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Abstract

This work introduces the Queen’s University Agent-Based Outbreak Outcome Model (QUABOOM), a new, data-
driven, agent-based Monte Carlo simulation for modelling epidemics and informing public health policy in a wide
range of population sizes. We demonstrate how the model can be used to quantitatively inform capacity restrictions
for COVID-19 to reduce their impact on small businesses by showing that public health measures should target few
locations where many individuals interact rather than many locations where few individuals interact. We introduce a
new method for the calculation of the basic reproduction rate that can be applied to low statistics data such as small
outbreaks. A novel parameter to quantify the number of interactions in the simulations is introduced which allows our
agent-based model to be run using small population sizes and interpreted for larger populations, thereby improving
computational efficiency.

Keywords: Monte-Carlo, Agent-based epidemic modelling, COVID-19, Small business capacity restrictions, Public
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1. Introduction

The COVID-19 pandemic has globally impacted
society economically and socially. Since emerging in
2019 in Wuhan, China (Wu and McGoogan, 2020), the
novel coronavirus SARS-CoV-2 has spread worldwide
and led to the implementation of non-pharmaceutical
policy interventions by public health authorities includ-
ing social distancing, lockdowns, quarantine, and mask
mandates.

In March 2020, Canada declared a COVID-19
pandemic (Statistics Canada, 2022a) which led to
policy mandates being implemented, removed and
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re-implemented as the pandemic evolved over time. In
Canada, all industrial sectors were negatively impacted
by the pandemic. Particularly a large portion of small
businesses (fewer than 99 employees) reported a
40% or more decline in revenue (Tam and Johnston,
2020). Small businesses comprise 98% of employer
businesses in Canada (Sood et al., 2021), highlighting
the importance of understanding how they affect the
development of epidemic outbreaks.

Mathematical modeling has become an important
tool in policy making for infectious disease control to
mitigate and suppress the health impacts of COVID-19
(Ferguson et al., 2020; van der Vegt et al., 2022;
Ndaı̈rou et al., 2020). An abundance of epidemic
modelling techniques exist, with compartmental-based
models, such as susceptible-infected-recovered (SIR),
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being the most commonly used in epidemiology
(Weissman et al., 2020; Tolles and Luong, 2020). Mod-
elling techniques are often implemented using ordinary
differential equations (He et al., 2020; Chowell et al.,
2004), networks (Newman, 2019), and agent-based
models (Ferguson et al., 2020). Our work presents a
Monte Carlo agent-based model that includes network-
like constraints between its agents in order to reduce the
full random-mixing assumption implicit in differential
equation based models and results in more realistic
social mixing.

While COVID-19 has been at the forefront of
epidemiology research, very little modeling has been
conducted focusing on small-scale populations. Our
technique was developed with the capability of mod-
eling a city the size of Kingston, Ontario, Canada,
with a population size of approximately 130 000. The
city also includes a relatively large student population
(approximately 20 000), also incorporated in the model.
This first publication presents, to our knowledge, a
new model which focuses on examining how capacity
restrictions on businesses of different sizes affect an
epidemic outbreak. We present a method to inform
public health capacity restriction decisions and examine
how these change as a function of the vaccinated
fraction of the population.

In Section 2, we describe the general software frame-
work developed to model the spread of COVID-19. In
Section 3, we describe how we use the code to deter-
mine a prescription for setting capacity restrictions. In
Sections 4 and 5, we then present and discuss results of
simulating various capacity restriction scenarios.

2. Agent-based modelling software framework

In our model, agents represent individuals that
interact and can spread an infection. Agents are given
a set of properties, such as age, that will affect their
probability of getting infected and the outcome of any
infection.

