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Rethinking Transfer Learning for Medical Image
Classification

Le Peng, Hengyue Liang, Gaoxiang Luo, Taihui Li, Ju Sun

Abstract— Transfer learning (TL) from pretrained deep
models is a standard practice in modern medical image
classification (MIC). However, what levels of features to
be reused are problem-dependent, and uniformly finetun-
ing all layers of pretrained models may be suboptimal.
This insight has partly motivated the recent differential
TL strategies, such as TransFusion (TF) and layer-wise
finetuning (LWFT), which treat the layers in the pretrained
models differentially. In this paper, we add one more strat-
egy into this family, called TruncatedTL, which reuses and
finetunes appropriate bottom layers and directly discards
the remaining layers. This yields not only superior MIC per-
formance but also compact models for efficient inference,
compared to other differential TL methods. We validate
the performance and model efficiency of TruncatedTL on
three MIC tasks covering both 2D and 3D images. For
example, on the BIMCV COVID-19 classification dataset,
we obtain improved performance with around 1/4 model
size and 2/3 inference time compared to the standard
full TL model. Code is available at https://github.com/
sun-umn/Transfer-Learning-in-Medical-Imaging.

Index Terms— transfer learning, image classification,
deep learning, convolutional neural networks

I. INTRODUCTION

TRANSFER learning (TL) is a common practice for med-
ical image classification (MIC), especially when training

data are limited. In typical TL pipelines for MIC, deep
convolutional neural networks (DCNNs) pretrained on large-
scale source tasks (e.g., object recognition on ImageNet [1])
are finetuned as backbone models for target MIC tasks; see,
e.g., [2]–[7], for examples of prior successes.

The key to TL is feature reuse from the source to the
target tasks, which leads to practical benefits such as fast
convergence in training, and good test performance even if
the target data are scarce [10]. Pretrained DCNNs extract
increasingly more abstract visual features from bottom to top
layers: from low-level corners and textures, to mid-level blobs
and parts, and finally to high-level shapes and patterns [8].
While shapes and patterns are crucial for recognizing and
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Fig. 1. (left) The feature hierarchy learned by typical DCNNs on
computer vision (CV) datasets; (right) Examples of diseases in a chest
x-ray. Only low-level (a) textures and/or mid-level (b) blobs are needed
for detecting the diseases on the right (c). (the left visualized features
adapted from [8]; the right chest x-ray adapted from [9]).

TABLE I
LIST OF COMMON ACRONYMS (IN ALPHABETIC ORDER)

AUROC area under the receiver operating characteristic curve
AUPRC area under the precision-recall curve
CV computer vision
DCNN deep convolutional neural networks
FTL full transfer learning
LR learning rate
LWFT layer-wise finetuning
MACs multiply–accumulate operation
MIC medical image classification
MLP multi-layer perceptron
SVCCA singular value canonical correlation analysis
TL transfer learning
TF TransFusion
TTL truncated transfer learning

segmenting generic visual objects (see Fig. 1 (left)), they are
not necessarily the defining features for diseases: diseases can
often take the form of abnormal textures and blobs, which
correspond to low- to mid-level features (see Fig. 1 (right)). So
intuitively for MIC, we may only need to finetune a reasonable
number of the bottom layers commensurate with the levels of
features needed, and ignore the top layers. However, standard
TL practice for MIC retains all layers, and uses them as fixed
feature extractors or finetunes them uniformly.

[11], [12] depart from the uniform TL approach and pro-
pose TL methods that treat top and bottom layers differently.
Prioritizing high-level features and the classifier, [11] proposes
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layer-wise finetuning (LWFT) that finetunes an appropriate
number of top layers and freezes the remaining bottom layers.
In comparison, to improve training speed while preserving
performance, [12] proposes TransFusion (TF) that finetunes
bottom layers but retrains a coarsened version of top layers
from scratch.

Neither of the above differential TL strategies clearly ad-
dress the conundrum of why top layers are needed when only
the features in bottom layers are to be reused. To bridge the
gap, in this paper, we propose a novel, perhaps radical, TL
strategy: remove top layers after an appropriate cutoff point,
and finetune the truncated model left, dubbed TruncatedTL
(TTL)—this is entirely consistent with our intuition about the
feature hierarchy. Our main contributions include:

• confirming the deficiency of full TL. By experimenting
with the full and differential TL strategies—including
our TTL—on three MIC tasks and three popularly used
DCNN models for MIC, we find that full TL (FTL)
is almost always suboptimal in terms of classification
performance, confirming the observation in [11].

• proposing TruncatedTL (TTL) that leads to effective
and compact models. Our TTL outperforms other differ-
ential TL methods, while the resulting models are always
smaller, sometimes substantially so. This leads to reduced
computation and fast prediction during inference, and can
be particularly valuable when dealing with 3D medical
data such as CT and MRI images.

• quantifying feature transferability in TL for MIC.
We use singular vector canonical correlation analysis
(SVCCA) [13] to analyze feature transferability and con-
firm the importance of low- and mid-level features for
MIC. The quantitative analysis also provides insights on
how to choose high-quality truncation points to further
optimize the model performance and efficiency of TTL.

II. RELATED WORK

1) Deep TL: TL by reusing and finetuning visual features
learned in DCNNs entered computer vision (CV) once DC-
NNs became the cornerstone of state-of-the-art (SOTA) object
recognition models back to 2012. For example, [14], [15]
propose using part of or full pretrained DCNNs as feature
extractors for generic visual recognition. [10] studies the
hierarchy of DCNN-based visual features, characterizes their
transferability, and proposes finetuning pretrained features to
boost performance on target tasks. Moreover, [8], [16] propose
techniques to visualize visual features and their hierarchy. This
popular line of TL techniques is among the broad family of
TL methods for knowledge transfer from source to target tasks
based on deep networks [17] and other learning models [18],
and is the focus of this paper.

