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Abstract 

Objectives. This review aimed to evaluate previous studies using Near-infrared spectroscopy (NIRS) in dementia 

by summarising the results, determining the consensus in the literature, and delineating if, and how, NIRS 

experimental and analysis methods may be improved for future studies in dementia. 

 

Methods. Three databases (PsychINFO, Medline, Embase) were searched for original research studies using 

NIRS in dementia and prodromal disease stages. We included both observational and randomised control trials, 

and studies published in English. Animal studies, conference abstracts, and reviews were excluded.  

 

Results. From 759 identified records, 80 studies using NIRS in dementia and prodromal populations across a 

range of activation tasks testing memory (28), word retrieval (22), and motor (7) and visuo-spatial function (4), 

as well as in the resting state (29) were evaluated. Across these cognitive domains, dementia patients generally 

showed a blunted haemodynamic response, often localised to frontal regions of interest, and a lack of task-

appropriate frontal lateralisation. Prodromal stages, such as Mild Cognitive Impairment, revealed mixed results 

and were associated with either diminished responses or hyperactivity, accompanied by reduced cognitive 

function, the latter suggesting a possible compensatory neural response which is not present at the dementia stage.  

 

Conclusion. There is clear evidence of alterations in brain oxygenation in both dementia and prodromal stages 

across a range of cognitive domains and in the resting state, indicating an ability of NIRS to distinguish dementia 

from healthy ageing, or at-risk populations. A consensus as to the nature of these changes, however, is difficult to 

reach due to a lack of standardisation in optical techniques and processing methods. Further studies are required 

exploring more naturalistic settings and in a wider range of dementia subtypes.  
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1. Introduction 

 

The most common form of dementia is Alzheimer’s Disease (AD), characterised by amyloid 

plaques, neurofibrillary tangles, memory impairment, cortical shrinking and hippocampal 

atrophy [1]. Other degenerative forms include Dementia with Lewy Bodies (DLB), 

characterised by Lewy body inclusions and motor symptoms, Fronto-Temporal Dementia 

(FTD), associated with fronto-temporal degeneration, and vascular dementia (VaD), caused by 

ischemia often due to stroke or atherosclerosis [1]. Dementia is a progressive disorder wherein 

the gradual cognitive decline in prodromal stages such as Mild Cognitive Impairment (MCI) is 

a critical target for early intervention. The identification of individuals at high-risk of 

developing dementia prior to irreversible damage is essential as although the conversion rate 

from MCI to AD is as high as 12% per year [2], around 16% of those with MCI revert to normal 

cognition within a year [3].  

Advances in imaging and fluid biomarkers are rapidly progressing, however, there is a lack of 

brain-specific, low-cost, and readily accessible markers for clinical use. Imaging techniques 

such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) can 

be invasive, expensive, and limited to specialist centres. Conversely, fluid biomarkers do not 

provide regional brain information.   

Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging technique which uses near-

infrared light to measure brain oxygenation by exploiting the differing absorption spectra of 

absorbing molecules in the brain. Within an optical window of the near-infrared range (650-

950 nm), oxygenated (HbO) and deoxygenated haemoglobin (HbR) are the primary absorbers 

of light. Consequently, in NIRS systems, two (or more) wavelengths of light are shone into the 

brain and the detected light attenuation is used to estimate the concentrations of HbO and HbR 

which, due to neurovascular coupling, are considered analogous to brain activity. In 

continuous-wave NIRS specifically, light attenuation due to absorption is indistinguishable 

from light attenuation due to scattering effects, making only relative concentration changes 

from baseline measurable.  

 

NIRS is a low-cost, portable, and easy-to-use technology which can provide regional brain-

specific measures of brain oxygenation and metabolism. Alongside the associations between 

dementia and vascular dysfunction, NIRS may have great potential for use in both dementia 
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research and to support diagnosis and monitoring. The present article seeks to review the use 

of NIRS in dementia. The consensus in the literature shall be evaluated and future avenues for 

the adaptation of NIRS for use in dementia shall be delineated by critically evaluating the 

methodologies and analytical methods used. 

