasion dynamics of escape strains275

[6], but simply focuses on the pressure to generate one. An escape strain might be unable to grow276

if few individuals remain susceptible. In the transient scenario, this could occur if a strains appears277

late in the epidemic; in the endemic scenario, if the invasion fitness of the escape strain is not large278

enough for it to replace or coexist with the resident strain. Similarly, stochasticity could drive escape279

strains extinct shortly after their generation. For example, [8] finds that escape strains appearing in280

lockdowns are unlikely to survive stochastic extinction. Simple approaches to consider the outcome281

of the new variant [8], [6] could be incorporated in our models. However, this is a complex process282

[3], so a full description will require significant further development of models.283
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A Mathematical proofs331

A.1 Polarised vaccine immunity332

Using the notation of the main text, define column vectors u(t) and v(t) as333

uT = (SU (t), IU (t), RU (t)) and vT = (SV (t), IV (t), RV (t)) (A1)

where xT denotes the transpose of a vector x. Consider an ODE system334

u̇ = Mu v̇ = Mv (A2)

for a time-dependent matrix M, which possibly depends on v and v. Suppose initial conditions335

v(0) = αu(0) (A3)

for some constant α. û(t) := α−1v(t) and u(t) obey the same first order differential equation (A2) and336

initial condition u(0) = û(0). Hence (by uniqueness of solutions), û(t) = u(t). Thus v(t) = αu(t).337

Analytic results for the transient polarised model338

The system (1)-(3) can be written in the form (A1)-(A3) with M(t)=

−λ(t) 0 0
λ(t) −1 0
0 +1 0

339

and α = cθS/(1− c). Thus (SV (t), IV (t), RV (t)) = cθS(1− c)−1(SU (t), IU (t), RU (t)). This relation (4)340

allows us to derive (5), which yields341

İU

ṠU

=
dIU
dSU

= −1 +
1

R0SU

(
1 +

cθSθI
1− c

)−1

=⇒ IU = (1− c)− SU −
(
1 +

cθSθI
1− c

)−1 1

R0
log

1− c

SU

(A4)

where the initial conditions (6) set the integration constant. The final size of the susceptible popula-342

tion, S∞
U = limt→∞ SU (t), is given implicitly by taking t → ∞ and setting 0 = limt→∞ IU (t):343

S∞
U = (1− c)−

(
1 +

cθSθI
1− c

)−1 1

R0
log

1− c

S∞
U

= −1− c

Re
W
(
−Ree

Re
)

(A5)

The second equality expresses S∞
U in terms of the Lambert-W function [21] and Re. From S∞

U we ob-344

tain (14) for the escape pressure Pa(c), which we study here. For simplicity, we set W ≡ W (−Re−R)345

and R ≡ Re.346

dPa

dc
+ (1− θEθS)

(
1 +

1

R
W (−Re−R)

)
= −R0(1− θSθI)(1− c(1− θSθE))

d

dR

W (−Re−R)

R
(A6)

= R0(1− θSθI)(1− c(1− θSθE))

[
W

R2
+

1

R

d

dR
(−Re−R)

W

(−Re−R)(1 +W )

]
(A7)

= WR0(1− θSθI)(1− c(1− θSθE))

[
1

R2
+

1

R

−eR +Re−R

Re−R(1 +W )

]
(A8)

= WR0(1− θSθI)(1− c(1− θSθE))
1

R2

W +R

1 +W
=⇒ (A9)

dPa

dc
= (1 +W/R)

[
−(1− θEθS) + (1− θSθI)

1− c(1− θSθE)

1− c(1− θSθI)

W

1 +W

]
(A10)
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See, e.g., [21] for the derivative of the Lambert-W function used in (A7). We prove that there is either347

none or one root (c = cm) solving dPa/dc = 0 in c ∈ [0, c̃). W ≥ −1, and hence (1 + W/R) > 0,348

because R > 1 for c < cm. Thus it suffices to consider the sign and monotonicity of the bracketed349

(right-most) term in (A10). First suppose (1− θSθE) > 0, which means (1− c(1− θSθE)) > 0. Since350

W/(W + 1) < 0, dPa/dc < 0. So if θE < 1/θS , vaccination reduces the escape pressure regardless351

of the coverage c. Now consider θEθS > 1. R decreases with c and R > 1 for c < c̃. z := −Re−R < 0352

increases with R > 1, so z decreases with c ∈ (0, c̃). The Lambert W function W (z) increases with its353

argument z ∈ (−1/e, 0), so it decreases with c. W/(1 +W ) is an increasing function of W ∈ (0,−1)354

and hence it is a negative, decreasing function of c. These imply355

d

dc

[
1 + c(θSθE − 1)

