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12 Abstract

13 In Type 1 diabetes patients, even ultra-rapid acting insulins injected subcutaneously reach 

14 peak concentrations in 45 minutes or longer. The lag time between dosing and peak concentration, as 

15 well as intra- and inter-subject variability, render prandial glucose control and dose consistency 

16 difficult. We postulated that insulin absorption from subcutaneously implantable vascularizing 

17 microchambers would be significantly faster than conventional subcutaneous injection. Male athymic 

18 nude R. norvegicus rendered diabetic with streptozotocin were implanted with vascularizing 

19 microchambers (single chamber; 1.5 cm2 surface area per side; nominal volume, 22.5 µL). Plasma 

20 insulin was assayed after a single dose (1.5 U/kg) of diluted insulin human (Humulin®R U-100), 

21 injected subcutaneously or via microchamber. Microchambers were also implanted in additional 

22 animals and retrieved at intervals for histologic assessment of vascularity. Following conventional 

23 subcutaneous injection, the mean peak insulin concentration was 22.7 (SD 14.2) minutes. By 

24 contrast, when identical doses of insulin were injected via subcutaneous microchamber 28 days after 

25 implantation, the mean peak insulin time was shortened to 7.50 (SD 4.52) minutes. Peak insulin 

26 concentrations were similar by either route; however, inter-subject variability was reduced when 

27 insulin was administered via microchamber. Histologic examination of tissue surrounding 

28 microchambers showed mature vascularization on days 21 and 40 post-implantation.  Implantable 

29 vascularizing microchambers of similar design may prove clinically useful for insulin dosing, either 

30 intermittently by needle, or continuously by pump including in “closed loop” systems, such as the 

31 artificial pancreas.
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33 Introduction

34 In response to perturbations of plasma glucose concentration and other physiologic cues, the 

35 normal endocrine pancreas modulates its release of insulin (and other hormones); insulin, entering 

36 the portal venous circulation in approximately five second pulses and longer oscillations, rapidly and 

37 precisely maintains glucose homeostasis [1]. In Type 1 diabetes mellitus (T1DM), the endocrine 

38 pancreas fails to produce insulin in sufficient quantities, if at all [2]. Although pharmacologic insulins 

39 are a life-saving therapy, they fail to mimic the rapidity and precision of glucose modulation 

40 conferred by the normal pancreas [3]. Consequently, despite insulin therapy, diabetic patients remain 

41 vulnerable to a range of costly, long-term, disabling complications. 

42 Pharmacologic insulins are most often injected into the subcutaneous (SC) tissue of the 

43 abdominal wall or extremities; however, because of the relative avascularity of SC tissue [4], the 

44 dispensed insulin - depending upon its formulation - may require an hour or longer to attain its peak 

45 concentration in the blood [4]. This delay in absorption renders insulin therapy an exercise in 

46 predictive dosing, especially when anticipating the substantial swings in blood glucose concentration 

47 encountered during and following meals [5]. The lag time between SC dosing and achieving an 

48 effective insulin concentration in the blood also blunts the precision otherwise afforded by 

49 continuous glucose monitoring (CGM) devices, sophisticated dosing decision algorithms, precision 

50 insulin pumps, open- or closed-loop systems, and the “artificial pancreas” [4, 6]. 

51 Efforts to accelerate absorption of insulin have pursued two general approaches: novel 

52 formulations of pharmacologic insulins and altered routes of administration. One or more amino acid 

53 changes of the insulin molecule itself [7-12] and/or the addition of chemicals [13] reduce the 

54 tendency of native insulin to form multimeric complexes which first must dissociate into monomers 
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55 or dimers in order to be absorbed [14]. These modifications of pharmacologic insulin have yielded 

56 only incremental increases in the rate of absorption (reviewed in [4, 15]). Consequently, ultra-rapid 

57 insulins have not achieved wide-spread patient acceptance [4], in part because of increased drug costs 

58 [15] and a greater frequency of injection site reactions [16].