2) General TL stategies: While pretrained DCNNs can be
either used as fixed feature extractors, or partially or fully
finetuned on the target data, [10] argues that bottom layers
learn generic features while top layers learn task-specific
features, leading to folklore guidelines on how to choose
appropriate TL strategies in various scenarios, as summarized
in Fig. 2. Our intuition about the feature hierarchy is slightly

Fig. 2. Illustration of different DCNN-based TL scenarios and strategies

different: bottom layers learn low-level features that are spa-
tially localized, and top layers learn high-level features that are
spatially extensive (see Fig. 1). Although the two hierarchies
may be aligned for most cases, they are distinguished by
whether spatial scales are considered: task-specific features
may be spatially localized, e.g., texture features to classify skin
lesions [19], and general features may be spatially extensive,
e.g., generic brain silhouettes in brain MRI images. Moreover,
the spatial-scale hierarchy is built into DCNNs by design [20].
So we argue that the intuition about the low-high spatial
feature hierarchy is more pertinent. We note that none of
the popular strategies as summarized in Fig. 2 modify the
pretrained DCNN models (except for the final multi-layer
perceptron, MLP, classifiers)—in contrast to TF and our TTL.

3) Differential TL: Early work on TL for MIC [2]–[6], [21],
[22] and segmentation [7], [23]–[25] parallels the relevant de-
velopments in CV, and mostly uses DCNNs pretrained on CV
tasks as feature extractors or initializers (i.e., for finetuning).
In fact, these two strategies remain dominant according to the
very recent survey [26] on TL for MIC, which reviews around
120 relevant papers. But the former seems inappropriate as
medical data are disparate from natural images dealt with in
CV. From the bottom panel of Fig. 2, finetuning at least part
of the DCNNs is probably more competitive even if the target
data are limited. In this line, LWFT [11] finetunes top layers
and freeze bottom layers, and incrementally allows finetuning
more layers during model selection—this is recommended in
[26] as a practical TL strategy for MIC that strikes a balance
between training efficiency and performance. Similarly, TF
[12] coarsens top layers which are then trained from scratch,
and finetunes bottom layers from pretrained weights. Both
LWFT and TF take inspiration from the general-specific fea-
ture hierarchy. In contrast, motivated by the low-high spatial
feature hierarchy, our novel TTL method removes the top
layers entirely and directly finetunes the truncated models. Our
experiments in Section IV confirm that TTL surpasses LWFT
and TF with improved performance and reduced inference
cost.

4) Compact models for MIC: Both TF and our TTL lead to
reduced models that can boost the inference efficiency, the
first of its kind in TL for MIC, although the TF paper [12]
does not stress this point. Compact models have been designed
for specific MIC tasks, e.g., [12], [27], but our evaluation on
the task of [27] in Section IV-D suggests that the differential
TL strategies based on generic pretrained models, particularly
our TTL, can outperform TL based on handcrafted models.
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Fig. 3. Overview of typical TL setup, and the four TL methods
that we focus on in this paper. (a) TL source domain: e.g., ImageNet
object recognition; (b) TL target domain: e.g., mitotic cells classification;
(c) Four TL methods: FTL, LWFT, TF, our TTL applied to ResNet50
pretrained on ImageNet.

Moreover, the growing set of methods for model quantization
and compression [28]–[31] are equally applicable to both the
original models and the reduced models.

III. EFFICIENT TRANSFER LEARNING FOR MIC

Let X×Y denote any input-output (or feature-label) product
space, and DX×Y a distribution on X × Y . TL considers a
source task DXs×Ys

7→ ps, where ps is a desired predictor,
and a target task DXt×Yt

7→ pt. In typical TL, Xt × Yt may
be different from Xs × Ys, or at least DXt×Yt

̸= DXs×Ys

even if Xt ×Yt = Xs ×Ys. The goal of TL is to transfer the
knowledge from the source task DXs×Ys 7→ ps that is solved
beforehand to the target task DXt×Yt 7→ pt [17], [32].

In this paper, we restrict TL to reusing and finetuning
pretrained DCNNs for MIC. In this context, the source pre-
dictor ps = hs ◦ fL ◦ · · · ◦ f1 is pretrained on a large-scale
source dataset {(xi, yi)} ∼iid DXs×Ys

. Here, the fi’s are L
convolulational layers, and hs is the final MLP classifier. To
perform TL, hs is replaced by a new MLP predictor ht with
prediction heads matching the target task (i.e., with the desired
number of outputs) to form the new model pt = ht◦fL◦· · ·◦f1.
Two dominant approaches of TL for MIC are: 1) fixed feature
extraction: freeze the pretrained weights of fL ◦ · · · ◦ f1,
and optimize ht from random initialization so that pt fits the
target data; 2) full transfer learning (FTL): optimize all of
ht ◦ fL ◦ · · · ◦ f1, with ht from random initialization whereas
fL ◦ · · · ◦ f1 from their pretrained weights so that pt fits the
target data.

A. Prior differential TL approaches

The two differential TL methods for MIC, i.e., LWFT [11]
and TF [33], differ from the dominant TL approaches in that
they treat the top and bottom layers differently, as illustrated
in Fig. 3(c).

1) Layer-wise finetuning: LWFT does not distinguish MLP
layers and convolutional layers. So slightly abusing our nota-
tion, assume that the pretrained DCNN is fN ◦fN−1 ◦ · · · ◦f1,
where N is the total number of layers including both the MLP
and convolutional layers. LWFT finetunes the top k layers
fN ◦ fN−1 ◦ · · · ◦ fN−k+1, and freezes the bottom N − k
layers fN−k ◦ · · · ◦ f1. The top layer fN is finetuned with a
base learning rate (LR) η, and the other k−1 layers with a LR
η/10. To find an appropriate k, [11] proposes an incremental
model selection procedure: start with k = 1 layer, and include
one more layer into finetuning if the previous set of layers
does not achieve the desired level of performance1. Although
LWFT was originally proposed for AlexNet [34], it can be
easily generalized to work with advanced DCNN models such
as ResNets and DenseNets that have block structures.

