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Abstract

Due to climate change and the COVID-19 pandemic, the number of malaria cases and
deaths increased between 2019 and 2020 [1]. Reversing this trend and eliminating
malaria worldwide requires improvements in malaria diagnosis, in which artificial
intelligence (AI) has recently been demonstrated to have a great potential. Here, we
describe an AI-based approach that boosts the performance of light (LM), atomic force
(AFM) and fluorescence microscopy (FM)-based malaria diagnosis. As the main
challenge, the stage-specific recognition of infected red blood cells (RBCs) usually
requires large sets of microscopy images for training a neural network, which is difficult
to obtain. Our tool, the Malaria Stage Classifier, provides a fast, high-accuracy
recognition that works even with limited training sets due to a smart reduction of data
dimension. Individual RBCs are extracted from an image, reduced to characteristic
one-dimensional cross-sections, and classified. We show that our method is applicable to
images recorded by various microscopy techniques. It is available as a software package
at https://github.com/KatharinaPreissinger/Malaria_stage_classifier and
can be used within a python environment. Technical support is provided by the
corresponding author (katharina.preissinger@physik.uni-augsburg.de).

Author summary

The Malaria Stage Classifier is a software helping the user to detect and stage RBCs
infected with malaria. Accurate recognition of malaria infected RBCs still imposes a
challenge in endemic regions, as it is time-consuming and subjective. These deficiencies
can be overcome by autonomous computer assisted recognition using neural networks
(NNs). The Malaria Stage Classifier offers a user-friendly interface for the stage-specific
classification of malaria infected RBCs into four categories—healthy ones and three
classes of infected ones according to the parasite age. The use of data reduction, which
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forms the central element of the Malaria Stage Classifier, allows for a fast and accurate
classification of RBCs. It is applicable for light, atomic force, and fluorescence
microscopy images and allows for retraining the implemented NN with new images. Our
simple concept further has the potential to be generalised for the classification of other
cells or objects.

Introduction 1

More ancient than human, malaria has caused millions of deaths until today [1]. 2

Nowadays, the most common technique used worldwide is light microscopy of 3

Giemsa-stained blood smears, which is time-consuming and heavily relies on human 4

performance. To overcome these issues, computer-aided recognition of malaria-infected 5

red blood cells (RBCs) has recently gained high attention. 6

As the number of cases is increasing due to the ongoing COVID-19 pandemic and 7

climate change, the need for rapid and easily accessible recognition of the disease is 8

rising. The infection is caused by five types of the Plasmodium genus, upon which 9

Plasmodium falciparum causes the most deaths. Injected into the human body by a 10

mosquito bite, the malaria parasites migrate to the liver cells, where they begin a phase 11

of asexual reproduction, which is followed by the release of many thousands of 12

merozoites. During their 48 h cycle in the blood stream, the parasites invade healthy 13

RBCs and mature through three main stages—the ring, the trophozoite, and the 14

schizont stage—, while altering the morphological and optical properties of the host 15

RBCs [5,6]. 16

These well-explored transformations of the infected RBCs provide the basis for 17

neural network (NN) based stage-specific recognition of malaria-infected RBCs in blood 18

smears [7–11]. While clearly demonstrating the potential of NNs in malaria diagnosis, 19

these pioneering approaches still face problems, e.g., in terms of sensitivity to different 20

malaria species and stages. The following studies illustrate the state-of-the-art in this 21

field. 22

Based on recent advances in high-resolution imaging techniques applied for the 23

analysis of malaria-infected RBCs, especially topographic imaging [5,12,13] and infrared 24

nano-imaging [14], recent studies on unstained RBCs [6] have demonstrated the 25

applicability of NNs to analyse not only light microscopy images but also images 26

recorded with other microscopy techniques. These works imply that, when combined 27

with NN-based analysis, malaria diagnosis may be extended to other imaging methods. 28

One of the main reasons for the use of NNs is the time saving through automatising 29

the process and the elimination of human error, when working with big amounts of 30

data [15]. The majority of the algorithms developed for the analysis of malaria-infected 31

RBCs up to now are limited to Giemsa-stained images and rely on a two-stage 32

recognition, sorting healthy RBCs from infected ones, followed by a stage-specific 33

categorisation of the infected cells [16–19]. These algorithms have reached performances 34

of ∼80-98% with little or no pre-processing of microscopy images [20–23]. By adding 35

characteristic attributes of the RBCs, including the colour scheme [17], the morphology 36

of the RBCs [18], and their other statistical features [19] to the analysis, similar results 37

have been achieved. 38

When working with two-dimensional data images, the number of parameters, that 39

has to be fitted by the NN for the classification of RBCs, is extremely high, which 40

strongly influences the performance of the network. This issue can be solved by 41

reducing the dimension of the input data and may even improve the classification [24]. 42