The model is referred to as the Queen’s University
Agent-Based Outbreak Outcome Model (QUABOOM),
and is implemented using object-oriented code written
in Python 3.8, which will be made available as open
source code. The simulation tracks a population of
agents during an epidemic. An initial number of agents,
N0, are infected at the beginning of the simulation.
Each day within the simulation, agents are given
opportunities to interact with each other in different

“interaction sites” which represent establishments such
as households, work places, restaurants, and grocery
stores. Interactions between agents are modelled with
a Monte Carlo simulation, through probabilities of
attending an interaction site and transmitting the virus.
Networks of agents are formed by associating subsets
of agents to specific interaction sites. Various public
health policies, such as masking, testing, quarantining,
and lockdowns can also be implemented in the simula-
tion.

The hierarchy of classes developed for the model
are shown in Fig.1. The Simulation class creates
and calls other classes to manage the agents, their
interactions, and any public health policy in place. The
agents are created by the Population class as Person
objects. Interactions between agents are facilitated by
the InteractionSites class. The InteractionSites class
models how agents interact with each other in different
interaction sites and is how agents spread the virus.
The Policy class is used to implement public health
policy. The following sections describe the details of
the various classes implemented in the code.
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Fig. 1: Software framework used for mathematically mod-
elling COVID-19 with QUABOOM, in Kingston, Ontario,
Canada. Each dark box corresponds to a class in the code
which can be configured through a set of configuration files in
TOML format.

2.1. Simulation class and configuration files
The Simulation class initializes all relevant classes

and organizes the interaction between agents from the
Person class as they interact in the various interaction
sites. The Simulation class tracks daily cumulative
counts from the simulation for the following quantities:

• Susceptible agents

• Infected agents
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• Recovered agents

• Dead agents

• Hospitalized agents

• Infected student agents

• Agents tested

• Agents in quarantine

• Agents waiting to get tested

• Daily tested agents

• Daily quarantined agents

• Daily infected agents

The Simulation class uses parameters specified in two
configuration files and distribution data from properties
of the Kingston population. The first configuration file
controls simulation-wide parameters such as the size
of the population, the number of initially infected, any
public health policies to implement, and the distribution
of the populations’ age. The second configuration file
controls the disease parameters, including symptom
severity distributions, length of stay in hospital/ICU,
and information regarding transmission probabilities.
The disease parameters allow for multiple variants
to be defined by treating each variant as a new virus
type. This gives the simulation the ability to be used
for epidemiological purposes further than COVID-19
by modelling infectious virus epidemics with different
properties than COVID-19.

2.2. Person class

The Person class represents the base agent object
within the simulation. Each agent has a set of unique
attributes, set by the Population class to reproduce dis-
tributions from the configuration files. The interactions,
managed by the InteractionSites class, that an agent has
with other agents are stored in that agent’s attributes,
allowing for contact tracing to be simulated. Each agent
also has a “compliance” parameter, used to account
for individuals’ varying adherence to public health
policies. This can change during the simulation but is
set to be constant for simplicity within the scope of
this paper. An agent’s initial compliance is determined
by different factors, including risk due to pre-existing
conditions and age. Compliance can also be updated
during the simulation to reflect real world tendencies
during lockdowns and lifting of restrictions.

2.3. Population class
The Population class initializes the agents, which

are of type “Person” from the Person class in order
to reproduce a given distribution of ages in the popu-
lation. The Population class also sets the initial state
of agents (infected, susceptible, vaccinated), and is
then responsible for tracking the state of all of the
agents in the population throughout the simulation. The
Population class also places agents into households.
The Simulation class can then query the Population
class at each time step of the simulation to track the
current number of agents in the various states.

2.4. InteractionSites class
Interactions between agents are modelled as taking

place at various interaction sites and are managed by
the InteractionSites class. There are three main inter-
action site levels that are designed to model different
types of sites. “Level A” represents facilities, such
as clothing stores and restaurants, for which a given
individual might have several locations with which
they are associated. “Level B” corresponds to sites for
which an individual may have one or two instances
with which they are associated, such as grocery stores,
gyms, and gas stations. Finally, “Level C” corresponds
to sites where an individual associates singularly, such
as a workplace or school. In addition, the code allows
smaller scale dynamics to be studied by permitting for
a population of students to be included in the general
population. When the student population is enabled,
additional types of interaction sites to model lecture
theaters, study areas, food areas, student residences,
and student housing are included in the simulation.