1− c(1− θSθI)

W

1 +W

]
= −

∣∣∣∣ W

W + 1

∣∣∣∣ d

dc

(
1 + c(θSθE − 1)

1− c(1− θSθI)

)
+

1 + c(θSθE − 1)

1− c(1− θSθI)

d

dc

(
W

1 +W

)
(A11)

where the first derivative in the RHS is positive and the second is negative. Hence the LHS is356

negative. Thus dPa/dc is a decreasing function of c, with at most one root, cm. The if and only if357

condition for cm > 0 is dPa/dc > 0 at c = 0. Evaluating (A10) at c = 0, the condition for cm > 0358

becomes359

θEθS − 1 > (1− θSθI)
−W0

W0 + 1
=: θ̂EθS − 1 with W0 ≡ W

(
−R0e

−R0
)

(A12)

(A12), as (19), can be written in the form (escape boost) > g(R0)(transmission blocking) for a function360

g. Here g(R0) = −W0/(1 +W0); while in the endemic scenario, g(R0) = 1/(R0 − 1).361

Analytic results the endemic models362

The SIRS system (7)-(9) can be written in the form (A1)-(A3) with α = cθS
1−c and M(t) =

−λ(t) 0 ω
λ(t) −1 0
0 +1 −ω

.363

Thus, (4) holds. We write the system with natural dynamics (10)-(12) as u̇ = xU + M(t)u, v̇ =364

xV +M(t)v, with M(t) =

−λ(t)− µ 0 0
λ(t) −1− µ 0
0 +1 −µ

 and xT
U = (µ(1− c), 0, 0) = 1

αx
T
V , v(0) = αu(0)365

for α = cθS/(1 − c). Both u(t), û(t) := α−1v(t) solve the initial value problem ẏ(t) = F(t,y(t)) =366

M(t)y(t) + xU ,y(0) = u(0). By uniqueness of solutions, u(t) = û(t), and hence (4) still holds.367

A.2 Analytical results for leaky vaccine immunity368

We modify the SIR model of Section 2.1 to have “leaky” immunity, instead of polarised [16]:369

ṠU = −SUλ(t) ṠV = −SV θSλ(t) (A13)

İU = SUλ(t)− IU İV = SV θSλ(t)− IV (A14)
SU (0) = 1− c ≫ IU (0) SV (0) = c ≫ IV (0) (A15)

For c = 1 or c = 0, (A13)-(A15) become a standard SIR model: Ṡ = −R0SI, İ = R0SI − I,370

S(0) = 1 ≫ I(0) > 0 if c = 0, and the same but with R0 → R0θSθI for c = 1. We assume371

R0θSθI , R0 > 1 so that the outbreak grows in both situations. The final sizes are372

CU = 1 +
1

R0
W
(
−R0e

−R0
)

CV = 1 +
1

R0θSθI
W
(
−R0θSθIe

−R0θSθI
)

(A16)

respectively, where W is the Lambert-W function [21]. From (A16) and (18) we find that the relative373

escape pressure in a fully-vaccinated population under the “leaky” immunity assumption is P̂a′(1) :=374
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θECV /CU = θ−1
S P̂a(1), proportional to the relative escape pressure under polarised immunity. Figures375

S1a, S1c are hence identical, except for the vertical variables, θE and θSθE .376

For c ∈ (0, 1), from (A13), d
dt logSV = θS

d
dt logSU and so SV (t) = c (SU (t)/(1− c))θS , which deviates377

from (4). However, we can still study the system through SU (t) and λ(t) = R0(IS + θIIV ):378

ṠU = −SUλ, λ̇ = R0[SU + θSθISV ]λ− λ = R0

[
SU + θSθI

c

(1− c)θS
SU

θS

]
λ− λ (A17)

Using the chain rule and initial conditions (A15), dλ/dSU = −R0 −R0SU
θS−1cθSθI/(1− c)θS + 1/SU ,379

so λ(t) = R0(1 − c − SU ) + cθIR0[1 − (SU/(1 − c))θS ] − log ((1− c)/SU ). Setting limt→∞ λ(t) = 0,380

(A18) defines S∞
U = limt→∞ SU < 1− c, the final size of the unvaccinated susceptible compartment:381

S∞
U = 1− c+

cθI
(1− c)θS

[(1− c)θS − (S∞
U )θS ]− 1

R0
log

1− c

S∞
U

(A18)