To handle the loss of data that comes with the reduction of the dimension, features can 43

be selected, which capture the characteristic properties of the RBCs [18,19,25]. 44

The complicated handling of malaria culturing and sample preparation introduces 45
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some limitations to the application of NNs, which typically results in a small training 46

set of a few thousands of images and an uneven distribution of RBC categories. The 47

latter leads to overfitting [26], significantly influencing the performance of the network. 48

One way out of this dilemma is the use of data augmentation, which increases the 49

number of images and equalises the distribution of healthy and infected RBCs [20,21], 50

thus improving the performance of the classification [22,23]. 51

Design and Implementation 52

The Malaria Stage Classifier is designed to facilitate and accelerate the staging of 53

malaria infected RBCs in microscopy images. Due to its robustness against imaging 54

platform-specific features, it is applicable to a wide range of light microscopy images. 55

The interface of the application is arranged in tabs, which makes it easy to follow the 56

image processing steps. The Malaria Stage Classifier further offers the possibility to 57

manually optimise the cell detection and classification. 58

Data loading 59

From the microscopy measurement, the algorithm receives two kinds of input, text files 60

from atomic force microscopy and images from fluorescence and light microscopy. Both 61

inputs are treated as matrices and converted to greyscale for further processing. In case 62

of atomic force and some light and fluorescence microscopy images, the contrast 63

between background and RBCs is not strong enough to locate single cells, which 64

impacts the accuracy of the detection. Hence, the images are binarised based on pixel 65

intensities by Otsu’s method [27]. While the processing of atomic force microscopy 66

images requires an additional step, it is sufficient to enhance brightness, sharpness, and 67

contrast in the light and fluorescence microscopy images. Python offers a module for 68

automatic enhancement of images by a manually chosen factor [28], which can be 69

applied to highlight the RBCs in contrast to the image background. The processed 70

images are then used for cell detection, employing the Hough gradient method. While 71

the detection parameters are preset, they can be manually adjusted by the user. 72

Reduction of dimensionality as a tool for feature selection in 73

malaria-infected RBCs 74

The accurate detection of the malaria blood stage plays a crucial role in diagnosis. 75

Therefore, we tried to find a suitable measure for the characteristic features of the 76

intra-erythrocytic stages, which should be insensitive to external noise, often present in 77

AFM and fluorescence microscopy images due to tip contamination or background 78

illumination. We determined characteristic cuts through RBC images by two measures: 79

the geometric centre and the centre of gravity, which are defined by: 80

r⃗geo =
1

n

∑
i,j

r⃗i,j (1)

81

r⃗grav =
1

n

∑
i,j

h(r⃗ij)r⃗ij , (2)

where h(r⃗i,j) denotes the height (AFM) or intensity (fluorescence and light microscopy) 82

of a pixel at position r⃗i,j . The coordinates inside the RBCs are calculated form the 83

circle fit of the contour, which is returned by the Hough gradient method. The idea 84

behind this approach is to localise the parasites inside the cell, i.e. the coordinates are 85
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weighted by their corresponding height or intensity values. Fig 1 shows the effect of a 86

region with lower intensity on two images of cylinders. The presence of the hole inside 87

the cylinders leads to a shift of the gravitational centre, either away or towards the hole, 88

which is indicated by an arrow. In case of the dark cylinder, the shift is higher, as the 89

image values of black pixels are 0 and the values of white pixels 255. Therefore, the 90

presence of the white hole has a larger effect on the position of the gravitational centre. 91

Similarly, this shift can be observed for RBC images. From this follows that the height 92

or intensity values along the straight line through both centres represent a cross-sections 93

of the parasite. In the further course of the paper, this straight is defined as the 94

parasite cut. 95

Figure 1. Location of the geometric and gravitational centre in simple
cylinders with holes. Geometric and gravitational centre are shown as an orange and
blue cross. The effect of the hole on the location of the gravitational centre is shown for
a black (a) and white cylinder.