In the simulation configuration file, the following pa-
rameters for each level of interaction site can be esti-
mated:

• The number of interaction sites, n, of a particular
level. This also determines the number of agents
associated with each interaction site of a given
level, as the agents in the populations are evenly
distributed over the sites.

• The “attendance” probability, p, is the probability
that an agent will go to that level of interaction site
on a given day. For example, for Level B sites, we
use a mean of pB = 2/7, corresponding to attend-
ing a grocery store type of establishment twice per
week, assuming the same probability of attending
a site on any given day, ignoring any weekend ef-
fects.
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• The “loyalty” mean and standard deviation are
used to draw a normally distributed random num-
ber for the number of sites of a given level with
which an agent is associated.

Agents are initialized to be associated with specific
interaction sites by the InteractionSites class. The
number of specific sites of a particular level that
an individual can attend is fixed and drawn from a
normal distribution whose parameters (loyalty mean
and standard deviation) are specified in the simulation
configuration file. The same distribution is used for all
agents, independent of age, and it is assumed that the
over-estimations and under-estimations of attending a
specific site even out. An agent will then repeatedly
“attend” the same set of interaction sites with a proba-
bility, p, of going each day. Different functions manage
interactions between agents going to the same interac-
tion site and interactions between members in the same
household. This feature aims to replicate real world be-
haviours, where an individual is more likely to visit the
same public locations, for example a workplace, and in-
teract with the same individuals, for example at a house.

For each time step of the simulation, a list of agents
that will interact in each site is built based on the
attendance probability, p, for that level of site. For
each agent, a number of interactions is drawn from a
triangular distribution peaked at zero and that decreases
linearly to the maximum number of contacts an agent
could have in that site. The maximum number of
contacts is the total number of agents that will visit the
site that day divided by hours, h, to account for the fact
that the agent can only interact with those that are at the
site at the same time (assumed to be one out of h hours
the site is open). We assume that most sites are open
for 12 h and customers attend for one hour on average,
so that h = 12 h1.

In a population of N agents, where there are nB inter-
action sites of level B, and agents have a probability to
attend a site per unit day, pB, one out of the hB hours that
site is open each day, the average number of interactions
per hour per interaction site, ish,B, is given by:

ish,B =
1
6

(
N pB

hBnB

)2

(1)

1If someone attends a site the entire time it is open, such as a work-
place, h = 1, if a person attends a site for 5 h when the site is open for
10 h, h = 2, and so on.

where the agents are distributed such that each site
has the same number of agents associated with it. The
factor of 1/6 accounts for the mean of a triangular
distribution being 1/3 of its maximal value and the
number of interactions are double counted if they are
not divided by the number of agents in an interaction,
2. Equation 1 assumes each site has, on average, the
same number of agents.

Individual contact networks are naturally generated
between agents that visit the same interaction sites and
are maintained throughout the simulation. This feature
allows the model to naturally incorporate network-like
features among the agents.

When an interaction occurs between two agents,
there is a probability of transmitting the virus, PT , if
one agent is in the infected state and the other is in the
susceptible state. We model PT as a fixed number that
should be a direct property of the virus. We examine
the results of our simulation as a function of PT , since
this probability will necessarily have a range of values
depending on the variant and the two agents in the
interaction.

Furthermore, the chance of the virus spreading
during an interaction is dependant on the vaccination
status of both agents and the corresponding vaccine-
dependent efficiencies (Pfizer-BioNTech Comirnaty,
Moderna Spikevax, Oxford-Astrazeneca Vaxzevria). In
addition, we consider whether one or both agents are
wearing a mask and assign different reduced infection
probabilities to wearing different efficiency masks
(surgical or cloth). These additional efficiencies (vacci-
nation and masking) affect the effective probability of
transmission.

