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ABSTRACT 
 
Cannabis use disorder (CUD) is common and has in part a genetic basis. The risk factors underlying 

its development likely involve multiple genes that are polygenetic and interact with each other 

and the environment to ultimately lead to the disorder. Co-morbidity and genetic correlations 

have been identified between CUD and other disorders and traits in select populations primarily 

of European descent. If two or more traits, such as CUD and another disorder, are affected by 

the same genetic locus, they are said to be pleiotropic. The present study aimed to identify 

specific pleiotropic loci for the severity level of CUD in three high-risk population cohorts: 

American Indians (AI), Mexican Americans (MA), and European Americans (EA). Using a 

previously developed computational method based on a machine learning technique, we 

leveraged the entire GWAS catalog and identified 114, 119, and 165 potentially pleiotropic 

variants for CUD severity in AI, MA, and EA respectively. Ten pleiotropic loci were shared between 

the cohorts although the exact variants from each cohort differed. While majority of the 

pleiotropic genes were distinct in each cohort, they converged on numerous enriched biological 

pathways. The gene ontology terms associated with the pleiotropic genes were predominately 

related to synaptic functions and neurodevelopment. Notable pathways included Wnt/β-catenin 

signaling, lipoprotein assembly, response to UV radiation, and components of the complement 

system. The pleiotropic genes were the most significantly differentially expressed in frontal 

cortex and coronary artery, up-regulated in adipose tissue, and down-regulated in testis, prostate, 

and ovary. They were significantly up-regulated in most brain tissues but were down-regulated 

in the cerebellum and hypothalamus. Our study is the first to attempt a large-scale pleiotropy 

detection scan for CUD severity. Our findings suggest that the different population cohorts may 
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have distinct genetic factors for CUD, however they share pleiotropic genes from underlying 

pathways related to Alzheimer’s disease, neuroplasticity, immune response, and reproductive 

endocrine systems. 

 
 
INTRODUCTION 
 

Cannabis is the most commonly used psychotropic substance in the U.S., after alcohol. 

The prevalence of use appears to be increasing, likely due to legalization in many states and 

decreasing perception of harm, especially among young people [1, 2]. About one-fifth of lifetime 

cannabis users meet criteria for DSM-5 use disorder (CUD),  and nearly a quarter are diagnosed 

as severe [3]. Twin and family studies have consistently found that cannabis use and use disorders 

appear to in part have a genetic basis (for review, see [4]).  Twin samples have found estimates 

of heritability that range from 0.45 to 0.78 [5-12], suggesting that studies aimed at identifying 

genes that contribute to cannabis involvement may be warranted. 

A recent meta-analysis of “cannabis use” provides evidence to suggest that the genetic 

basis of cannabis use is polygenetic, that is being influenced by multiple genes and also the 

environment. In those sets of analyses 96 genetic variants were identified that met significance 

threshold (p< 1.0 x 10-7) [13]. Cannabis use may be influenced by a number of genes that are 

difficult to detect because they may each have a small effect on the broad clinical phenotypes. 

However, the genes influencing cannabis use disorders might be detected if they have a major 

effect on more narrowly defined phenotypes that more closely index the biological processes 

associated with severe addiction. Additionally, cannabis use disorders are often comorbid with 

other health issues especially mental health problems, further complicating the genetic analyses 
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[14]. Both CUD and other mental health disorders have been shown to have a significant genetic 

component to their etiology [13, 15, 16]. However, documenting comorbidity between disorders 

does not necessarily imply a common etiological pathway or a causal connection between them. 

Behavioral genetics studies have an advantage in being one of the most powerful methods for 

determining whether the comorbidity among psychopathological conditions is due to common 

pathologies and/or etiologies associated with both disorders.  

 

In addition to polygenicity, cannabis phenotypes can also be impacted by pleiotropy. Two 

or more traits are formally said to be “pleiotropic” if they are affected by the same genetic locus 

[17]. Given the polygenic nature of cannabis use and use disorders and their genetic correlations 

to other diseases [18], these pleiotropies are also expected to be polygenic. For instance, one 

study found a pleiotropic linkage peak for cannabis use and major depression in a Mexican 

American population [19]. Additionally, a recent study based on large scale GWAS meta-analyses 

identified 15 loci for multiple substance use including cannabis and other psychopathology, and 

five pleiotropic loci specific for lifetime cannabis use and psychiatric disorders [20]. Few studies 

however have identified the specific pleiotropic loci for CUD and other co-morbid disorders. One 

attempt to uncover shared genetic variation between cannabis dependence and five other 

psychiatric disorders identified CSMD1 as a candidate gene that may affect the risk for both 

cannabis dependence and schizophrenia [21].  