An evaluation of the efficiency of the presented measure is shown in our paper about 96

the stage-specific detection of malaria-infected RBCs based on dimension reduction [3]. 97

The efficiency was tested on at least 350 ring, 550 trophozoite, and 550 schizont-stage 98

parasites. In more than 50% of the cases, the parasite cut captures the ring-stage 99

parasite, while the detection probability of the trophozoite-stage parasite is > 85%. The 100

schizont-stage parasites typically fill up most of the RBC, thus characteristic cuts going 101

through the always intersect the parasite. To fully represent the characteristic features 102

of single cells, the parasite cut is supplemented by an additional cut, spanning 90o with 103

it. A representative image is shown in Fig 2. 104

Figure 2. Characteristic cuts of a parasite. (a) Light microscopy image showing
the parasite cut (blue) and the additional cut spanning 90o (orange) with it. (b)
Corresponding intensity profiles. The contour of the cell is shown in blue.

Neural network architecture 105

When dealing with images, the most suitable models are convolutional neural networks 106

(CNN). Generally, they contain convolutional, pooling, and dense layers [31], which we 107

combined in such a way as to fulfil the following conditions: applicability to RBC 108

images and stage-specific cuts, classification into four categories: healthy, ring, 109

trophozoite, schizont, minimum performance of > 90%, smallest possible amount of fit 110

parameters to guarantee short computation time. The models were tested on a set of 111

malaria-infected RBC images, recorded by AFM and balanced with data augmentation 112

by rotation. For a representative result, all models were run for 20 epochs. In each 113

model, the convolutional layers are followed by a pooling layer and two fully-connected 114

layers at the end of the network. As an option, the user can retrain the pre-trained 115

networks provided by the application with new images. 116

Post-computation 117

After the classification of the microscopy images, the results can be saved as a csv or 118

text-file, returning the amount and ratio of healthy RBCs and intra-erythrocytic stages. 119

November 19, 2022 4/12

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.22282777doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.28.22282777
http://creativecommons.org/licenses/by/4.0/


Implementation 120

The Malaria Stage Classifier is accessible as a GUI, which is arranged in tabs. It has 121

been developed using Python 3.7 with the following dependencies: numpy [34] and 122

pandas [35] for the data analysis. For the cell detection, OpenCV [36] together with 123

skimage [37] and matplotlib 3.5.2 [38] for the data visualisation are needed. To integrate 124

the pre-trained NN, tensorflow [39] with keras has to be included in the algorithm. The 125

interface further requires tkinter [40] and the libraries os, sys, csv, traceback for 126

handling errors and the output files, as well as the library webbrowser to open system 127

folders and external links. 128

Common errors are prevented by messages, detailing the problem and providing a 129

solution. Furthermore, the errors saved in a log file to allow for bug-fixing by any 130

developer. While the user is able to modify a few parameters through the GUI, suitable 131

values are suggested for each case and all parameters can be set back to the default 132

values. 133

Results and discussion 134

In the previous sections, we have described the methods, which form the two main parts 135

of the “Malaria Stage Classifier”. To find suitable parameters for the presented 136

methods, we tested the cell detection algorithm and the performance of the NNs for all 137

microscopy techniques. 138

Segmenting and image processing 139

The RBCs in the microscopy images are detected in three steps: localising edges, 140

finding the centre of the object, and calculating its radius [29]. The method is 141

controlled by five parameters, mDist, par1, par2, minR, and maxR. mDist defines 142

the minimum pixel distance between the centres of two objects. par1 is the threshold 143

value for edge detection by the Canny edge detector [30]. par2 sets the threshold for the 144

number of edge points to declare the object a circle. minR and maxR set the minimum 145

and maximum size of the radius in pixels. The optimum values for each parameter are 146

shown in table 1, which allow for the localisation of more than 95% of all RBCs (approx. 147

7000 for each imaging technique). We note that limitations can occur for not circular or

Table 1. Optimum values for the sensitivity of the Hough gradient method
for various imaging methods with the probability of cell detection.

Imaging mDist par1 par2 minR maxR Detection
method [px] [px value] [px value] [px] [px] probability

LM 28 20 18 14 30 95%
AFM 28 10 8 14 30 96%
FM 28 20 18 14 30 97%

148

overlapping RBCs, which can be handled by manually adjusting the detection 149

parameters. The centre and radius of the cells, detected by the Hough gradient method, 150

define the contour and image coordinates associated with the RBCs, which are used for 151

the calculation of the geometric and gravitational centre. While the optimum values 152

work for the tested images, we added the option to manually adjust each parameter in 153

order to improve the cell detection. Fig 3 shows a representative microscopy image after 154

running the cell detection algorithm with the default parameters. 155

November 19, 2022 5/12

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.22282777doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.28.22282777
http://creativecommons.org/licenses/by/4.0/


Figure 3. Cell detection in light microscopy image. The detected cells are
marked with a cyan circle.