2.5. Policy class

The Policy class is responsible for managing the fol-
lowing public health policies in the simulation:

• Masking mandate: whether or not agents should be
wearing masks (affecting spread probability).

• Lockdown: in a lockdown, only houses and level
B sites are open, such as grocery stores (affecting
number of interactions).

• Testing: when testing is turned on, symptomatic
agents must get tested and quarantined if positive.

• Students: whether or not agents with the ‘student’
profession will be involved in the simulation.
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Each policy can be triggered on or off by a daily case
count, a specific date, or set to be static by initializing
the mandate at the beginning of the simulation. Indi-
vidual policy adherence is also affected by a person’s
compliance score.

A model for COVID-19 testing is implemented each
day by selecting a group from the population wait-listed
to get tested due to apparent infection symptoms and
informing them if they are infected with COVID-19.
There is a random chance that individuals will go for
testing without COVID-19, to simulate those with
symptoms from other infections. Individuals who test
positive are quarantined, which restricts them from en-
gaging in interactions with other individuals for the set
quarantine time. Currently the model does not account
for inaccuracies of the tests themselves, although it has
no effect on the results presented herein. Similar to
tests, a set number of vaccinations can be administered
each day or set at the beginning of the simulation.
Vaccines largely reduce the transmission probability
for both individuals in an interaction. The simulation
can implement multiple vaccines with varying efficacy
in order to study the effect of varying or waning efficacy.

2.6. Baseline parameters and example output
Our default configuration files specify a number of

“baseline” parameters for the simulation and the virus
properties. The most relevant disease parameters are
shown in Table 1 and correspond to literature values
for the original strain of SARS-CoV-2, while the most
relevant simulation parameters are illustrated in Table 2.

Fig. 2 shows a sample of outputs from the first
50 days of a simulation run with the baseline param-
eters. The number of agents in each state is shown
as a function of days in the simulation. As more
agents become infected over time and there is a smaller
susceptible population, less agents can become infected
and the epidemic comes to an end, as expected. Five
different simulations were performed and the output
of each were overlayed. The resulting curves were
then averaged to minimize statistical fluctuations in
any given simulation and were estimated to a 95%
confidence interval.

Fig. 3 highlights the code’s ability to simulate lock-
downs, which restricts agents to attend only level B in-
teraction sites when a certain percentage of population
becomes infected and then turns off when there are less
active infections. This showcases how lifting capacity

Disease parameters Value
Transmission probability 0.35
Symptoms onset 4 - 7 days
Mild days 4 - 7 days
Hospital days 12 - 21 days
ICU days 16 - 29 days
Die days 16 - 29 days
Incubation 1 - 14 days

Table 1: Disease baseline parameters, based on original
strain of SARS-Cov-2. Onset of symptoms is the number of
days before symptoms (Li et al., 2020); mild days is the num-
ber of days of symptoms onset for a mild case(Li et al., 2020),
hospital days is the onset days to acute respiratory distress
syndrome (ARDS) (Huang et al., 2020) plus days to onset of
symptoms; ICU days is the days to symptom onset plus time
to hospital admission for survivors plus length of ICU stay
for survivors (Zhou et al., 2020); die days is the time to onset
plus time from illness onset to death for non-survivors (Zhou
et al., 2020); and the incubation period of COVID-19 is the
days between exposure and symptom onset (Statistics Canada,
2022b).