 

While cannabis use and CUD are genetically correlated to some extent (r=0.5), there is  

also clear distinction between the genetic liability to “cannabis use” and “cannabis use disorder” 
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[18]. The pleiotropic landscape of CUD with other diseases therefore also likely differs from that 

of cannabis use. In addition, while the large GWAS studies of CUD to date have included multiple 

ancestries, the findings by these studies are still predominately from the populations of European 

descent, driven by the much larger sample sizes of these populations compared to populations 

of other ancestries in the studies [18, 22]. Prevalence of CUD and degrees of severity however 

vary significantly across ethnic groups and populations. For instance, epidemiology studies have 

shown that American Indians have significantly increased rates of CUD, especially in the severe 

cases [3, 23, 24]. The differences are likely due to both environmental and genetic factors. 

 

While it is likely that multiple factors contribute to the comorbidity of complex diseases 

such as CUD,  the present study attempts to address three related fundamental questions: 1) 

what shared genetic factors may underly CUD and comorbid disorders; 2) what other diseases 

and phenotypes may be linked to CUD through genetics; and 3) are there population differences 

in genetic factors associated with CUD. In the present study, we focus on pleiotropic detection 

for a quantitative cannabis use disorder phenotype that indexes the severity of the disorder in 

three independent population cohorts including American Indians (AI), Mexican Americans (MA), 

and European Americans (EA). All three cohorts had elevated rates of CUD of varying degrees 

compared to the general populations: 39% in AI, 27% in MA, and 21% in EA respectively. Previous 

studies on the EA cohort have found cannabis use and dependence heritable [25], and identified 

two low-frequency variant loci associated with cannabis dependence through a meta-analysis of 

the EA and AI [26]. In the AI cohort, a cannabis dependence cluster phenotype was found to be 

heritable and significant evidence for genetic linkage analyses was found on  chromosome 16 and 
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19 [27]. To investigate the degree of CUD severity as well as increase statistical power for 

detection, we used a phenotype that was derived from the clinical course of CUD to quantitate 

the CUD severity. We previously described a flexible computational framework to explore 

potential pleiotropy for complex disorders, as illustrated in Figure 1. The method was designed 

especially with understudied admixed populations in mind where few genetic studies were 

available for pleiotropic analyses [28]. We herein applied the method to the pleiotropic detection 

for CUD severity in the three high-risk population cohorts and investigated their distinct and 

shared pleiotropic traits and pathways. 

 

MATERIALS AND METHODS 

Participants 

 We investigated three independent populations including an American Indian (AI) cohort 

of 742 participants from extended pedigrees, a Mexican American (MA) cohort of 547 

participants from primarily second-generation Mexican American young adults, and a Euro-

American (EA) cohort of 1711 participants from the San Francisco Family Alcohol Study.  We refer 

to the first cohort as AI, the second as MA, and the third as EA. The population characteristics 

and the recruitment procedures of the three cohorts have been previously described [29-36]. 

Their demographics are characterized in Table S1. The protocol of the study of the American 

Indian cohort was approved by the Scripps Research Institute Institutional Review Board (TSRI-

IRB) and presented to Indian Health Council, a tribal review group overseeing health issues for 

the reservations where recruitments took place. The protocol of the study of the MA cohort was 

also approved by TSRI-IRB. The protocol for collection of participants in the EA cohort was 
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approved by the University of California San Francisco (UCSF) Committee for the Protection of 

the Rights of Human Subject while the recruitment took place. Subsequently, the University of 

North Carolina, at Chapel Hill IRB approved the data analysis plan. Written informed consent was 

obtained from each participant after study procedures had been fully explained. Participants 

were compensated for their time spent in the study. 