 

 

2. Methods 

a. Search strategy  

A systematic search of MEDLINE (1946 to 2021), Embase (1947 to 2021) and PsychINFO 

(1806 to 2021) was performed on the 26th of September 2022 to identify relevant articles for 

inclusion. The search was conducted using the following search terms: (Cognitive impairment 

OR Cognitive disorder OR Cognitive decline OR Vascular dementia OR Cognitive dysfunction 

OR Neurocognitive disorder OR Alzheimer* OR Dement* OR AD OR FTD OR DLB OR 

LBD) AND (Near-infrared spectroscopy OR Near infrared spectroscopy OR NIRS OR 

oxyhaemoglobin OR Tissue oxygenation index). Additional studies were identified through 

cross-referencing the bibliographies of the included studies. Two authors (EB, SS) screened 

abstracts and titles for relevant articles using Covidence (Veritas Health Innovation Ltd., 

Australia). Conflicts were resolved by a third reviewer (GB). Full texts of the screened studies 

meeting the eligibility criteria were then evaluated for inclusion. PROSPERO 

CRD42021297315.  

 

b. Inclusion and exclusion criteria  

Studies involving human subjects clinically diagnosed with dementia or in prodromal disease 

stages, and those published in English were included. Case-controlled studies testing both the 

target group and healthy controls, as well as those exclusively testing target groups, such as 

randomised control trials, were included. Studies not published in English, conference abstracts 

and animal studies were excluded.  

 

c. Data Extraction  

Data was extracted by two reviewers (EB, SS) and stored in a data extraction form created in 

Microsoft Excel for Mac Version 16.42 (Microsoft Corporation, Redmond, Washington). The 
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following information was extracted from the included studies: author, publication year, study 

design, sample size, and NIRS parameters and device.   

 

d. Quality assessment  

The quality of the included studies was assessed using the Newcastle Ottawa scale [4] for case-

controlled studies, the JADAD scale [5] for randomised control trials, and the National Heart, 

Lung, and Blood Institute quality assessment tool for observational cohort studies [6]. Quality 

assessment was performed by two authors (EB, SS). The results of this assessment are provided 

in the supplement (S2).  

 

 

3. Results 

 

The process for identifying relevant records is shown in Figure 1. The electronic search 

identified 759 records. Following title and abstract screening, 114 studies were eligible for full-

text screening in which 6 studies were excluded due to the wrong patient population, 4 for 

wrong study design, 24 were conference proceedings or abstracts, and 1 was a book chapter. 

One study was also identified through cross-referencing making a total of 80 studies for final 

evaluation.  

 

Since 1993, when the first paper was published using NIRS in dementia [7], there has been a 

steady increase in the number of papers published in the area (Figure 2). Of note is the gap in 

published studies between 1998 and 2004 which is likely due to a lack of commercially 

available NIRS systems for research.  

 

The identified studies took several different approaches and covered six primary domains: 

resting state (29 studies, Table S1) and activation studies testing memory (28 studies, Table 

S2), word retrieval (22 studies, Table S3), motor (7 studies, Table S4) and visuo-spatial 

function (4 studies, Table S5), and other tasks such as oddball tasks (11 studies, Table S6).  

 

 

4. Discussion 

a. Resting state measurements  
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Resting state brain oxygenation is reduced in prodromal dementia stages 

A total of 29 studies explored resting-state brain oxygenation (Table S1, Figure 3a). Six 

employed a Tissue Oxygenation Index (TOI) [8]–[13]. This a commonly used metric in clinics 

which provides a measure of absolute tissue oxygen saturation, both arterial and venous, and 

is taken from a single measurement location. Several studies found reduced TOI in amnesic 

MCI (aMCI) [8], [11], and cognitively impaired individuals [12], compared to controls. In 

support of its clinical use, reduced TOI was associated with poorer MMSE [8] and memory 

scores [11] in aMCI. Conversely, TOI has been used as a marker of brain oxygenation to 

investigate therapeutic efficacy with mixed results. Two studies observed negligible TOI 

reactivity in AD with midazolam administration [14], [15], whereas Viola et al [13] observed 

significant increases in TOI in AD with brain reperfusion rehabilitation therapy alongside 

improved MMSE scores. The unclear nature of the alterations in TOI may be due to issues with 

intra-device variation [16]. With regards to the use of TOI outside of the clinic, as it only 

provides a single spatially invariant measure, it does not capture spatial variations in brain 

oxygenation.  