59 The second approach – alternative routes of administration affording more rapid uptake of 

60 insulin - have included intradermal microinjection [17] or “jet spray” [18, 19], intraperitoneal 

61 instillation [20, 21], or the inhalation of specially formulated insulins [22, 23]. None of these 

62 strategies has gained widespread clinical acceptance, in part because of unpredictable dosing, 

63 increased complication rates, and patient hesitancy [24, 25].

64 Although the lag times between SC injection and peak time (Tmax) have been somewhat 

65 foreshortened by the development of “ultra-rapid acting insulins” [Faster aspart (Fiasp), 63 min, 

66 URLj (Lyumjev), 57 min [15]],  the subcutaneous route is beleaguered by a second confounding 

67 problem: intra-patient variability of absorption of the specified dose [26-28] resulting in 

68 unanticipated blood glucose effects. This variance between anticipated and actual effect upon blood 

69 glucose concentration contributes to the incidence of both diabetic ketoacidosis (DKA) and 

70 importantly, hypoglycemic episodes [6], especially in those individuals who are constitutively 

71 “hypoglycemia unaware” [29, 30]. 

72 Unpredictable discrepancies between the intended and evinced biochemical effects of a 

73 particular SC dose are multifactorial. The vascularity of the subcutaneous space is not homogenous 

74 even within individuals [22, 31-35] and the SC composition is further altered by repeated injections 

75 [36, 37]. In a 2018 review [38], the multitude of factors affecting absorption of SC insulin are 

76 discussed in detail; they include, among many others: variations in the depth of needle penetration, 

77 including inadvertent intramuscular injection; dislodged catheters or mechanical issues associated 
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78 with insulin pump infusion sets [39]; and seepage of drug from the injection site. It stands to reason 

79 that intra-patient variability compounds inter-patient dosage algorithms; predictions and comparisons 

80 are therefore fraught, requiring complex modeling [40, 41].

81 To address the challenges posed by lagging absorption of even ultra-fast insulins and the 

82 inconsistency of intrasubject dosing, we evaluated in a diabetic R. norvegicus model, subcutaneously 

83 implantable vascularizing microchambers, IVMs (Fig 1A). These microchambers – of various 

84 footprints and capacities – are engineered of polytetrafluoroethylene membranes (PTFE) and have a 

85 surface configuration which promotes angiogenic ingrowth; an inner membrane simultaneously 

86 blocks host cells from entering and occupying the microchamber [42]. We report here that the IVM, 

87 implanted in the SC space, accelerates the absorption of inexpensive regular human insulin, 

88 achieving pharmacokinetic profiles potentially superior to ultra-rapid acting insulins. Importantly, 

89 our data also suggest that the IVM improves consistency of insulin delivery, thereby potentially 

90 avoiding hazardous deviations in blood glucose concentration.

91

92 Fig 1. The Procyon implantable vascularizing microchamber (IVM) and an illustrative clinical 

93 application.

94 (A) The vascularizing, microchamber (depicted before implantation), fabricated of PTFE, has a 

95 surface area per side of 1.5 cm2 and a nominal volume of 22.5µL. (B) One potential clinical 

96 application of the IVM is to couple it with an insulin pump. The infusion set connects the insulin 

97 pump to the SC implanted microchamber; the IVM’s connection tubing is fitted with a heal in place 

98 cuff fabricated from material that promotes vascularization. (C) A schematic of the vascularized 

99 microchamber, depicting the ingrowth of blood vessels to its surface and the flow of insulin from 
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100 within the microchamber, through the permeable membranes, and into the richly vascularized SC 

101 space surrounding the IVM.

102

103 Materials and methods

104 Experimental animals

105 Male athymic nude R. norvegicus between 9 - 12 weeks of age and weighing 250 - 350 g were 

106 purchased from Envigo (Livermore, CA, USA). Animals were housed for a seven-day 

107 acclimatization period before initiating any experimental procedures. All experiments were 

108 performed with the approval of, and in accordance with guidelines established by, the Institutional 

109 Animal Care and Use Committee (IACUC) at The University of Arizona.

110 Induction of diabetes

111 To avoid endogenous insulin in subject rats from cross-reacting in the human insulin assays, 

112 animals were rendered diabetic by a single intraperitoneal injection, 60 mg/kg, of streptozotocin 