 

Phenotypes and genotypes 

 All participants were deep-phenotyped using an instrument called Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA) [37, 38]. The CUD severity is a derived 

phenotype that quantifies the progression and severity of the use disorder. We extended 

measures of the clinical course of alcoholism originally described by Schuckit and colleagues [39] 

to quantitate life events during the clinical course of other substance use and psychiatric 

disorders [28, 30, 40, 41]. The measures were based on the relative order of the appearance of 

major “substance-related life events”. Table S2 lists 20 cannabis-related life events in the clinical 

course of CUD. The order of the events within each population cohort was determined by the 

mean age of occurrence of these events if available, with the first event occurring the earliest 

and the last event (the 20th) the latest in the lifetime. The exact orders of events thus may vary 

between different population cohorts. We then developed a metric that quantitates the severity 

level of CUD progression based on the sequential occurrence of the events. The CUD clinical 

course life events were each given a severity weight as shown in Table S2: events 1-7 each have 

weight 1, events 8-14 have weight 2, and 15-20 have weight 3. The metric gives larger weights to 

the more severe events that occur later in the clinical course of CUD and are more associated 
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with severe use disorder [40, 42]. Finally, the CUD severity phenotype was defined as the total 

sum of the severity weights of the life events that occurred in an individual [42]. The distributions 

of the phenotype for each cohort and their relations to the DSM-5 CUD diagnoses are shown in 

Figure S1. The quantitative CUD severity phenotype is in high accordance with DSM-5 diagnoses, 

with the Spearman’s rank correlation r between the CUD severity and the CUD diagnosis (no, 

mild, moderate, and severe) being 0.90, 0.93, and 0.89 for AI, MA, and EA respectively. We 

winsorized CUD severity level at 5% at each tail for subsequent analysis. 

The AI and EA participants had low-coverage whole genome sequencing on blood-derived 

DNAs using the same pipeline [43]. The MA participants had exome data [44]. Further details can 

be found in SI methods.  

 

Variant-trait association catalog 

 We only considered single nucleotide polymorphisms (SNPs) in this study thus we will use 

terms SNP and variant interchangeably. We downloaded the GWAS catalog release v1.0.2 on 

2021-12-21 from NHGRI-EBI [45]. This release contained 325,538 SNP-trait associations from 

5,527 publications. Genes to which a SNP is mapped were also reported for each association. Of 

the 186,481 unique variants reported in the catalog, 152,074 were found in the AI cohort, 99,386 

in the MA cohort, and 154,580 in the EA cohort, respectively. We referred to these variants from 

each cohort as the candidate variant set for that cohort. The catalog had total of 3,061 uniquely 

mapped traits (terms from the experimental factor ontology (EFO) to which GWAS reported traits 

were mapped) that were classified into 17 parent categories [46]. 
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Pleiotropic variant selection 

 We updated a previously described method to identify a set of variants for each cohort 

from its candidate variant set to be associated with CUD severity [28]. Briefly, a machine learning 

technique called elastic net—a balanced regularization between lasso and ridge penalties—was 

used for variant selection [47]. The genetic relationship matrix (GRM) was incorporated into the 

model to control for both population structures and potential relatedness. Age, age-squared, and 

sex were included as covariates. The GRM for each cohort was estimated with GCTA [48]. The R 

package glmnet was used to solve the elastic net optimization. The elastic net penalty a that 

bridges the gap between lasso and ridge regressions was set to 0.5. The regularization parameter 

l that controls for the overall strength of the penalty, thus the number of variants that are 

eventually selected, was determined through cross validations. We did 10 rounds of 10-fold cross 

validation and chose the minimum l. The variants that were selected by this process are referred 

to as pleiotropic variants for CUD severity in each cohort. 

 

Pleiotropic trait & disease enrichment and functional analysis 

 GWAS catalog reported variants along with their mapped genes. We refer to the genes 

that the pleiotropic variants are mapped to as pleiotropic genes. To determine whether a trait or 

disease is overrepresented in the set of pleiotropic variants, we defined trait enrichment as the 

ratio of the proportion of the pleiotropic genes that are associated with a trait in the GWAS 

catalog to the proportion of the genes which the candidate variants are mapped to that are 

associated with the same trait. The significance of the enrichment was determined through 

10,000 permutation tests. 
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We combined pleiotropic genes from the three cohorts and subjected them to functional 

analysis. Functional enrichment analyses were performed using GENE2FUNC in FUMA version 

1.4.1, where enriched biological functions or pathways were extracted by testing against gene 

sets from the molecular signatures database (MsigDB) [49] and WikiPathways [50] using 

hypergeometric tests [51]. The tissue-specific differential gene expression test was conducted 

for the combined pleiotropic gene set against all genes across genomes that exhibited 

significantly increased or decreased expression levels in a certain tissue sample compared to all 

other samples. The analysis utilized tissue-specific transcriptome data across 54 tissue types from 

GTEx v8 [52]. 