 

Another commonly used method to measure resting state oxygenation, or rather 

cerebrovascular reactivity (i.e., the increase in HbO during rapid vasodilation caused by CO2 

inhalation), is through sit-stand manoeuvres or CO2 challenges which yielded mixed results as 

to differences between dementia and MCI, and controls [17]–[19]. Interestingly resting state 

oxygenation during such challenges reflects oxygenation increases caused by acupuncture 

therapy and galantamine treatment in MCI [20], VaD [21], [22], and AD [23]. In contrast, 

purely resting state data does not appear to differentiate between AD [24]–[26] and MCI [27], 

and controls.  

 

A pathophysiological process of interest in dementia is neurovascular decoupling [28] which 

can be explored using a multi-modal approach. Only two studies explored neurovascular 

decoupling in AD [26] and aMCI [19] using EEG-NIRS, however, these were limited by a lack 

of subject-specific information or low channel counts, preventing the exploration of spatial 

patterns of decoupling. Additionally, using broadband NIRS to measure neurometabolism 

would be invaluable to understand neurovascular coupling but has not been used in dementia.  
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Disorganisation of the cortex in dementia was identified via several computational methods 

Many studies explored connectivity, several of which identified disturbances, the nature of 

which is not well defined. This is part due to the diverse methods and metrics used to quantify 

connectivity across studies. One such method is ‘effective connectivity’, i.e., the causal 

influence of one region over another, which is reduced in MCI across several regions such as 

the bilateral prefrontal cortex (PFC), in which stronger coupling was associated with improved 

cognitive scores [29]. Alternatively, the signal time courses can be correlated to calculate 

correlation coefficients. Reduced coefficients were observed in the PFC in AD [30] with 

greater HbR connectivity in the right hemisphere in MCI [31]. Taken together these results 

support the hypothesis for a compensatory response in prodromal stages to support declining 

cognitive function which fails in dementia stages [32], although the diagnostic relevance of the 

HbR signal is unclear [33]. 

 

With regards to specific regions of interest, both MCI and AD show disturbances in dynamic 

functional connectivity (i.e. accounting for the temporal variability of connectivity) within 

long-distance connections in prefrontal and parietal cortices, and in the Default Mode Network 

(DMN) and fronto-parietal networks [34] (Fig 3b). Another method is calculating the ‘entropy’, 

i.e., complexity, of a signal, which is considered to reflect cognitive ability. Entropy has been 

observed to be reduced in AD, which in accordance with Niu et al. [34], was localised to regions 

in the DMN, fronto-parietal and ventral/dorsal attention networks [35]. 

 

The application of another powerful computational method, machine learning (ML), to NIRS 

has been growing rapidly in popularity within the healthcare sector. Despite this, few studies 

(10) used ML analyses, and only one focused on the prediction of a continuous variable [36] 

while the rest focused on classification of dementia stage. Most used simple ML models such 

as support vector machines and linear discriminant analysis. This is notable as recent studies 

have demonstrated higher dementia classification accuracies using more complex ML or deep 

learning models [24] in comparison to traditional models.  Two studies performed classification 

on resting state data, finding that classification of MCI from controls was more accurate using 

HbO compared to HbR [33]. The only study identified using broadband NIRS classified AD, 

MCI, and controls from their optical spectrum, finding a feature at 895 nm to be best at 

differentiating between AD and MCI [37], although what this indicates is unclear as the 

biological substance contributing to this peak could not be identified by the authors.  
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Only a few included studies (3) focused on multi-class classification, while the rest focus on 

binary classification between MCI/AD and controls. Chiarelli et al [26] used estimates of 

neurovascular coupling strength calculated from simultaneous EEG-fNIRS recordings and a 

multivariate linear regression approach to perform binary classification of AD and controls. In 

line with Cicalese et al [38] which performed multi-class classification, classification 

accuracies were improved when using combined EEG-fNIRS features [26].  

 

Most discussed studies are limited by small group sizes and group imbalance, which do not 

provide enough training examples per group for a sufficiently robust model. With larger 

volumes of patient data, prediction, and finer-scale, classification tasks can be realised with 

high accuracies. Finally, none of the included studies focus on interpretable ML, such that none 

of the features used in making a final prediction can be interpreted in a clinical context.  