2) TransFusion: TF reuses bottom layers while slimming
down top layers. Formally, for a cutoff index k, the pretrained
model ps ◦fL ◦· · ·◦fk+1 ◦fk · · ·◦f1 is replaced by pt ◦fHV

L ◦
· · ·◦fHV

k+1◦fk · · ·◦f1, where HV means halving the number of
channels in the designated layer. TF then trains the coarsened
model on the target data with the first half fk · · ·◦f1 initialized
by the pretrained weights (i.e., finetuning) and pt ◦ fHV

L ◦
· · · ◦ fHV

k+1 initialized by random weights (i.e., training from
scratch). The cutoff point k is the key hyperparameter in TF.
TF was originally proposed to boost the finetuning speed, but
we find that it often also boosts the classification performance
compared to FTL; see Section IV.

B. Our truncated TL approach
Our method is radically simple: for an appropriate cutoff

index k, we take the k bottom layers fk ◦ · · · ◦ f1 from the
pretrained DCNN model and then form and finetune the new
predictor ht ◦ fk ◦ · · · ◦ f1. Our TruncatedTL (TTL) method is
illustrated in Fig. 3(c, last row).

The only crucial hyperparameter for TTL is the cutoff
index k, which depends on the DCNN model and problem
under consideration. For SOTA ResNet and DenseNet models
that are popularly used in TL for MIC, there are always
4 convolutional blocks each consisting of repeated basic
convolutional structures; see, e.g., the bottom of Fig. 4 for
an illustration of ResNet50. So we propose a hierarchical
search strategy: (1) Stage 1: coarse block search. Take
the block cutoffs as candidate cutoff points, and report the
best-performing one; (2) Stage 2: fine-grained layer search.
Search over the neighboring layers of the cutoff from Stage
1 to optimize the performance. Since k is also a crucial
algorithm hyperparameter for TF and LWFT, we also adopt
the same hierarchical search strategy for them when comparing
the performance.

To quickly confirm the efficiency of TTL, we apply TTL
and competing TL methods on an X-ray-based COVID-19
classification task on the BIMCV dataset [35]; more details
about the setup can be found in Section IV-B. We pick the
COVID example, as the salient radiological patterns in COVID
X-rays such as multifocal and bilateral ground glass opacities
and consolidations are low- to mid-level visual features [36]

1Finetuning starts with the original pretrained weights each time.
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TABLE II
COVID-19 CLASSIFICATION WITH DIFFERENT TL STRATEGIES. THE

BEST RESULT OF EACH COLUMN IS COLORED IN RED. ↑ INDICATES

LARGER VALUE IS BETTER AND ↓ INDICATES LOWER VALUE IS BETTER.
“-1" MEANS WITH THE BLOCK-WISE SEARCH ONLY, AND “-2" MEANS

WITH THE TWO-STAGE BLOCK-LAYER HIERARCHICAL SEARCH.

Method AUROC↑ AUPRC↑ Params(M)↓ MACs(G)↓ CPU(ms)↓ GPU(ms)↓

FTL 0.849± 0.001 0.857± 0.003 23.5 4.12 79.6 3.59

(l)1-7 TF-1 0.856± 0.011 0.863± 0.012 12.9 3.56 67.0 3.55

LWFT-1 0.848± 0.002 0.861± 0.004 23.5 4.12 76.9 3.59

TTL-1 0.851± 0.002 0.860± 0.002 8.55 3.31 59.7 3.19

TF-2 0.856± 0.011 0.863± 0.012 12.9 3.56 72.7 3.56

LWFT-2 0.853± 0.005 0.861± 0.001 23.5 4.12 79.7 3.56

TTL-2 (ours) 0.861± 0.013 0.871± 0.008 6.31 2.87 53.1 2.97

and hence we can easily see the benefit of differential TL
methods including our TTL. We measure the classification per-
formance by both AUROC (area under the receiver-operating-
characteristic curve) and AUPRC (area under the precision-
recall curve), and measure the inference complexity by Params
(number of parameters in the model, M—millions), MACs
(multiply-add operation counts [37]2, G—billion), CPU/GPU
(wallclock run time on CPU and GPU by milliseconds3; details
of our computing environment can be found in Section IV-A.).

Table II summarizes the results, and we observe that: (1)
differential TL methods (TF, LWFT, and TTL) perform better
or at least on par with FTL, and the layer-wise search in the
second stage further boosts their performance. Also, TTL is
the best-performing TL method with the two-stage hierarchical
search; (2) TF and TTL that slim down the model lead to
reduced model complexity and hence considerably less run
time. TTL is a clear winner in terms of both performance and
inference complexity.

C. Transferablity analysis

Besides the positive confirmation above, in this section, we
provide quantitative corroboration for our claim that top layers
might not be needed in TL for MIC. To this end, we need a
variant of the classical canonical correlation analysis (CCA),
singular-vector CCA (SVCCA) [13].

1) SVCCA for quantifying feature correlations: CCA is a
classical statistical tool for measuring the linear correlation
between random vectors. Suppose that x ∈ Rp and y ∈ Rq are
two random vectors containing p and q features, respectively.
CCA seeks the linear combinations u⊺x and v⊺y of the two
sets of features with the largest covariance cov(u⊺x,v⊺y).
Assume E [x] = 0 and E [y] = 0. The problem can be
formulated as

max
u,v

u⊺Σxyv s. t. u⊺Σxxu = 1, v⊺Σyyv = 1,

where Σxy
.
= E [xy⊺], Σxx

.
= E [xx⊺], and Σyy

.
= E [yy⊺],4

and the constraints fix the scales of u and v so that the

2https://github.com/sovrasov/flops-counter.pytorch
3The speed on CPU is measured with the CPU-only version of PyTorch—

the GPU version performs suboptimally when running on CPUs only; simi-
larly for all the subsequent speed comparisons.