113 (Sigma-Aldrich, St. Louis, MO, USA). Blood glucose concentrations were monitored daily using a 

114 Freestyle Lite Glucose Monitoring System (Abbott Diabetes Care Inc., Alameda, CA, USA). Rats 

115 were considered diabetic when blood glucose concentrations greater than 200 mg/dL were recorded 

116 on three consecutive days. Rats verified as diabetic were maintained with exogenous long-acting 

117 insulin (Lantus, Sanofi-Aventis, Bridgewater, NJ, USA) throughout the study; maintenance insulin 

118 treatment also serves to forestall insulin resistance [43]. Maintenance insulin therapy was suspended 

119 for 24 hours prior to each insulin kinetics study.
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120 Implantation of vascularizing microchambers (IVMs)

121 Two days after the initial insulin-kinetics assay two empty, 1.5cm2 per side, single-chamber 

122 (having a nominal internal volume of 22.5 L), implantable vascularizing microchambers, IVMs 

123 (Procyon Technologies LLC, Tucson, AZ, USA) (Fig 1A) were implanted subcutaneously on the 

124 dorsal aspect of each rat.

125 Insulin kinetics assays

126 Subcutaneous injection of human insulin 

127 The initial insulin kinetics assays were performed 7 days after STZ induction of diabetes. 

128 Nonfasted rats received a single subcutaneous injection of insulin human, 1.5 U/kg (Humulin R; 

129 Lilly, Indianapolis, IN, USA). Each dose of insulin was diluted in 0.5 mL of sterile saline (0.9%) 

130 solution, then injected subcutaneously using a glass Hamilton syringe fitted with a 20-gauge sharp 

131 needle. 

132 Blood sample collection

133 Blood samples (150 µL) were collected from the tail vein before injection (time = 0), and at 5-, 

134 15-, 30-, 60-, 90-, and 120-minutes following injection. Blood samples for insulin assays were stored 

135 on ice in 1.5 mL centrifuge tubes with EDTA until separation of plasma by centrifugation at 13,300 x 

136 g for 15 minutes at 4o C. Plasma samples were stored at -20o C.

137 Administration of human insulin via subcutaneously implanted IVMs
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138 On day 28 post-implantation, each rat received a single dose of insulin human, Humulin R, 1.5 

139 U/kg (Lilly, Indianapolis, IN, USA), diluted as described above. The insulin was then instilled into 

140 one of the two IVMs via its port. Blood samples for plasma insulin were collected and processed as 

141 described above.

142 Analysis of rat plasma samples for human insulin concentration 

143 Plasma samples collected from each insulin kinetics assay were analyzed for human insulin 

144 concentration using a commercial human insulin ELISA kit (Alpco, Salem, NH, USA). Samples 

145 were run in duplicate. The ELISA kit has a detection range of 3.0-200 µIU/mL and a sensitivity of 

146 0.399 µIU/mL. The measured insulin concentrations were converted from IU/mL to µg/mL 

147 according to the manufacturer’s recommended conversion ratios of 1 IU of human insulin = 6nmol = 

148 34.8 µg of insulin. 

149 IVM retrieval and histopathology

150 At the conclusion of the study (day 40), rats were euthanized, and the IVMs were retrieved for 

151 histology. Additional specimens were obtained 7 and 21 days after implantation from rats in a cohort 

152 not included in the insulin analyses reported herein. After removal, each IVM including its adherent 

153 tissue was placed in 10% neutral buffered formalin for fixation, then processed for paraffin 

154 embedding. Paraffin blocks were sectioned and 5µM slices were collected throughout the 

155 microchamber. Sections were stained with hematoxylin and eosin and imaged with a Keyence BZ-

156 X710 microscope (Keyence Co, Osaka, Japan). 

157 Statistical analysis
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158 Insulin kinetic curves

159 The concentrations of human insulin in each rat were normalized to zero by simple subtraction 

160 of the variance at t = 0 from all values for that animal. The insulin kinetic curves were created by 

161 calculating the mean values and standard deviations at each time point. In several instances, complete 

162 plasma insulin concentration data were not obtained for a given rat in a particular assay; if more than 

163 three of the seven data points were unavailable, the subject was excluded from analysis. Data from 

164 one animal in the subcutaneous injection (control) group was excluded from analysis on that basis.