 

 

Shared pleiotropic genes and loci 

 If a pleiotropic gene appeared in more than one cohort, we called it a shared pleiotropic 

gene. Pleiotropic variants in linkage disequilibrium (LD) with each other in the same cohort were 

considered as one pleiotropic locus. If two loci across two cohorts overlapped in their genomic 

positions, they were also considered as a shared pleiotropic locus [28]. 

 

RESULTS 

Pleiotropic variants and enriched pleiotropic traits for CUD severity 

One hundred and fourteen (114) SNPs in the GWAS catalog were selected as pleiotropic 

variants for CUD severity in the AI cohort, while 119 and 165 SNPs were selected in the MA and 

EA cohorts respectively. All identified pleiotropic variants are listed in Table S3. Figure 2 illustrates 
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the enriched pleiotropic traits with a minimum of three SNPs selected for the trait for CUD 

severity in each cohort. Alzheimer’s disease (AD) is the most enriched in AI with four pleiotropic 

SNPs (enrichment=7.2, p=0.003) followed by PHF-tau measurement which is an AD biomarker 

(enrich=5.6, p=0.0006). The mapped genes for Alzheimer’s disease are ABCA1, ACE, APOE-APOC1 

and EPHA1 (see Table S3). The most enriched trait in MA is testosterone measurement 

(enrich=4.3, p=0.033), while brain volume (enrich=4.5, p=0.028) is the most enriched in EA. MA 

and EA each have an enriched anthropometric trait, body weight in MA (enrich=4.2, p=0.037) and 

BMI-adjusted waist-hip ratio in EA (enrich=3.6, p=0.0026). Mean platelet volume is enriched in 

both AI and MA. The complete list of enriched traits and diseases (p<0.05) including traits that 

were mapped to fewer than 3 variants are given in Table S4. 

In addition, two variants in MA (mapped to genes and intergenic regions near PLSCR5 and 

SLC4A7) and three variants in EA (mapped to genes CELF2, TENM2, or near LINC01924) were 

identified for smoking status or cigarettes per day. Two variants from AI and one from EA were 

selected for drinking behaviors. One variant each from AI and EA were identified for “substance 

abuse”. One variant from AI (near CDH18) and three variants from MA (TUBGCP6, OSTM1, 

KCNK13-PSMC1) were selected for unipolar depression. One variant from AI and two from EA 

(MAP1B, intergenic near ABHD5) were selected for ADHD. One variant from AI, three variants 

from MA, and four variants from EA were identified for schizophrenia. Four variants from MA 

and six from EA were selected for educational attainment. Every cohort had pleiotropic variants 

identified for lipid or lipoprotein measurements: six in AI (mapped to ABCA1, APOE-APOC1, 

CPNE6, EPHA1, INPP4B, and LINC02644-ZNF438), six in MA (mapped onto or near CLPTM1, DPP3, 

BSND-PCSK9, PDGFD, and NOTCH1), and eight in EA (mapped to genes DNASE2B, RIPK4, PPP6R2,  
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or intergenic near TOX3, FTLP17, MED27-NTNG2, PDHX-CD44, and NUFIP2-RPL35AP35). Eight 

variants from AI, 18 from MA, and 24 from EA were selected for anthropometric traits such as 

BMI and waist-hip ratio (see Tables S3A-C). 

 

Pleiotropic genes and loci shared by cohorts 

 Pleiotropic variants selected by each cohort were unique. However, as shown in Table 1, 

there were several genes and loci identified by more than one cohort even though the exact 

variants differed. Genes DAB1 and PTPRG were selected in both MA and EA. DAB1 encodes a 

reelin adaptor protein that is essential for positioning migrating neurons in the developing brain 

and during adult neurogenesis [53]. PTPRG is a protein tyrosine phosphatase receptor gene that 

is also associated with schizoaffective disorder. Genes CDH18, ERBB4, SCGB1A1 and a LncRNA 

DLEU1 were selected in both AI and EA. Cadherin-18 family gene CDH18 mediates calcium-

dependent cell-cell adhesion. SCGB1A1 encodes uteroglobin, a founding member of the 

secretoglobin family of small secreted proteins. ERBB4 is a neuregulin receptor and has been 

implicated in schizophrenia. Neuregulins and their receptor ErbB4 play important roles in the 

development of the central nervous system, specifically in the differentiation of GABAergic 

interneurons. In addition to schizophrenia [54], ERBB4 has also been associated with smoking 

behaviors [55], cognitive performance [56], neuroticism [57], psychosis [58] and so on. The only 

locus selected by all three cohorts is an ephrin receptor gene EPHA1 and EPHA1 antisense RNA 1 

EPHA1-AS1. Its associated traits were either Alzheimer's disease or a biomarker measurement 

for AD. EPHA1 has been implicated in developmental events especially in the nervous system. 
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Two additional shared loci between AI and EA, and one shared locus between MA and EA were 

identified based on LD measures (Table 1). Each locus consisted of two or three genes. 