4 .
= means “defined as”.

objective does not blow up. Once the (u,v) pair with the
largest covariance is computed, subsequent pairs are computed
iteratively in a similar fashion with the additional constraint
that new linear combinations are statistically decorrelated with
the ones already computed. The overall iterative process can
be written compactly as

max
U∈Rp×k,V ∈Rq×k

tr (U⊺ΣxyV )

s. t. U⊺ΣxxU = Ik×k, V
⊺ΣyyV = Ik×k,

which computes the first k pairs of most correlated linear com-
binations. In practice, all the covariance matrices Σxy , Σxx,
and Σyy are replaced by their finite-sample approximations,
and the covariances of the top k most correlated pairs are the
top k singular values of Σ

−1/2
xx ΣxyΣ

−1/2
yy [38], all of which

lie in [0, 1]. We call these singular values the CCA coefficients.
Obviously, high values in these coefficients indicate high levels
of correlation.

For our subsequent analyses, we typically need to find
the correlation between the features of two data matrices
X ∈ Rn×p and Y ∈ Rn×q , where n is the number of data
points. SVCCA performs principal component analysis (PCA)
separately on X and Y first, so that potential noise in the data
is suppressed and the ensuing CCA analysis becomes more
robust. We typically plot the CCA coefficients in descending
order when analyzing two group of features.

Fig. 4. Illustration of feature transferability and the performance of
different levels of features on BIMCV. We take the a ResNet50 model
pretrained on ImageNet, and perform a full TL on BIMCV. We consider
17 natural truncation/cutoff points that do not cut through the skip
connections. (a) The top group of the bar plot shows the feature
correlation before and after TL at different layers: each bar delineates
the distribution of the CCA coefficients for that corresponding layer. The
bottom group shows the level of correlation between random features
of the same sizes for reference. The shaded blue curve represents the
test AUPRC of TTL when performed at different truncation points—the
shaded surrounding region indicates the level of standard deviation due
to 3 independent runs; (b) The ResNet50 architecture and all possible
truncation points.
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Fig. 5. The correlation of features at the same block before (i.e., the
pretrained model) and after the various TL methods. In each plot, the
bold curve indicates the CCA coefficients for the two blocks of features,
and the light curve indicates the CCA coefficients for two sets of random
features for reference. So the area (AUC) between the two curves is a
quantitative measure of correlation between the said blocks. To ensure
we can compare these AUC values vertically (i.e., across different blocks
that may have different numbers of features), we normalize all the
indices of the CCA coefficients to be [0, 1]. Our TTL does not include
block4 as we remove it in the truncation.

Fig. 6. The correlation between the block2 and block4 features (B2,
B4) and of block3 and block4 features (B3, B4) in the pretrained model
and the resulting models with different TL methods. In each plot, the
bold curves indicate the CCA coefficients for the two blocks of features,
and the light curve indicates the CCA coefficients for two sets of random
features for reference. So the area (AUC) between the solid and light
curves is a quantitative measure of correlation between the said blocks.
TF is not included as it modifies the architecture of block4 that distorts
the CCA coefficients, and our TTL is not included as we remove block4
in the truncation.

2) Layer transferability analysis: With SVCCA, we are now
ready to present quantitative results to show that reusing and
finetuning top layers may be unnecessary. We again take the
BIMCV dataset for illustration.

a) Features in top layers change substantially, but the changes
do not help improve the performance: In Fig. 4 we present the
per-layer correlation of the intermediate features before and
after FTL. First, the correlation monotonically decreases from
bottom to top layers, suggesting increasingly dramatic feature
finetuning/learning. For features residing in block1 through
block3, the correlation levels are substantially higher than
that of random features, suggesting considerable feature reuse
together with the finetuning. However, for features in block4
of ResNet50 which contains the top layers, the correlation
level approaches that of random features. So these high-
level features are drastically changed during FTL and there

is little reuse. The changes do not help and in fact hurt the
performance: when we take intermediate features after the FTL
and train a classifier based on each level of them, we find
that the performance peaks at block3, and starts to degrade
afterward. From Fig. 5 (only per-block feature correlations are
computed to save space), we find similar patterns in TF, LWFT,
and our TTL also: features in bottom blocks are substantially
more correlated than those in top blocks, and features in
block4—which we remove in our TTL—are almost re-learned
as their correlation with the original features come close to that
between random features.

b) Features in top layers become more correlated with bottom
layers after TL: The “horizontal” analysis above says the
features of the top layers are almost re-learned in FTL, LWFT,
and TF, but it remains unclear what features are learned there.
If we believe that high-level features are probably not useful
for COVID classification [36], a reasonable hypothesis is that
these top layers actually learn features that are more correlated
with those of lower layers after TL. This seems indeed the
case, as shown in Fig. 6: the correlation level between the
block2 and block 4 features, as well as between block3 and
block4 features, increases both visibly and quantitatively.

Given the above two sets of findings, our idea in TTL to
remove the redundant top layers and keep the essential bottom
layers is reasonable toward effective and compact models.

IV. EXPERIMENTS

Fig. 7. Exemplary image of (a) BIMCV chest x-rays, (b) 2D lung seg-
mentation data, (c) MIDOG2022 dataset, and (d) PE dataset. Numbers
in parenthesis indicate the number of data points in each category.