Agent parameters Value
N, Population size 10 000
Initial infected 10
Initial vaccinated 0
Initial mask mandate True
Initial lockdown mandate True
Initial testing mandate True
Initial student mandate False
Quarantine time 14
Default probability of testing 100%
sA, A site size 400
pA, A attendance probability 1/7
lA, A Loyalty (mean and std.) 10 ± 2
sB, B site size 1000
pB, B attendance probability 2/7
lB, B Loyalty (mean and std.) 1 ± 1
sC , C site size 170
pC , C attendance probability 5/7
lC , C Loyalty (mean and std.) 1 ± 0.2

Table 2: Main baseline simulation parameters and default
policies. Where the default probability of testing is the per-
centage of the population that will get tested if they have
COVID-19, sA is the default amount of agents associated with
one site A, pA is the probability an agent will attend an inter-
action site A each day, and lA is how likely an agent is to visit
the same interaction site (mean) or visit various interaction
sites (std.); each type of interaction site has its own average
size, attendance probability, and loyalty (mean and std.).
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restrictions too early can result in another large wave of
infections, thus requiring another lockdown to reduce
the number of active cases.
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Fig. 2: Output of epidemic with a population size of 10 000,
a masking probability of 0.8, an attendance probability of 2/7
and a probability of transmission of 0.25. Each compartment
(Susceptible, Infected, and Recovered) has a superposition of
5 runs (faded lines), the average of all the runs (in a thick
line), and a 95% confidence interval (in the shaded region).
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Fig. 3: Sample of a simulation with masking and testing al-
ways mandated, where the lockdown is triggered when 1% of
the current population is showing infection symptoms and is
turned off when below 0.1%.

Fig. 4 demonstrates how a variant with a different
probability of transmission can be introduced to the sim-
ulation and can quickly dominate by becoming the new
main infection. A limitation of the current model is its
inability to allow re-infection, including infections from
different variants. Since this work focuses on the first
large peak of infections, it does not impact the results,
but future work includes the addition of re-infection to
mitigate this.
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Fig. 4: Sample of a simulation with a lockdown, masking
and testing always mandated, where a more infectious variant,
called alpha, is introduced on day 40. The alpha variant is set
to be 1.8 more contagious than the original variant.

3. Methodology for understanding capacity restric-
tions

3.1. Overview
In this section we describe how the model can be used

to understand the effect of capacity restrictions during
a lockdown. In particular, we focus on understanding
how to determine capacity restrictions that would
prevent a small number of infections from resulting in
a large epidemic outbreak across the population. The
model is configured to approximate the conditions in
Kingston at the beginning of the COVID-19 pandemic
when only essential businesses were open.

A lockdown mode is implemented such that only one
type of interaction site (level B, grocery store-like) is
available for agents to infect each other outside of their
households. In the following sub-sections we describe
how we define a basic reproductive number for the
simulation, which is then used to define an epidemic
threshold based on the number of agents infected at the
peak of an epidemic.

Our results focus on understanding how this epidemic
threshold varies as a function of two fundamentally in-
dependent parameters of the simulation: the probability
of transmission, PT (a property of the virus in a given
environment) and the average number of interactions
that agents have per unit time per interaction site of a
given level, ish,B (a quantity that capacity restrictions
change). By considering the epidemic threshold as a
function of ish,B (see equation 1), the results of a simu-
lation can be interpreted for different population sizes,
N, different probabilities of attending an interaction
site per day, pB, and different number of interaction
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sites, nB. This is a result of distributing agents equally
among the interaction sites and having only one level of
interaction site open. This setup allows us to explore a
rich parameter space by only varying ish,B and PT , while
using a relatively small number of agents, N = 10 000,
to increase computational efficiency.

For each set of input parameters (ish,B, PT ), we run
five simulations (as in Fig. 2). Each simulation outputs
a number of metrics, including susceptible, infected,
quarantined, and recovered agents each day. These met-
rics are then averaged over the five simulations and used
to compute additional parameters, such as the basic re-
production rate and average epidemic curves.