 

Enriched pathways in pleiotropic genes for CUD severity 

 The selected pleiotropic variants mapped to total of 439 unique genes—referred to as 

pleiotropic genes—in the three cohorts combined (137 in AI, 122 in MA, and 190 in EA). The 

pleiotropic genes from the three cohorts converged onto numerous enriched functional groups 

and pathways. Figure 3 illustrates the enriched pathways [50, 59-61] and hallmark gene sets from 

MSigDB [62], and gene ontology sets [63]. A more comprehensive list of enriched gene sets is 

given in Table S5.  

Three hallmark gene sets were significantly enriched. They were genes up-regulated by 

activation of Wnt signaling through accumulation of beta catenin CTNNB1, genes down-regulated 

in response to ultraviolet (UV) exposure, and genes encoding components of the complement 

system. Presenilin-1 action in Notch and Wnt signaling was the most enriched pathway, followed 

by transport of small molecules. Lipoprotein functions, breast cancer and colorectal cancer 

related pathways, and a vascular endothelial growth factor (VEGF) signaling pathway were also 

among the enriched pathways. 

Of the gene ontology (GO) cellular components, gene sets related to synapse, cell junction, 

Golgi complex, and extracellular matrix (ECM) were found to be significantly enriched (Figure 3B). 

Neuron differentiation, cell cycle, adhesion, inflammatory response, lipid function, locomotion, 

ion transport, and homeostasis were among the enriched GO biological processes. There were 
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also numerous enriched transcription factor (TF) targets and microRNA target gene sets, and over 

one hundred enriched transcriptional immunologic signatures [64] (Table S5). 

 

Tissue-specific differential expression in pleiotropic genes 

 Figure S2 illustrates the enrichment in tissue-specific differentially expressed gene sets. 

The identified pleiotropic genes are said to be significantly enriched in a tissue if they consisted 

of an overrepresentation of genes that were significantly more (up regulated) or less (down 

regulated) expressed in the given tissue compared to all other tissues [51]. The pleiotropic genes 

were the most significantly differentially expressed in coronary artery and frontal cortex 

(adjusted p=3.2E-5, 5.5E-5; subsequent numbers in parenthesis are adjusted p values). They were 

the most significantly up regulated in adipose tissue (1.7E-4), and down regulated in testis (1.4E-

4), prostate (1.7E-4) and ovary (2.7E-4), followed by adrenal gland (8.0E-4) and esophagus 

mucosa (2.3E-3). Pituitary was also down regulated (5.6E-3). Almost all brain tissues tested were 

significantly enriched in differentially expressed pleiotropic genes. Among the brain tissues, 

hippocampus (4.5E-3), substantia nigra (1.4E-3), cortex (5.7E-3), nucleus accumbens (0.015), 

putamen (0.020), frontal cortex (0.035), and amygdala (0.046) had significantly up regulated 

pleiotropic genes; Cerebellum (2.4E-3) and hypothalamus (0.034) had significantly down 

regulated pleiotropic genes; Caudate nucleus (0.012) and anterior cingulate cortex (0.022) had 

significantly differentially expressed pleiotropic genes. 

 

DISCUSSION 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.22282743doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.25.22282743
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 Over the last two decades cannabis use and use disorders have increased globally [65]. 

Cannabis use among youth, especially in minority communities like American Indians and 

Mexican Americans is particularly problematic because early use had been shown to lead to an 

increased risk for use disorders [66, 67] as well as other symptoms such as depression in the 

populations investigated [68]. Cannabis use and use disorder risk is in part genetic and identifying 

novel variant-trait associations through genome-wide approaches can potentially lead to the 

identification of select biological mechanisms related to the disorder that could inform 

interventions.  