A. Experiment setup

We systematically compare FTL, TF, LWFT, and our TTL
on 3 MIC tasks covering both 2D and 3D image modali-
ties (Sections IV-B to IV-D), and also explore a 2D lung
segmentation task (Section IV-E). All 2D experiments follow
the same basic protocol unless otherwise stated: 1) the given
dataset is split into 64% training, 16% validation, and 20%
test; 2) ResNet50 is the default model for all 2D MIC tasks,
and ResNet34 for 2D segmentation; 3) all 2D images are
center-cropped and resized to 224× 224; 4) random cropping
and slight random rotation are used for data augmentation
during TL; 5) the ADAM optimizer is used for all TL
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methods, with an initial LR 10−4 and a batch size 64; The
ReduceLROnPlateau scheduler in PyTorch is applied to
adaptively adjust the LR: when the validation AURPC stag-
nates, the LR is decreased by 1/2. Training is stopped when
the LR drops below 10−7; 6) the best model is chosen based on
the validation AUPRC. For the 3D MIC task in Section IV-D,
we choose ResNeXt3D-101 as the default model, and compare
it with PENet which is a handcrafted model in [39]. Both
models are first pretrained on the kinetics-600 dataset [40],
and then finetuned with the same setting as in [39]: 0.01 initial
LR for randomly initialized weights and 0.1 for pretrained
weights, SGD (momentum = 0.9) optimizer, cosine annealing
LR scheduler, 100 epochs of training, and best model selected
based on the validation AUROC. For experiments involving
randomness, we repeat them 3 times and report the mean
and standard deviation. Runtime analysis is performed on
a system with Intel Core i9-9920X CPU and Quadro RTX
6000 GPU. We report AUROC/AUPRC for MIC, and Dice
Coefficient/Jaccard Index for segmentation as performance
metrics, and Params, MACs, CPU/GPU time as complexity
metrics (see discussion below Table II for definitions).

B. COVID-19 chest x-ray image classification

We take the chest x-rays from the BIMCV-COVID19+
(containing COVID positives) and BIMCV-COVID19− (con-
taining COVID negatives) datasets (iteration 1) [35]5. We
manually remove the small number of lateral views and
outliers, leaving 2261 positives and 2463 negatives for our
experiment; see Fig. 7 (a) for a couple of x-ray samples.
We have demonstrated the plausibility and superiority of TTL
based on this MIC task around Table II and Figs. 4 to 6, which
we do not repeat here.

C. Mitotic cells classification

The density of mitotic cells undergoing division (i.e., mitotic
figures) is known to be related to tumor proliferation and
can be used for tumor prognosis [41]. Since cell division
changes its morphology, we expect mid-level blob-like features
to be the determinant here. For this experiment, we take the
dataset from the mitotic domain generalization challenge (MI-
DOG2022) [41]. The challenge is about detection of mitotic
figures, i.e., the training set consists of properly cropped 9501
mitotic figures and 11051 non-mitotic figures (see Fig. 7 for
sample figures), and the task is to localize mitotic figures on
large pathological slices during the test. We modify the task
into a binary MIC (positives are mitotic figures, and negatives
are non-mitotic figures): we take their training set and further
divide it into training, validation, and test sets, following the
ratios discussed in Section IV-A.

Table III summarizes the results obtained by the various
methods. We observe that: (1) Our TTL-2 and TTL-1 beat
all other TL methods, and also yield the most compact and
inference-efficient models; (2) Both TTL-1/2 and TF find the
best cutoffs at the transition of block3 and block4, implying

5https://bimcv.cipf.es/bimcv-projects/
bimcv-covid19/#1590858128006-9e640421-6711.

that high-level features are possibly unnecessary and can even
be hurtful for this task and confirming our tuition that mid-
level visual features are likely be crucial for decision; (3) Of all
methods, LWFT with block-wise search performs the worst;
even after layer-wise search, its AUROC only matches that of
the baseline FTL. The inferior performance of LWFT implies
that only fine-tuning the top layers is not sufficient for this
task, consistent with our observation in (2).

TABLE III
MITOTIC CELLS CLASSIFICATION WITH DIFFERENT TL STRATEGIES.

THE BEST RESULT OF EACH COLUMN IS COLORED IN RED. ↑
INDICATES LARGER VALUE IS BETTER AND ↓ INDICATES LOWER VALUE

IS BETTER. “-1" MEANS WITH THE BLOCK-WISE SEARCH ONLY, AND “-2"
MEANS WITH THE TWO-STAGE BLOCK-LAYER HIERARCHICAL SEARCH.

Method AUROC↑ AUPRC↑ Params(M)↓ MACs(G)↓ CPU(ms)↓ GPU(ms)↓

FTL 0.925± 0.003 0.917± 0.003 23.5 4.12 80.1 3.59

TF-1 0.925± 0.002 0.918± 0.002 12.9 3.56 65.3 3.50

LWFT-1 0.920± 0.003 0.913± 0.005 23.5 4.12 78.4 3.55

TTL-1 0.928± 0.004 0.921± 0.003 8.55 3.31 69.6 2.99

TF-2 0.925± 0.002 0.918± 0.002 12.9 3.56 65.3 3.50

LWFT-2 0.925± 0.001 0.919± 0.001 23.5 4.12 78.2 3.56

TTL-2 (ours) 0.928± 0.004 0.921± 0.003 8.55 3.31 69.6 2.99

TABLE IV
3D PULMONARY EMBOLISM CLASSIFICATION WITH DIFFERENT TL
STRATEGIES. THE BEST RESULT OF EACH COLUMN IS COLORED IN

RED. ↑ INDICATES LARGER VALUE IS BETTER AND ↓ INDICATES

LOWER VALUE IS BETTER. “-1" MEANS WITH THE BLOCK-WISE SEARCH

ONLY, AND “-2" MEANS WITH THE TWO-STAGE BLOCK-LAYER

HIERARCHICAL SEARCH. NOTE THAT THE RUN TIME FOR THIS TABLE IS

IN SECONDS, NOT MILLISECONDS.