Choosing the appropriate network 156

In order to find a suitable network for the classification of RBCs, we tested various 157

network architectures on a set of RBC images. In table 2, the influence of the amount 158

of feature maps is shown on a selection of the tested architectures. Model M4 provides

Table 2. Classification accuracy on a test set of RBCs images for various
network architectures.

Network feature map performance parameters

M1 4 × 32 80% 81566
M2 2 × 32, 2 × 64 87% 68446
M3 4 × 64 92% 114878
M4 1 × 32, 3 × 64 96% 96126

159

the best compromise between the amount of fit parameters and classification accuracy. 160

As the network was prone to overfitting, we added the kernel regulariser L2 with a 161

hyperparameter of 0.001 to the first fully-connected layer. The complete architecture of 162

the NN for a one-dimensional input, which is used for the classification of the single 163

RBC in microscopy images, is given in Fig 4. 164

Figure 4. Neural network architecture. The network is used for the stage-specific
classification of RBCs.

Our results show that network M4 performs best on the test data, reaching 96% 165

accuracy. Therefore, we chose this architecture to test the classification accuracy in 166

dependence of the imaging techniques. 167

Performance of the neural network on the characteristic cuts 168

To predict the intra-erythrocytic stages of malaria based on the characteristic cuts, our 169

convolutional neural network was trained on approx. 70000 and tested on approx. 8000 170

sets of characteristic cuts, for each imaging method respectively. The training and test 171

set for light microscopy contains RBC images of 17 malaria-infected patients from data 172

published by Abbas et al. [32]. The results are shown in Fig 6 in form of a confusion 173

matrix. For multi-class problems, precision and recall are defined as 174

precision =
Cii∑N
j=1 Cij

(3)

175

recall =
Cii∑

i=1N Cij
. (4)

The overall accuracy of the classification is calculated as the ratio of correct predictions, 176

independent of the categories, to the total of values in the confusion matrix [33]. 177

accuracy =

∑N
i=1 Cii∑N

i=1

∑N
j=1 Cij

, (5)

where N the number of classes, i the row index and j the column index. Fig 6 shows 178

the overall performance of our network on the test data. With the characteristic cuts as 179
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input, it reaches more than 98% on the test sets, irrespective of the imaging method. 180

Together with the cell detection algorithm, the pre-trained networks presented in the 181

figure form the main elements of the Malaria Stage Classifier. The successful 182

classification of infected RBCs is shown in Fig 5, where the healthy cells are surrounded 183

by a red circle and the infected cells by a yellow and green circle, denoting the 184

intra-erythrocytic stages trophozoite and schizont. 185

Figure 5. Classification of RBCs in a thin blood film. The image shows a thin
blood film of a malaria-infected patient [32].

Figure 6. Performance of the NN on characteristic cross-sections. The
classification results on the test set, as obtained on the characteristic cuts through light
microscopy (black), AFM (blue) and fluorescence microscopy (red) images, are
respectively summarised in the confusion matrix. The labels of the rows are the
categories predicted by the NN-based classifier, while the labels of the columns indicate
the classification by human experts. The diagonal elements show the correctly predicted
cells, while the off-diagonal elements correspond to false classifications. The last column
shows the precision for each category and the recall is shown in the bottom row. Each
field displays the number of counts and the corresponding percentage with respect to
the total number of cells in the test set. The overall classification performance is
displayed in the grey field in the bottom right corner.

Here, we introduce a simple cell detection algorithm to classify malaria-infected 186

RBCs in microscopy images into four categories: healthy, ring-, trophozoite-, and 187

schizont-stage parasites. Our approach is not limited to a certain microscopy technique 188

but demonstrated to be universally applicable for fundamentally different imaging 189

techniques, which was demonstrated via the high classification accuracy on images 190

recorded with Giemsa-stained light microscopy, AFM, and fluorescence microscopy. The 191

reduction of dimension by selecting characteristic features of the RBCs significantly 192

boosts the speed and classification accuracy of the network. This simple concept can 193

easily be applied for the classification of general objects. Given the rising number of 194

techniques, successfully applied for the imaging of RBCs, the algorithm can be 195

augmented for any method with high contrast, formatted as text or image file. 196