The present study addressed three related fundamental questions in cannabis genetics 

research: 1) what shared genetic factors may underly CUD and comorbid disorders, 2) what other 

diseases and phenotypes may be linked to CUD through genetics, and 3) are there population 

differences in genetic factors associated with CUD. In the set of analyses conducted for the 

present report, over 100 potentially pleiotropic variants for CUD severity were identified in each 

of the three population cohorts that had elevated rates of CUD, including American Indians, 

Mexican Americans, and European Americans. Although the variants and most genes from each 

cohort were distinct, the genes to which these variants were mapped have converged onto 

numerous enriched biological pathways. There were also several genes and loci shared between 

the cohorts. The gene ontology terms associated with the pleiotropic genes were predominately 

related to synaptic functions and neurodevelopment. Notable pathways included Wnt/β-catenin 

signaling, lipoprotein assembly, response to UV radiation, and components of the complement 

system. The Wnt/β-catenin pathway mainly controls cell proliferation and regulates cortical size 

[69, 70]. The Wnt/β-catenin signaling is also associated with oxidative stress, inflammation, and 
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the glutamatergic pathway. Animal studies have shown that this pathway is critical in drug 

neuroadaptation by inducing behavioral sensitization as indexed by β-catenin levels: β-catenin 

decreased in certain brain regions in animals that showed drug-induced sensitization [71]. 

Additionally, cannabidiol (CBD), a less psychoactive cannabis component, has been shown to 

increase the activity of the WNT/β-catenin pathway [72]. CBD also protects against the harmful 

effects of UV radiation by decreasing the expression of proinflammatory proteins and the 

proteins involved in de novo protein biosynthesis, which are elevated in UV-irradiated cells [73]. 

Cognitive functions and psychiatric disorders. Since cannabinoid receptor 1 (CB1) is 

highly expressed within the central nervous system and endocannabinoids are key modulators 

of synaptic function [74], it is not surprising that synaptic functions and neuron structures were 

significantly overrepresented in the pleiotropic genes identified for CUD severity. Pleiotropic 

genes were also significantly differentially expressed in almost all brain tissues, mostly up-

regulated with the exceptions of cerebellum and hypothalamus where the pleiotropic genes 

were significantly down-regulated. Brain volume was the most enriched pleiotropic trait for CUD 

severity in EA. While educational attainment was an enriched pleiotropic trait for EA, associated 

variants were also found in MA. Variants associated with smoking, drinking or other substance 

use were found for CUD in each cohort. Both AI and MA identified pleiotropic variants for 

depression, and in AI and EA variants were identified for ADHD. All three cohorts had pleiotropic 

variants associated with schizophrenia.  

Alzheimer’s disease (AD) and AD markers were the most enriched pleiotropic traits for 

the AI cohort. Interestingly, the only pleiotropic gene locus for CUD severity that was found in all 

three cohorts is an ephrin receptor gene EPHA1 and EPHA1-AS1. The traits associated with the 
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variants on this locus were Alzheimer's disease, AD biomarker, and HDL cholesterol. EphA 

receptors are mediators for axion guidance, and EPHA1 has been implicated in developmental 

events especially in the nervous system. In addition, presenilin-1 (PS1) signaling pathway was 

significantly associated with the combined set of pleiotropic genes selected by the three cohorts. 

PS1 is linked to gamma secretase activity that cleaves amyloid precursor protein [75] and has 

been implicated in Alzheimer’s disease [76].  Wnt pathway disruption by β-amyloid (Aβ) peptide 

also represents a pivotal event in the neuronal apoptosis occurring in AD [77]. Additionally, 

animal studies have implicated blocking of endocannabinoids in the early pathology of AD. β-

Amyloid blocks synaptic plasticity via loss of cannabinoid-mediated disinhibition [78]. 

Pleiotropic genes were also found to be significantly associated with lipoprotein pathways. 

HDL and triglyceride levels were enriched pleiotropic traits in AI. Body weight and waist-hip ratio 

were enriched for MA and EA respectively. In the 10 loci shared among the cohorts, four had 

variants associated with a cholesterol level or a body measurement. Every cohort had pleiotropic 

variants identified for lipid or lipoprotein measurements and for body measurements such as 

BMI and waist-hip ratio. 

Immune response. Components of the complement system—part of the innate immune 

system—was significantly associated with pleiotropic genes. Inflammatory response and lipid 

function were among significantly enriched GO biological processes. There were also over a 

hundred transcriptional immunologic signatures [64] enriched in the pleiotropic genes. 