Method AUROC↑ AUPRC↑ Params(M)↓ MACs(G)↓ CPU(s)↓ GPU(s)↓

PENet 0.822± 0.010 0.855± 0.007 28.4 51.7 1.50 1.59e-2

FTL 0.821± 0.010 0.867± 0.006 47.5 66.3 1.44 1.96e-2

TF-1 0.849± 0.020 0.886± 0.017 36.1 64.9 1.41 1.93e-2

LWFT-1 0.817± 0.005 0.855± 0.003 47.5 66.3 1.44 1.96e-2

TTL-1 0.854± 0.013 0.889± 0.015 26.11 60.17 1.32 1.68e-2

TF-2 0.849± 0.020 0.886± 0.017 36.1 64.9 1.41 1.93e-2

LWFT-2 0.835± 0.038 0.870± 0.028 47.5 66.3 1.44 1.96e-2

TTL-2(ours) 0.854± 0.013 0.889± 0.015 26.11 60.17 1.32 1.68e-2

D. Pulmonary embolism CT image classification
Pulmonary Embolism (PE) is a blockage of the blood

vessels connecting the lungs and the heart, and CT pulmonary
angiography (CTPA) is the gold standard for its diagnosis [42].
To advance DCNN-based diagnosis of PE, [39] proposes the
first public PE dataset consisting of 1797 CT images from
1773 patients, and a handcrafted classification model, PENet,
that is based on 3D DCNNs. Applying the standard FTL
(pretraining on kinetics-600 [40]) on PENet and competing
models, [39] shows that PENet outperforms other SOTA 3D
DCNN models, such as ResNet3D-50, ResNeXt3D-101, and
DenseNet3D-121.

On CT images, PE often appears as localized blobs that
map to mid-level visual features. So the suboptimal TL per-
formance of the SOTA models is mostly likely due to the rigid
FTL strategy. We confirm this on ResNeXt3D-101 pretrained
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on kinetics-600: after layer-wise search, all differential TL
methods including TF, LWFT, and TTL outperform PENet
by considerable margins in both AUROC and AUPRC, as
shown in Table IV. Also, both TTL-1 and TF-1 find the
best cutoff at the transition of block3 and block4, another
confirmation of our intuition that probably only low- to mid-
level features are needed here. We note that although the
AUROC obtained via FTL is slightly lower than that of PENet,
the AUPRC is actually higher—which [39] does not consider
when drawing their conclusion. Our TTL-2 is a clear winner
in performance, despite that PENet has been meticulously
designed and optimized for the task! TTL is also highly
competitive in inference speed, especially on CPUs.

TABLE V
2D LUNG SEGMENTATION WITH TTL. THE BEST RESULT OF EACH

COLUMN IS COLORED IN RED. ↑ INDICATES LARGER VALUE IS BETTER

AND ↓ INDICATES LOWER VALUE IS BETTER.

Method Dice Coef ↑ Jaccard index ↑ Params(M) ↓ MACs(G) ↓ CPU(ms) ↓ GPU(ms) ↓

FTL 0.968± 0.029 0.940± 0.051 24.4 5.93 121 11.8

TTL B1(Ours) 0.970± 0.029 0.941± 0.052 21.3 1.68 47.8 7.05

TTL B2(Ours) 0.972± 0.027 0.946± 0.047 21.5 3.02 68.7 8.50

TTL B3(Ours) 0.968± 0.029 0.939± 0.051 22.1 4.82 95.6 10.6

E. Chest X-ray lung segmentation
Despite our focus on MIC, we briefly explore the potential

of TFL for segmentation also. To this end, we merge two popu-
lar public chest x-ray lung segmentation datasets: Montgomery
Country XCR set (MC) and Shenzhen Hospital CXR Set
(SH) [43], [44], both of which provide manual segmentation
masks. MC consists of 58/80 tuberculosis/normal cases, and
SH has 336/326 tuberculosis/normal cases; x-ray and mask
samples can be found in Fig. 7(b).

We construct the TTL model in a manner similar to what
we have done for the MIC tasks. We take the U-Net archi-
tecture with ResNet34 and pretrained on ImageNet as our
backbone model. To ensure the skip-connection structure can
be preserved after truncation, we symmetrically truncate the
backbone and segmentation head simultaneously. We do not
include comparison with LWFT and TF, as the original papers
do not discuss how to extend them to segmentation and our
MIC tasks above already show the superiority of our TTL.

For simplicity, we only perform block-wise truncation, and
our experimental results are shown in Table V. TTL achieves
the best segmentation performance at block 2 (TTL B2) and
outperforms FTL by 0.6% in terms of Dice Coefficient and
Jaccard index (both standard metrics for evaluating segmenta-
tion performance). More importantly, TTL B2 is more efficient
than FTL and reduces the model size by 11.5% and inference
time by over 50%.

F. Ablation study
1) Impact of network architecture: To study the impact of

network architecture on the result of TTL, we compare three
network models: ResNet50, DenseNet121, and EfficientNet-
b0, which represent large-, mid-, and small-size models,
respectively, on COVID-19 classification. The results are

TABLE VI
IMPACT OF NETWORK ARCHITECTURE ON TTL PERFORMANCE. THE

BEST RESULTS IN EACH GROUP ARE COLORED IN RED.