3.2. Definition of R0

In order to define an epidemic threshold (section 3.3),
based on the number of infected cases in a simulation,
we introduce an effective R0 (basic reproductive num-
ber) that can be computed from both the simulation and
real data for small epidemics and populations. In epi-
demiology, the basic reproductive number is defined as
the average number of secondary infections by one in-
fected individual in a fully susceptible population (Het-
hcote, 2000). Our definition is based on a standard dif-
ferential equation 3-compartment model for the number
of susceptible (S ), infected (I), and recovered (R) peo-
ple in a population of N individuals (Hethcote, 2000):

dS
dt
= −
βIS
N

dI
dt
=
βIS
N
− γI (2)

dR
dt
= γI

where β is the infection rate (per unit time) and γ is the
recovery rate (per unit time). A reproductive number
can be defined as:

R0 =
β

γ
=

(
1 +

dI
dR

)
N
S
, (3)

such that the number of infected agents will grow with
time if R0 > 1. In other words, to first order, if the rate
at which people are being infected is larger that the rate
at which they recover, the number of infected people
will grow.

The change in the number of infected and recovered
cases (dI and dR) can be obtained from either the
simulation or real population data. We explicitly
assume that R0, which depends on the ratio of dI to dR,

is unaffected by under-counting cases in the real data.
We also take N/S ∼ 1, as we consider data only at the
beginning of the pandemic.

The values of dI (change in infected/active cases)
and dR (change in recovered cases) are taken at dif-
ferent instances in time in the simulation (or the data)
so that the change in recovered individuals measured
on a given day corresponds to the same day as those
individuals were infected. We implement a lag, L, as
the number of days between the measures of dI and dR.
We treat L as an unknown parameter that depends on
various delays in reporting active and resolved cases in
the real data. In the simulation data, the value of L is
expected to be close to the average time to recover from
an infection.

In practice, we apply a running average with a
window, w = 7 days, to the values of dI and dR
before computing R0. Due to statistical fluctuations
in small epidemics, it is possible for the value of R0
to be negative. We thus define our value of R0 as
the mean of the non-negative values computed over a
given range of days, typically of order 2 months. The
lag is then varied until a minimum in the standard
deviation of the R0 values is found. We found that our
simple definition produced a stable and consistent value
of R0 in the small epidemics that we have studied,
as illustrated in Fig. 5 with data from Kingston, Ontario.
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Fig. 5: Epidemic data for Kingston, Ontario, from July 2020
that were used to calculate a value of R0 (right axis, dotted
black line). Data from Ontario Public Health (2022) were ob-
tained for active/infected (left axis, dashed line) and resolved
cases (left axis, dashdot line). From those, the changes dI and
dR are computed (left axis, solid lines), and a lag of approxi-
mately 12 days can be observed between those values.

Using this methodology, we infer a value of
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R0 = 1.7 ± 0.5, as measured using 40 days of data from
Kingston centred around an outbreak that occurred in
July 2020, as illustrated in Fig. 5. This corresponds to
the mean and standard deviation of the non-negative R0
values calculated with a lag of L = 12 days between the
change in active cases and the change in resolved cases.

3.3. Defining epidemic threshold in the simulations
In order to examine factors that can trigger a large

epidemic outbreak, we define an epidemic threshold
based on the number of agents infected at the peak of
the epidemic. We determine that threshold value using
R0. We verified that our definition of R0 behaves as
expected and leads to large epidemics when R0 > 1, as
illustrated in Fig. 6.

In practice, the value of R0 is subject to statistical
fluctuations that are due to the small values of dR and
dI for small epidemics, especially near the threshold
value. By defining an epidemic threshold based on the
maximum number of agents infected in a population,
we compute the number of agents infected at the peak
of an epidemic (averaged over five simulations) and use
this “max infected”, Imax, as a measure of the size of the
epidemic outbreak for a given set of simulation param-
eters. We then introduce a threshold, TI , for the largest
epidemic that we are willing to tolerate. The TI value is
chosen from Imax as seen in Fig. 6, allowing for a quali-
tative threshold to be chosen which is below R0 = 1.0
(where we expect the number of infections to grow).
In this work, a baseline value of, TI = 50 is used, cor-
responding to 0.5 % of the simulated population being
infected and a value of R0 = 1.0, as illustrated in Fig. 6.