Additionally, SCGB1A1 was identified in both AI and EA. The gene encodes uteroglobin, a 

multifunctional protein with anti-inflammatory and immunomodulatory properties [79]. Immune 

red blood cell reticulocyte count was enriched pleiotropic trait in EA. These findings in general 
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are consistent with the immune modulation functions of the cannabinoid system. Cannabinoid 

receptor 2 (CB2) is largely found in the immune cells. Strong evidence supports that CBD 

suppresses the immune activity and inflammatory response [80]. D-9-tetrahydrocannabinol 

(THC), the main psychoactive component of cannabis, is also known to alter the function of 

immune cells and exert immune depressive effects [81]. 

Reproductive and endocrine systems. The selected pleiotropic genes were most 

significantly down regulated in testis, prostate, and ovarian tissues. They were also significantly 

down regulated in adrenal gland, pituitary, hypothalamus, and vagina, and differentially 

expressed in the mammary tissue. Level of testosterone was the most enriched pleiotropic trait 

for CUD severity in MA. One locus identified in both AI and EA contained a variant that was 

associated with testosterone level. Additionally, several variants were selected for carcinoma or 

tumors related to the reproductive and endocrine systems, including four variants (GDF7) for 

prostate cancer in MA, one each in MA and EA for uterine fibroid, one in AI for ovarian cancer, 

one in AI for thyroid cancer, two in AI (SHLD1, CDYL2) and one in EA (TACC2) for breast cancer. A 

breast cancer pathway, several breast cancer related gene sets, and one prostate cancer related 

gene set were significantly enriched (Fig 3A, Table S5). Cannabinoid receptors are present 

throughout the body including hypothalamus, pituitary, ovary, endometrium, testes, and 

spermatozoa. Interactions of cannabinoids with hypothalamic–pituitary–gonadal axis hormones 

are well documented [82]. Research to date have suggested that cannabis use may affect some 

of the central reproductive process [83]. Although the overall relations between cannabis use 

and cancer risk remain unclear, there are evidence suggesting that long time cannabis use may 

increase the risk for testicular cancer [84]. 
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 In addition to breast cancer and prostate cancer, a colorectal cancer-related pathway was 

also enriched. Endocannabinoid signaling system modules many pathways that are often 

dysregulated in cancer, such as cell proliferation, motility, and survival. There are evidences of 

increased CB1 expression in prostate cancer and colon cancer, and increased CB2 expression in 

breast cancer [85]. 

 Several pleiotropic genes for CUD severity identified in this study were previously 

associated with cannabis use or dependence. Variant rs11576941 associated with eosinophil 

count on the fatty acid amide hydrolase gene (FAAH) was selected in MA. FAAH is involved in 

endocannabinoid metabolism and was a candidate gene previously identified for cannabis use 

and dependence [86] including the MA population under study [87]. Rs2724992 on the CUB and 

sushi multiple domains 1 (CSMD1) gene was selected in AI. Different SNPs on CSMD1 have 

previously been associated with cannabis dependence [21] and schizophrenia [88]. CSMD1 is 

highly expressed in the growth cones of developing central nervous system (CNS) neurons 

suggesting that it may act as an important regulator of complement activation and inflammation 

in the developing CNS [89]. Rs66579625 associated with body height on INTS7 was found in MA. 

Two different SNPs on INTS7 have been associated with DSM-IV cannabis dependence criteria 

count [21]. Rs3943782 on CADM2 associated with risk-taking behavior was selected in EA. A 

different SNP on CADM2 was associated with lifetime cannabis use [90]. Rs6907357 was selected 

in MA. The variant was reported to interact with gene FAM19A5 (a.k.a TAFA5). A SNP on 

FAM19A5 has been associated with CUD [22]. FAM19A5 encodes a neurokine that plays a crucial 

role in depressive-like and spatial memory-related behaviors [91]. 
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Methodological considerations and future directions. Our findings should be interpreted 

in light of the study design along with limitations. We used the term pleiotropy broadly and our 

method for detection was through cross-trait association. As a result, our findings did not 

distinguish between horizontal (biological) pleiotropy, where causal variants for different traits 

are on the same locus, and vertical (mediated) pleiotropy, where a genetic factor affects a trait 

indirectly through another trait [92]. In addition, variants associated with a phenotype may not 

be the causal variants, thus some of our findings may be the results of one variant tagging 

different causal variants for different traits through LD, or one variant being linked to a disease 

by indexing other traits. Statistical fine mapping and Mendelian randomization will be needed to 

further determine the pleiotropic scenarios for each potentially pleiotropic variant we identified, 

followed by experimental studies to confirm the true biological pleiotropy. GWAS catalog 

associations are currently dominated by studies of European descent. Our pleiotropic findings for 