Method AUROC AUPRC Params(M) MACs(G)
Speed(s)

CPU GPU

RN501
FTL 0.853± 0.004 0.861± 0.002 23.5 4.12 80.0 6.72
TTL 0.865± 0.001 0.870± 0.007 8.55 3.31 60.9 5.83

DN2012
FTL 0.852± 0.002 0.856± 0.004 18.2 3.31 107 24.0
TTL 0.866± 0.006 0.871± 0.012 1.53 2.11 46.2 5.94

ENb03
TL 0.795± 0.004 0.794± 0.002 3.63 0.378 30.0 8.33
TTL 0.842± 0.001 0.843± 0.007 0.896 0.255 24.0 6.46

Abbreviation: 1 ResNet50, 2:DenseNet201, 3 EfficientNet B0

Fig. 8. ResNet50 transferred from ImageNet to BIMCV using our TTL.
We report the performance in both AURPC (top) and AUROC (bottom).
The red and green curves represent TTL performance with and without
the extra adaptive pooling layer between the final convolution layer and
the MLP classifier. Arrows point to the peak performance.

summarized in Table VI. It is clear that our TTL uniformly
improves the model performance and reduces the model size
by at least several fold, compared to FTL. In particular, even
for the most lightweight model EfficientNet-b0, TTL still
pushes up the performance by about 5% in both AUROC and
AUPRC, and reduces the model size by about 4-fold.

2) Impact of pooling: After truncation, we can either directly
pass the full set of features or downsample them before
feeding them into the MLP classifier. For deep learning
models, we can easily perform subsampling by inserting a
pooling layer. For this purpose, we use PyTorch’s built-in
function AdaptiveAvgPool2d to downsample the feature
map to 1 × 1 in the spatial dimension, which produces the
most compact spatial features. We compare models with vs.
without this extra pooling layer on COVID-19 classification,
and present the results in Fig. 8. We observe no significant
gap between the two settings in terms of peak performance
measured by both AUPRC and AUROC. However, the setting
with pooling induces a lower-dimensional input to the MLP
classifier, and hence contains much fewer trainable parameters
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compared to that without.

G. Exploratory study

Fig. 9. SVCCA on ResNet50 transferred from ImageNet to BIMCV.
The plot is inherited from Fig. 4. The gray boxes and the associated
bars represent the distributions of CCA coefficients between random
features.

Fig. 10. SVCCA on ResNeXt3D-101 transferred from Knetic-600 to
CTPA. Truncating at layer 30 (marked in green) significantly outperforms
FTL (marked in red).

1) Detecting the near-best truncation point: Our two-stage
search strategy for good truncation points (see Section III-B) is
effective as verified above, but can be costly due to the need for
multiple rounds of training, each for one candidate truncation
point. In this subsection, we explore an alternative strategy
to cut down computation: the idea is to detect the transition
point where feature reuse becomes negligible. For this, we
recall the SVCCA analysis in Fig. 4: we use the distribution of
the SVCCA coefficients to quantify the correlation of features
before and after FTL. To determine when the correlation
becomes sufficiently small, we compare the correlation with
that between random features.

We quickly test the new strategy on both COVID-19 and
CT-based PE classification, shown in Fig. 9 and Fig. 10,
respectively. From Fig. 9, we can see that for COVID-19
classification, feature reuse becomes limited after the 12-
th candidate truncation point: from 13-th onward, feature
correlation becomes very close to that between random fea-
tures, suggesting that the features are almost uncorrelated.
As expected, the 12-th truncation point also achieves near-
optimal performance as measured by AUPRC. Similarly, for

CT-based PE classification in Fig. 10, this strategy suggests
the 30-th truncation point, which yields the same result as
that we have obtained using the two-stage search strategy as
reported in Table IV, in both AUPRC and AUROC. Note that
in Fig. 10, the SVCCA coefficients slightly increase after the
30-th truncation point due to dimensionality: the channel sizes
are doubled there compared to the previous blocks, and the
raised dimension induces higher correlation coefficients. But to
decide if feature reuse becomes trivial, we only need to check
if the two SVCCA-coefficient distributions are sufficiently
close, not their absolute scalings.

Thus, this new strategy seems promising as a low-cost alter-
native to our default two-stage search strategy. We summarize
the key steps as follows.

1) Step 1: perform FTL on the target dataset;
2) Step 2: compute SVCCA coefficients between the fea-

tures before and after FTL, at all candidate truncation
points;

3) Step 3: compute SVCCA coefficients between random
features, at all candidate truncation points;

4) Step 4: locate the truncation point where the distribution
of the two groups of SVCCA coefficients from Step 2
and Step 3 becomes substantially overlapped, and take
it as the truncation point;

5) Step 5: fine-tune the model with the truncation point
selected from Step 4.

Compared to our two-stage strategy that entails numerous
rounds of model finetuning, the new strategy only requires two
rounds of finetuning: one from Step 1 on the whole model,
and the other from Step 5 on the truncated model.

TABLE VII
SYMPTOM OF LUNG DISEASE IN CHEXPERT

Diseases Shape Edge Contrast level of features
No Finding □✗ □✗ □✗ None

Enlarged Cardiom. □✓ □✗ □✓ low and high

Cardiomegaly □✓ □✗ □✓ low and high

Lung Opacity □✗ □✗ □✓ low

Lung Lesion □✓ □✗ □✓ low and high

Edema □✗ □✗ □✓ low and high

Consolidation □✗ □✗ □✓ low

Pneumonia □✗ □✗ □✓ low

Atelectasis □✓ □✗ □✓ low and high

Pneumonthorax □✗ □✓ □✓ low

Pleural Effusion □✗ □✗ □✓ low

Pleural Other □✗ □✗ □✓ low

Fracture □✓ □✓ □✓ low and high

Support device □✓ □✓ □✓ low and high

2) Inter-domain TL: All we have discussed above are intra-
domain TL where the source domain is distinct from the target
domain. It is tempting to think inter-domain TL might be
more effective. To test this, we take the x-ray-based COVID-
19 classification task again, but now finetune the ResNet50
model pretrained on CheXpert, a massive-scale x-ray dataset
(∼ 220K images) for disease prediction covering 13 types
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Fig. 11. ResNet50 transferred from CheXpert to BIMCV. (top) test AU-
ROC score; (bottom) test AUPRC score. “Mix”, “High”, and “Low” mean
finetuning from pretrained models on the original CheXpert, CheXpert-
high, and CheXpert-low, respectively. TTLx means the truncation point
is chosen at the transition point between block x and block x+1.

of diseases (see Table VII) [45]. These diseases correspond
to varying levels of visual features. Hence, we categorize
them into two groups: CheXpert-low includes diseases that
need low-level features only, and CheXpert-high covers those
needing both low- and high-level features. A summary of
the categorization can be found in Table VII6. We pretrain
ResNet50 on 3 variants of the dataset, respectively: full CheX-
pert, CheXpert-low, and CheXpert-high, and then compare
FTL and our TTL on the three resulting models. For TTL, we
only perform a coarse-scale search and pick the 3 transition
layers between the 4 blocks in ResNet50 as truncation points.
As always, all experiments are repeated three times.