165 Peak insulin times and concentrations 

166 The mean peak times (Tmax) and concentrations of the insulin kinetic assays were obtained as 

167 follows: for each subject the greatest plasma insulin concentration was identified, and both the time 

168 point (e.g., 10 min) and the insulin concentration at that time point were tabulated. The mean and SD 

169 for each category were then calculated. The two assays, subcutaneous injection at day -2, and IVM 

170 administration on day 28, were compared by the unpaired, two-tailed, t-test. The full kinetic curves 

171 were compared with the nonparametric Friedman’s test [44]. Statistical tests were conducted with 

172 GraphPad Prism version 9.4.1 for Windows (GraphPad Software, San Diego, California USA, 

173 www.graphpad.com). 

174 Results

175 Insulin-kinetics study after subcutaneous (SC) injection in diabetic rats 

176 Five days after successful induction of STZ diabetes, rats were injected subcutaneously with 

177 diluted human insulin (Humulin R), followed by blood sampling for plasma insulin concentration 

178 over a two-hour period. Consonant with the extensive literature documenting inter-subject variability 
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179 of insulin absorption after SC injection, the individual insulin curves were quite variable in timing 

180 and concentration between animals (Fig 2A), with no clear peak by visual inspection (Fig 2C). The 

181 mean peak of plasma insulin – Tmax – was calculated as 22.7 (n=11, SD 14.2, 95% CI 13.18 – 32.27) 

182 min post-injection and the peak concentrations averaged 12.3 (SD 3.16) ng/ml (Table 1). In the 

183 experiments described above, the Humulin R stock suspension was diluted in 500 uL sterile saline, 

184 approximately a 100-fold dilution. Because the rate of insulin absorption directly correlates with the 

185 concentration of mono- and dimers, dilution of the stock solution might seem to favor dissociation of 

186 multimeric insulin [9, 14]. In another experiment we compared two concentrations – diluted versus 

187 stock – of Humulin R insulin after SC injection. The plasma insulin curves did not vary significantly 

188 between the two concentrations (unpublished data), confirming that dilution of Humulin R did not 

189 per se affect its rate of absorption. 

190

191 Fig 2. Plasma insulin kinetics after either SC or IVM injection of regular insulin. 

192 Plasma concentrations of human insulin were collected over 120 minutes following either 

193 subcutaneous injection (A,C) or instillation into subcutaneous IVMs 28 days after implantation (B,D) 

194 of regular insulin human (Humulin R) in identical doses. Shown in A and B are the data for the 

195 individual subjects in each group of rats; in C and D are the insulin kinetic curves generated by 

196 plotting means and standard deviations (SD). N=11 rats in the SC injection group (one rat was 

197 excluded from the analysis because of incomplete plasma insulin concentration data); N=12 rats in 

198 the IVM group.

199
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200 Table 1. Mean peak times and concentrations of plasma insulin after subcutaneous or IVM 

201 injection in diabetic rats of insulin human (1.5 U/kg body weight).

Subcutaneous injection IVM injection on day 28

Number of subjects (n) 11 12

Body weight (g) 302.1 (SD 25.1) 364.9 (SD 29.6)  

Tmax (min) 22.7 (SD 14.2) 7.50 (SD 4.52) **

95% CI of Tmax (min) 13.18 – 32.27 4.626 – 10.39

Insulin concentration (ng/ml) 12.3 (SD 3.16) 11.7 (SD 4.97) NS

202 Given are means, standard deviations (SD), and 95% Confidence Intervals (CI). Although the peak 

203 concentrations are not significantly different (NS), the interval to peak concentration (Tmax) was 

204 significantly shorter (** p=0.0020, by the unpaired, two-tailed t test) when insulin was delivered via 

205 microchamber.