CUD severity therefore might also be biased toward genetic factors associated with diseases in 

European ancestry. However, we were still able to identify many enriched pathways from the 

pleiotropic genes contributed by all three cohorts of different ancestries. It should also be noted 

that the MA cohort only had exome data thus precluding most of the intergenic regions, although 

the functional analysis focused primarily on genes and their associated pathways. Finally, we 

acknowledge that we were limited by sample sizes in all three population cohorts. We did, 

however, identify 10 pleiotropic loci that were shared among the cohorts for CUD severity. This 

was achieved by focusing on high-risk populations, deriving a well-defined quantitative trait from 

deep-phenotyped study cohorts, leveraging a large public database, and employing a 

computational approach for dimension reduction. Note that most of the pleiotropic variants 
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identified in this study would not be associated with CUD phenotypes at a genome-wide 

significant level if tested individually in GWAS. 

In conclusion, we used a previously developed computational method to carry out the 

first large-scale pleiotropic detection for CUD severity in American Indians, Mexican Americans, 

and European Americans. Our findings suggest that while each population cohort had distinct 

variants and genes for CUD and pleiotropic traits, the potentially pleiotropic genes from different 

cohorts also converged on enriched pathways related to Alzheimer’s disease, neuroplasticity, 

immune response, and reproductive and endocrine systems. 
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Figure 1. Illustration of the CUD pleiotropy analysis pipeline. 
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Figure 2. Significantly enriched pleiotropic traits and diseases for CUD severity in the American Indian (AI), Mexican 
American (MA), and European American (EA) cohorts.  
The number in each enrichment bar indicates the number of SNPs selected from the GWAS catalog for the respective trait (see Tables 
S3 and S4 for complete details). 
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Figure 3. Significantly enriched pathways and gene sets of pleiotropic genes selected for CUD severity in the American 
Indian (AI), Mexican American (MA), and European American (EA) cohorts. 
 
A. Enriched hallmark gene sets, canonical pathways including BioCarta, KEGG, Reactome, PID, and WikiPathway

 
 
B. Enriched gene ontology (GO) cellular components 
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Table 1. Pleiotropic genes and loci from GWAS catalog identified in multiple cohorts for CUD severity. 
 
Gene/Locus dbSNP Position (hg19) Pleiotropic GWAS Trait AI MA EA 
DAB1 rs264038 1:57669814 household income  x  
 rs536250 1:57570761 adolescent idiopathic scoliosis   x 
 rs1884486 1:58330801 waist circumference   x 
ERBB4 rs7564590 2:213387900 polycystic ovary syndrome x   
 rs59779307 2:212642775 household income   x 
PTPRG rs652889 3:61794054 qt interval  x  
 rs9825906 3:61993704 body height   x 
CDH18 rs349475 5:19440168 unipolar depression x   
 rs1498103 5:19839503 response to TNF antagonist   x 
EPHA1  rs10808026 7:143099133 Alzheimer's disease, HDL cholesterol  x   

EPHA1-AS1 rs75045569 7:143109208 Alzheimer's disease   x 
 rs17382348 7:143204912 PHF-tau measurement  x  

SCGB1A1 rs3018614 11:62174721 BMI-adjusted waist-hip ratio   x 
 rs2509973 11:62179371 BMI-adjusted waist-hip ratio   x 
 rs17145884 11:62200176 serum gamma-glutamyl transferase (GGT), 

serum alanine aminotransferase (ALT) x   

DLEU1 rs797487 13:51224309 adolescent idiopathic scoliosis x   
 rs12429206 13:51446114 prostate specific antigen measurement   x 
ZNF192P2-TOB2P1 rs1150687 6:28162469 age at onset, myopia, refractive error x   

NKAPL rs1635 6:28227604 schizophrenia   x 
DPP3 rs148812168 11:66251451 LDL cholesterol measurement  x  

RHOD rs11602157 11:66827319 BMI-adjusted hip circumference   x 
 rs3923203 11:66835194 BMI-adjusted waist circumference   x 
ASCC2-MTMR3 rs5763555 22:30251180 heel bone mineral density   x 
HORMAD2 rs4820829 22:30524248 testosterone measurement x   
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