From the results summarized in Fig. 11, we find that: (1)
Our TTL always achieves comparable or superior performance
compared to FTL, reaffirming our conclusion above; (2)
Transferring from the model pretrained on the original dataset
substantially outperforms transferring from those pretrained
on the CheXpert-high and CheXpert-low subsets. This can be
explained by the diversity of feature levels learned during pre-
training: on the subsets more specialized features are learned;
in particular, on CheXpert-low, perhaps only relatively low-
level features are learned; and (3) Notably, our results show
that medical-to-medical TL does not do better than TL from
natural images, when we compare the results in Fig. 11 with
those in Table II. We suspect this is because feature diversity
is the most crucial quality required on the pretrained models in
TL, and models pretrained on natural images perhaps already
learn sufficiently diverse visual features.

V. CONCLUSION

In this paper, we systematically examine TL via feature
reuse in the context of deep learning for MIC. Considering

6Disease symptoms information obtained from Mayo clinic: https:
//www.mayoclinic.org/symptom-checker/select-symptom/
itt-20009075

that most MIC tasks do not need high-level visual features,
we propose an effective TTL method that almost always
outperforms FTL and produces substantially smaller models.
We propose a two-stage search strategy for finding reasonable
truncation points (Section III-B), complemented by an experi-
mental lightweight alternative (Section IV-G). Our preliminary
result on medical image segmentation (Section IV-E) shows
similar advantages of our method.

There are numerous open directions naturally following: (1)
Alternative deep architectures. Transformers have been an
emerging family of deep models for numerous vision tasks.
So far, we have not seen much work reporting successfully
transferring pretrained Transformer models to MIC [46], [47],
presumably due to the lack of effective finetuning methods:
Transformer models are well known to be much more data-
hungry and pretraining-hungry than convolutional models; (2)
General medical imaging tasks. It will be interesting to
systematically study our method for other major types of
medical imaging tasks, such as segmentation, registration,
reconstruction; (3) Other mismatches between the source
and target. We address the different feature levels between
the source and target in TL. But there can be many other
types of mismatches, e.g., different tasks (classification to
segmentation) and different imbalance ratios. How to derive
the optimal TL to address these scenarios? (4) Compatibility
with emerging learning frameworks. Federated learning
and imbalanced learning [48], [49] are emerging learning
paradigms to address central issues in medical imaging tasks.
New developments in TL should ensure the compatibility with
these new learning methods.
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learning: Grids, groups, graphs, geodesics, and gauges,” arXiv preprint
arXiv:2104.13478, 2021.

[21] K. M. Hosny, M. A. Kassem, and M. M. Foaud, “Skin cancer classi-
fication using deep learning and transfer learning,” in 2018 9th Cairo
international biomedical engineering conference (CIBEC). IEEE, 2018,
pp. 90–93.

[22] J. Sun, L. Peng, T. Li, D. Adila, Z. Zaiman, G. B. Melton, N. Ingraham,
E. Murray, D. Boley, S. Switzer et al., “A prospective observational
study to investigate performance of a chest x-ray artificial intelli-
gence diagnostic support tool across 12 us hospitals,” arXiv preprint
arXiv:2106.02118, 2021.

[23] A. Van Opbroek, M. A. Ikram, M. W. Vernooij, and M. De Brui-
jne, “Transfer learning improves supervised image segmentation across
imaging protocols,” IEEE transactions on medical imaging, vol. 34,
no. 5, pp. 1018–1030, 2014.

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[25] Z. Jiang, H. Zhang, Y. Wang, and S.-B. Ko, “Retinal blood vessel
segmentation using fully convolutional network with transfer learning,”
Computerized Medical Imaging and Graphics, vol. 68, pp. 1–15, 2018.

[26] H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M. E. Maros,
and T. Ganslandt, “Transfer learning for medical image classification:
a literature review,” BMC Medical Imaging, vol. 22, no. 1, p. 69, Apr
2022. [Online]. Available: https://doi.org/10.1186/s12880-022-00793-7

[27] S.-C. Huang, T. Kothari, I. Banerjee, C. Chute, R. L. Ball, N. Borus,
A. Huang, B. N. Patel, P. Rajpurkar, J. Irvin et al., “Penet—a scalable
deep-learning model for automated diagnosis of pulmonary embolism
using volumetric ct imaging,” NPJ digital medicine, vol. 3, no. 1, pp.
1–9, 2020.

[28] P. Wang, Q. Chen, X. He, and J. Cheng, “Towards accurate post-
training network quantization via bit-split and stitching,” in International
Conference on Machine Learning. PMLR, 2020, pp. 9847–9856.

[29] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[30] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[31] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[32] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[33] M. Raghu, K. Blumer, R. Sayres, Z. Obermeyer, B. Kleinberg, S. Mul-
lainathan, and J. Kleinberg, “Direct uncertainty prediction for medical
second opinions,” in International Conference on Machine Learning.
PMLR, 2019, pp. 5281–5290.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.
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