206

207 Insulin kinetics after administration via a subcutaneous microchamber

208 The implantable vascularizing microchamber (IVM) by Procyon (Fig 1A) is designed to 

209 provide a means for rapid, consistent absorption of insulin without repeated needle (or pen or pump 

210 cannula) injections; it measures 1.5 cm2 in surface area per side. Its surface is engineered to promote 

211 rapid vascularization. Published reports suggested that to be effectively vascularized, subcutaneously 

212 implanted devices typically require three to four weeks in mice [45, 46], two to four weeks in rats 

213 [47], and two months or less in primates [48]. We therefore conducted the insulin kinetics assays at 

214 28 days after implantation, anticipating mature vascularization by that time. Diluted insulin human 
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215 was instilled into the IVM at the same dose by body weight as in the SC injection control studies, 

216 described above.

217 At 28 days after implantation, 10 of the 12 individual plasma insulin curves peaked just five 

218 minutes after injection (Fig 2B), as did the mean value (Fig 2D). The Tmax for insulin (Table 1) was 

219 calculated as 7.50 (SD 4.52, 95% CI 4.626–10.37) min versus 22.7 (SD 14.2) min with conventional 

220 SC injection, a statistically significant difference (p = 0.0020, Table 1). Not only was uptake of 

221 insulin from the microchamber accelerated but the inter-subject variability appeared reduced (Fig 

222 2B); this was also attested by the standard deviations of the mean peak (Table 1) and of the early time 

223 points of the insulin curve (Fig 2D). Together, the data at day 28 after implantation, indicate that 

224 insulin absorption from the IVM is significantly accelerated with improved inter-subject consistency, 

225 compared to conventional SC needle injection.

226 Evidence of vascularization revealed by histopathology of retrieved 

227 IVMs

228 The peak insulin data presented in the preceding section strongly support the notion that 

229 vascularization of the SC tissues surrounding and invading the vascularizing membranes of the 

230 microchambers had matured by 28 days and had thereby facilitated the very rapid uptake of insulin. 

231 If so, histologic evidence of blood vessels immediately adjacent to the microchambers is likewise 

232 expected in the same time frame. 

233 To examine this supposition, IVMs implanted subcutaneously in rats for 7, 21 and 40 days 

234 were retrieved and examined histologically. Although the 1.5 cm2 microchambers were identical to 

235 the ones used for insulin kinetics studies, they had not been injected with insulin to avoid 
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236 confounding effects on morphology that might be induced by the diffusion of human insulin into the 

237 surrounding rat subcutaneous tissues. At 7 days after implantation (Fig 3A) a few vessels can be 

238 identified but by day 21, subcutaneous vessels in proximity to the vascularizing membranes are both 

239 prominent and plentiful (Fig 3B). Images of subcutaneous tissue surrounding the microchambers at 

240 40 days (Fig 3C-F) reveal the presence of mature vasculature structures with larger vessels quite 

241 close to the inner membranes of the IVMs. There was no histologic evidence of fibrotic overgrowth, 

242 even at the latest time point. Thus, the histopathology of explanted IVMs indicates that 

243 vascularization begins soon after implantation; the numbers of blood vessels greatly increase by three 

244 to about six weeks after implantation, an observation congruent with the increased rapidity of insulin 

245 uptake on day 28.

246

247 Fig 3. Histopathologic images of retrieved microchambers and the surrounding subcutaneous 

248 tissues

249 The images of H & E (hematoxylin and eosin)-stained sections, using 20X (A-C) and 40X (D-F) 

250 objectives, of IVMs retrieved 7, 21 or 40 days after implantation. The arrows point to vascular 

251 structures. For orientation purposes, the image in C is labeled to identify the surrounding (SC) tissue 

252 and the insulin delivery chamber.  The linear structure (gray) is the inner membrane of the IVM. 

253

254 Discussion

255 Here we report that a small (1.5 cm2 surface area per side), specially engineered PTFE, 

256 vascularizing microchamber (Fig 1) implanted subcutaneously facilitates more rapid uptake of 
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257 insulin than conventional SC injection. The IVM recruits the growth of blood vessels which establish 

258 a surrounding vasculature, which fully matures by about one month (Fig 3). Regular insulin human 

259 (Humulin R), when instilled into the IVM 28 days after implantation, achieves peak plasma 

260 concentrations significantly faster than an identical dose delivered by conventional SC injection, 7.50 

261 versus 22.7 min (Fig 2, Table 1). Additionally, inter-subject variability was reduced (Fig 2A,B). We 

262 therefore conclude that the subcutaneously implanted microchambers are functionally mature within 

263 weeks, not months.