Availability and Future Directions 197

The “Malaria Stage Classifier” is deposited at the git hub repository 198

https://github.com/KatharinaPreissinger/Malaria_stage_classifier or the 199

archive https://zenodo.org/record/7261800. All details about the execution and 200

usage of the package are documented in the documentation of our repository on 201

https://github.com/KatharinaPreissinger/Malaria_stage_classifier or on 202

https://malaria-stage-classifier.readthedocs.io/en/latest/index.html. 203

There, we provide a tutorial for downloading the package and files with test images. 204

The data set required for re-training the NN can be downloaded from 205

https://zenodo.org/record/6866337. 206

Researchers are encouraged to implement new methods themselves, as the 207

documentation is easily understandable and can be found at 208

https://malaria-stage-classifier.readthedocs.io/en/latest/index.html. In 209

case of low contrast microscopy images, the option of contrast improvement can be 210

implemented, including thresholding for text files and the enhancement of brightness 211

and contrast for image files. Moreover, we provide the opportunity to increase the data 212
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set, which is used to train the NN, to improve the classification accuracy of the 213

algorithm. After loading the NN and visually verifying the accuracy of the 214

classifications, the researchers have the possibility to add the characteristic single-RBC 215

cross-sections to the original images and to retrain the NN with the new data set. The 216

dataset for the new training is deposited at https://zenodo.org/record/6866337. 217

Supporting information 218

User manual 219

The package is available open source on git hub repository 220

https://github.com/KatharinaPreissinger/Malaria_stage_classifier or the 221

archive https://zenodo.org/record/7261800. In the following, the program 222

structure is explained on a sample atomic force microscopy image. The interface of the 223

package is built with five tabs, where each performs one step of the stage-specific 224

classification of RBCs. Starting with the general settings, the algorithm only allows text 225

or image files as input. Depending on the file type, the user can set the number of 226

header lines the input text file contains. In case of the sample image, the value is set to 227

three and confirmed by the button “Set file format”. As the program is designed for 228

multiple imaging methods, the respective technique determines the possible actions on 229

the input file. The settings are completed by selecting an output path and the output 230

file type, see Fig 7. 231

Figure 7. Setting of initial parameters: input image, its format, imaging method,
memory location of the results

In the second tab, the input image is displayed to show the location and stage of the 232

cells. A screenshot of the interface is presented in Fig 8. 233

Figure 8. Show image. The input file is shown as image.

If the image was recorded by AFM, the next step requires thresholding to enhance 234

its contrast. While the value can be adapted by the user, the algorithm suggests a 235

pre-calculated number, as shown Fig 9. In case of the light microscopy techniques, this 236

step is skipped. 237

Figure 9. Threshold image. This tab provides the option to enhance the image
contrast by thresholding (disabled for light and fluorescence microscopy)

The next tab triggers the cell detection algorithm. Depending on the size, contrast, 238

and brightness of the image, the algorithm offers the option to control the detection by 239

manually changing the calculation parameters and further allows contrast enhancement. 240

Optionally, the parameters can be set back to the default value. During this step, the 241

dimension of the input data is reduced to the two characteristic cuts to capture the 242

strongest features associated with the presence or absence and the stage of the malaria 243

parasites, see Fig 10. 244

Figure 10. Detect cells. RBCs in the images are detected by the cell detection
algorithm. To fine-tune, the algorithm offers the possibility to enhance the image and to
set the parameters for the detection manually.

In the final part of the program, the user can load the pre-trained NNs and start the 245

stage-specific prediction of the detected RBCs. This triggers the option to change false 246
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predictions accordingly. The algorithm further provides the possibility to add new data 247

and to retrain each NN. The last step then returns the statistics of the analysed RBCs 248

in form of a text file or table. The corresponding tab is shown in Fig 11. 249

Figure 11. Cell classification. The intra-erythrocytic stages are predicted and can
be altered manually. Optionally, the neural network can be retrained with new data.

Supplementary data 250

S1 Data. This ZIP file contains the code, the pretrained neural networks, the sample 251

images, a README file, the logo for the interface, and sample images for testing 252

purposes. The file is available at 253

https://github.com/KatharinaPreissinger/malaria_stage_classifier. 254

S2 Data. Documentation: This is the documentation of the Malaria Stage Classifier. 255

The current version is available at 256

https://malaria-stage-classifier.readthedocs.io/en/latest/index.html 257

S3 Data. Training, validation, and test set: This is the data, which can be used to 258

retrain the neural network with new cell images. The dataset is available at 259

https://zenodo.org/record/6866337. 260
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