4. Results: Behaviour of the epidemic threshold as a
function of model parameters

Fig. 6 shows a two-dimensional plot of the maxi-
mum number of agents infected in an epidemic, Imax,
averaged over 5 simulations (logarithmic colour scale)
as a function of the probability of transmission, PT , and
the average number of interactions in level B sites per
hour per site, ish,B. The data in Fig. 6 were smoothed by
a Gaussian filter (Virtanen et al., 2020) applied to each
row. The smoothed data were then used to determine a
contour (in solid red) at the value TI = 50. The dashed
grey contour line was determined from the same set of
simulations using the condition that R0 = 1 and used to
determine the threshold value TI , which can be calcu-
lated more reliably than R0.
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Fig. 6: A two-dimensional plot of mean max infected, Imax

(logarithmic colour scale), as a function of the probability of
transmission, PT , and the average number of interactions in
level B sites per hour per site, ish,B, (logarithmic) in a popu-
lation of N = 10 000. The dashed white line corresponds to
defining an epidemic threshold based on R0 >= 1. The solid
red line shows that an equivalent and smoother threshold can
be defined with the value Imax = 50 in this particular configu-
ration of simulations.

The results in Fig. 6 make intuitive sense; when PT

and ish,B are high, a large fraction of the population is
infected at the peak of the infection. Conversely, if PT

and ish,B are are low, there are no large outbreaks. The
contour line then gives the number of interactions per
site per hour that one can tolerate for a given probability
of transmission. We discuss in the next section how
these results can provide guidance to public health units.

Fig. 7 shows how the contour determined in Fig.
6 changes as different fractions of the populations are
vaccinated at the beginning of the simulation. Three
vaccine efficacies of 94.1 %, 91.3 %, and 76 % were
used to simulate the population being fully vaccinated;
where 35 % of the population received Moderna, 60 %
Pfizer and 5 % Astrazeneca, with the respective effica-
cies. Since the simulation is run over a short time pe-
riod, the vaccine efficiencies are assumed to be constant
and do not account for varying efficiency for different
variants. As expected, more interactions can be toler-
ated as the population is vaccinated and this information
could be used to inform the lifting of capacity restric-
tions.
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Fig. 7: Epidemic thresholds as different fractions of the popu-
lation are vaccinated as a function of probability of transmis-
sion, PT , and number of interactions per site per hour, ish,B.

5. Discussion: Considerations in determining ca-
pacity restrictions

While the simulations were run with a population
of 10 000 agents, we can interpret the contour on a
population the size of Kingston, with a population
10 times larger. Consider a case when the proba-
bility of transmission is PT = 0.2 so that the epi-
demic threshold will be crossed if the value of ish,B ≳
50 interactions/site/hour, when referring to Fig. 6. In
this case, a public health unit may decide that if people
go once per week to a level B interaction site (e.g. a gro-
cery store), pB = 0.14, for one hour out of the hB = 12 h
that they are open, then, the largest number of sites that
should open is given by:

nB =
N · pB

hB
√

6ish,B
(4)

resulting in nB = 69 sites that could open for a pop-
ulation of N = 100 000. This is a sizeable number
of sites open, where each would have an average of
N/nB = 1455 customers associated with that site. One
can then refer to Fig. 7 to understand how restrictions
can be lifted as the population becomes vaccinated.

A public health unit may instead decide to open
sites based on the assumption that people go twice per
week, pB = 0.28, in which case they could open half as
many sites, nB = 35, each with half as many customers
associated (727). Similarly, a public health unit in a
town of 10 000 could use the same simulated data to
decide to open 10 times more sites (or that they do not
need any significant capacity restrictions).

This model and the interpretation of its outputs in
terms of the mean number of interactions per hour per

interaction site can provide useful guidance to public
health units to create tailored measures. For example,
rather than implementing large scale lockdowns across
diverse establishments (different level interaction
sites) one should tailor capacity restrictions to those
businesses that have the largest impact. In our model,
when the probability of transmission is 20%, the small
interaction sites, with few customers associated with
each, lead to low values of ish,B. Small businesses
(small stores, etc) as interaction sites do not contribute
significantly to an epidemic outbreak through the
interaction between their customers.