264 The subcutaneous space is favored for insulin injection for patient convenience: it is a large 

265 space readily accessible for injection and easily examined for problems at the sites of skin 

266 penetration. Physiologically, however, it is less than ideal; its vascularity is both sparse and 

267 heterogenous. Moreover, repeated injections may generate inflammation and consequent fibrosis, 

268 rendering the microenvironment even less conducive to absorption of injected insulin. Finally, 

269 utilizing the SC space for insulin delivery currently requires repeated injections, by needle, pen or 

270 pump, their frequency depending upon the chosen insulin formulation(s) and the means of injection.

271 The primary clinical scenario for which we envisage the IVM achieving clinical utility for 

272 T1DM patients (Fig 1) is a conceptual extension of the experiments described in this report – namely, 

273 implantation in diabetic patients to facilitate the very rapid uptake of regular insulin. One might argue 

274 that accelerating absorption via an IVM is an unnecessary redundancy now that ultra-rapid acting 

275 insulins are available. However, the very rapid peak plasma insulin concentrations achieved with 

276 regular insulin via IVM more closely mimic the normal human pancreas and are likely superior to 

277 even ultra-rapid acting insulins injected SC [16, 49, 50]. The insulin kinetic curves (Fig 2 B, D) are 

278 compatible with an “inject-eat continuum” strategy: this would, first, synchronize the insulin peak 

279 with the prandial requirement; and second, avoid the pitfalls of inopportune delays of a meal by 
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280 simply postponing the injection. As shown in Fig 1, an insulin pump is easily connected to an IVM, 

281 ensuring rapid uptake of the pumped insulin; this would allow greater precision in dosing and rapid 

282 uptake of prandial boluses. Other challenging clinical scenarios would likewise benefit from rapid 

283 uptake of insulin and therefore better glucose control. One example is insulin therapy of diabetics 

284 during pregnancy, where precise glucose homeostasis is vital to the well-being, both immediate and 

285 long-term, of mother and fetus [51]. 

286 Another argument sometimes made is that rapid uptake of insulin confers more risk than 

287 benefit, for example, by triggering hypoglycemic episodes. However, the clinical safety and efficacy, 

288 especially in post-prandial control, of ultra-rapid acting insulins is now supported by many studies 

289 [15, 16, 52, 53]. The factitious “too rapid” assertion also deflects the many advances in continuous 

290 glucose monitoring (CGM) devices, insulin dosage-predicting algorithms, precision-dosing insulin 

291 pumps, open and closed loop systems, and the “artificial pancreas” (AP) [6]. To this point, a recent, 

292 comprehensive review of multiple input AP systems [54], identified two persistent challenges: lag 

293 times in acquiring blood glucose concentration data, and delays in absorption of insulin from SC 

294 depots. Our study is relevant to the latter concern, which echoes an earlier sentiment: for APs (and 

295 similar approaches) to achieve their full potential, the “applied insulin should induce ideally an 

296 instantaneous effect” [4]. The IVM potentially offers a clinical means of further closing the gap 

297 between insulin dose and blood glucose response.

298 Conclusion

299 Regular insulin human instilled into SC implantable vascularizing microchambers (IVMs) 

300 implanted 28 days previously in diabetic rats attains mean peak plasma insulin concentrations in 7.5 

301 (SD 4.50) min, versus 22.7 (SD 14.2) min following conventional SC injection. Inter-subject 
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302 variability was likewise reduced. Histologically, mature vascularization was evident at 21 and 40 

303 days after implantation, indicating that neovascularization surrounding the IVMs contributed to the 

304 rapidity of insulin uptake. We suggest that the implantable vascularizing microchambers reported 

305 herein have clinical potential for the painless, repetitive, reproduceable delivery of regular insulin 

306 with an absorption rate potentially exceeding that of ultra-rapid acting insulins.
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