The cumulative number of infections in each group are CU (c) = 1 − c − S∞
U and CV (c) = c −382

limt→∞ SV (t) = c
[
1− (S∞

U /(1− c))θS
]

so, for 0 < c < 1,383

Pa′(c) = CU (c) + θECV (c) =

[
1− c(1− θE)− S∞

U − cθE

(
S∞
U

1− c

)θS
]

(A19)

and where S∞
U is the unique solution in (0, 1 − c) of (A18) for Re > 1. For Re ≤ 1, we set Pa′ = 0.384

Figures S1b, S1d are the equivalent of Figure 1b for the “leaky” and polarised transient models. The385

effect of θE is qualitatively the same in all models, regardless of vaccination coverage.386
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S Supplementary Figures387

(a) Relative escape pressure P̂a(1). (b) Relative escape pressure P̂a(c).

(c) Relative escape pressure P̂a′(1). (d) Relative escape pressure P̂a′(c).

Figure S1: As Figure 1 but for the transient scenario. The qualitative behaviour is the
same as in the endemic scenario. Top row is with polarised immunity, bottom row is for leaky
immunity. The escape pressure is larger with leaky immunity instead of polarised immunity
(as seen in the different variables in the vertical axis of (c) or the maximum values of P̂∗
attained in (d)).
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(a) Relative escape pressure P̂a(c). (b) Relative escape pressure P̂a(c).

Figure S2: As Figure 2, but for the transient scenario with polarised immunity. The quali-
tative behaviour is the same as in the endemic scenario. The same behaviour appears in the
transient scenario with leaky immunity (plots not shown).

(a) Relative escape pressure P̂b(c). (b) Relative escape pressure P̂b(c).

Figure S3: As Figure 2, but with a lower relative contribution to escape from vaccinated
hosts: θE = 5 instead of θE = 10. Here vaccination that fully blocks infection (θS = 0)
or onward transmission (θI = 0) reduces the escape pressure at any vaccination coverage
(P̂b(c) < 1 for c > 0). In other words, here θ̂I > 0. However, the escape pressure is still more
sensitive to θS than θI . The same behaviour appears in the transient scenario with leaky or
polarised immunity (plots not shown).
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(a) Relative escape pressure P̂a(0.1). (b) Relative escape pressure P̂b(0.1).

Figure S4: Relative escape pressure P̂ (0.1) as a function of the vaccine efficacies θS and
θI for a fixed vaccination coverage c = 0.1. (a) is for the transient scenario and (b) is for
the endemic scenario: the qualitative results are the same. As expected, reducing θS or θI
decreases the escape pressure, because this corresponds to more effective vaccines. How-
ever, the contour lines that gives constant escape pressures are roughly vertical, meaning
that the escape pressure decreases is much more sensitive to θS than θI . As in Figures 2,
S2, R0 = 1.4 and θE = 10. The same behaviour appears in the transient scenario with leaky
immunity (plots not shown).

Figure S5: θ̂E (the value of the relative contribution to escape from the vaccinated above
which intermediate coverages maximise the escape pressure) in the endemic scenario, as
given by (19). We only plot values of the susceptibility VE θS above 0.4, because θ̂E quickly
grows without bounds as θS → 0 (the vaccines become better at preventing infection). In
other words, θ̂E is more sensitive to θS than θI , as P̂ (see, e.g., Figure S4). R0 = 1.4.
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(a) Relative escape pressure P̂a(0). (b) Relative escape pressure P̂b(0).

(c) Relative escape pressure P̂a(0). (d) Relative escape pressure P̂b(0).

Figure S6: As Figures 1b, S1b, but with different R0 such that vaccination alone cannot
achieve herd-immunity (c̃ > 1). (a), (b): R0 = 2.8. The escape pressure is non-zero even
in a fully vaccinated population (c = 1), because there is still transmission. Nevertheless,
the vaccination coverage that maximises the escape pressure is always less than 1, so the
escape pressure does not peak at a fully vaccinated population regardless of how much cases
in vaccinated individuals contribute to the escape pressure (cm < 1). c∞m < 1 is the vertical
asymptote of the white curve, the limit of cm as θE → ∞. (c), (d): R0 = 9. For large θE ,
the escape pressure increases monotonically with the vaccination coverage c and is largest
at a fully-vaccinated population (c = 1). As with the other plots of this paper, the qualitative
behaviour of the transient (left column) and endemic (right column) scenarios is the same. We
do not show plots for the transient scenario with leaky immunity, but the qualitative behaviour
is the same.
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