Conversely, we find that it is large interaction
sites, with many interacting agents, that lead to large
epidemic outbreaks. This would suggest that shutting
down businesses with few employees while leaving
businesses with many employees open, may not have
been the optimal approach for implementing restric-
tions, from an epidemic outbreak consideration. Our
study suggests it could be more effective to shut down
the large businesses and encourage the population
to support small businesses while they are otherwise
working remotely.

When we modify the simulation presented in Fig.
6 to include additional interaction sites of level A
(nA = 250, hA = 12, pA = 2/7), each with 400 agents
associated, the contour that is inferred is effectively
unchanged, since this corresponds to adding approx-
imately (only) ish,A = 15 interactions/site/hour. This
supports the conclusion that one can open a relatively
large number of sites that have of order a few hundred
agents associated with them, as long as the probability
of transmission between two agents in those sites is
relatively small, as it would be in most small businesses.

Consider the decision to open a few “essential” large
workplaces with a high transmission probability, such
as a warehouse, in a population with 100 000 agents.
We can model agents as going to a site for the entire
time that it is open, hB = 1, five out of seven days per
week, pB = 5/7, and have a high transmission proba-
bility PT = 0.5 to model a workplace. In this case, one
finds that the number of interaction sites must be about
nB ∼ 30 000, have ish,B ≈ 1 and be on the contour in Fig
6. This does not mean that one can open 30 000 ware-
houses; rather, it means that one can only open interac-
tion sites where the average number of agents associated
with any site is given by N/nB = 3.4. In other words,
interaction sites that results in large transmission prob-
abilities and high attendance need significantly stronger
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restrictions in order to prevent an epidemic. If one only
considered such workplaces, then one could conclude
that wide-ranging lockdowns are required. In Ontario,
approximately 50% of businesses have less than four
employees (Statistics Canada, 2020), so opening these
businesses may not significantly affect an epidemic out-
break.

6. Conclusion

The COVID-19 pandemic has resulted in the need
for informed non-pharmaceutical policy interventions
by public health units. We presented an agent-based
modelling framework that was developed to better
understand the effect of public health policy and guide
their future use. The model is implemented as an
object-oriented Monte Carlo simulation in Python,
QUABOOM, and tracks a population of agents during
an epidemic. The model implements network-like
features by having households and different levels of
interaction sites with which agents are associated. This
allows us to model the effects of capacity restrictions on
interaction sites such as workplaces, restaurants, gyms,
and grocery stores. In this work, we used the code to
examine capacity restrictions.

In order to define an epidemic threshold, and to
compare the epidemic dynamics to real data, we
introduced a definition of the basic reproduction rate,
R0, that we can compute from data and the simulation.
We also introduced a new quantity, ish, the number of
interactions per site per hour, that allows us to develop
rich interpretations of the simulations, independent
of the size of the population that was used in the
simulation.

We presented a new methodology for quantitatively
examining capacity restrictions that would prevent an
epidemic outbreak from a small number of infected
agents. Resulting from the study of our model, we pro-
pose that capacity restrictions should be implemented
in a targeted approach that depends on the size of the
interaction site, the probability of transmission in that
site, and the general attendance characteristics of that
site. Our study suggests public health authorities can
tailor capacity restrictions to those businesses with the
largest number of interactions per hour, as we found that
smaller interaction sites, with fewer customers, have lit-
tle impact on the epidemics. We believe this method
can be used as a new tool by public health authorities
during pandemics to set appropriate restrictions based
on the level of interaction sites and vaccination rates in

the population. This may allow interaction sites with
low risks of transmission to remain open. We believe
this targeted approach is beneficial for communities and
their economy, in addition to being effective at stopping
the spread of an infectious virus and protecting individ-
uals.
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