 

 

b. Functional measurements  

Evidence for both hypo- and hyper-activation in dementia and prodromal groups during 

memory tasks  

Overall, 28 studies explored memory function in dementia (Table S2), many of which used the 

n-back task to test memory function (13), with mixed results. This task evaluates working 

memory (WM) and frontal regions, making it good for use with NIRS as it avoids monitoring 

through hair. Subjects are presented with a sequence of letters and must indicate whether the 

presented letter was the same as that just before (one-back) or before last (two-back). Two 

studies observed blunted haemodynamic responses in MCI [39], [40], with a gradation from 

healthy controls to MCI to AD [24], whereas three found no difference in functional response 

[27], [41] or connectivity [31] between MCI and controls. Interestingly, one study identified 

hyperactivation in MCI compared to controls [42]. Perhaps the discriminatory ability of the n-

back task is more subtle: there is evidence for differential WM load modulation across disease 

stages. Some observed differences in activation between MCI and controls only with high WM 

loads [43], [44] and others identified WM load modulation only in controls [45], [46]. 
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With respect to the use of WM tasks in the clinic, most studies reporting correlation results 

identified positive correlations between the magnitude of the HbO signal or functional 

connectivity metrics [47], and behavioural or clinical scores [44], [48]–[51] (Fig 3b) such that 

greater oxygenation was associated with better scores. Encouragingly, haemodynamic 

responses to the n-back task have been validated as having strong diagnostic potential using 

convolutional neural networks [39], [43]. Responses to the n-back task may also be sensitive 

markers for therapy responses, demonstrated by increases in oxygenation [20], [48], [52]. 

Perhaps surprisingly, two studies found improved memory performance to be associated with 

reductions in frontal activation in MCI with photobiomodulation therapy [53] and VR-based 

physical/cognitive training [54]. This may further support the idea of a compensatory 

hyperactive response in prodromal stages. 

 

Evidence for this also comes from studies using other WM tasks, such as the delayed matching 

to sample task or the digit verbal span task. Higher connectivity in aMCI [47], and larger HbO 

changes [55], [56] and greater entropy [57] have been observed in AD [57] and cognitive 

decline [55] compared to controls. However, similarly to the n-back task, several studies also 

identified hypoactivation in AD [20], [35], [58], [59], MCI [52], and specifically in aMCI [47], 

[50], [51]. Such variable responses are likely due to differences in analysis e.g., graph theory 

vs. entropy, task design, and the range of signal metrics used.  

 

 

Word retrieval is associated with blunted haemodynamic responses and distinguishable 

patterns of activation across dementia type and stage 

All the included studies assessing word retrieval (22, Table S3) used the verbal fluency task 

(VFT), or a modification of such. This is a frequently used paradigm in dementia in which 

subjects must words within a given category (‘semantic’) or beginning with a specific letter 

(‘phonemic’). Patient groups generally performed worse than controls, as was the case for AD 

[60]–[63], MCI [31], [61], [62], [64], asymptomatic AD [24], and the behavioural variant of 

FTD [62]. Such reduced behavioural performance was accompanied by smaller haemodynamic 

responses in AD [65]–[69], characterised by a longer latency [61], smaller peak amplitude, 

smaller area under the waveform, and lower amplitude [68]. These results largely agree with 

those from other imaging modalities, including hypometabolism identified using PET [70], an 
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overall ‘slowing' of neocortical EEG characterised by deactivated, synchronised patterns of 

activity [71], and altered functional connectivity using fMRI [72]. 

 

Several studies specifically focused on MCI, with varied results. A few studies observed 

hypoactivation [27], [40], [43], [73] (Fig 3c), particularly in the right parietal region [66], and 

reduced inter-hemispheric connectivity [31]. However, upon classifying between MCI and 

healthy controls using the HbO signal, the VFT was not as stable an indicator of MCI as the n-

back task [39]. In support of a lack of diagnostic potential of the VFT, Baik et al. [27] did not 

identify differences between MCI and AD. In line with this, the association between the 

magnitude of the haemodynamic response and clinically-relevant features such as MMSE score 

[66], [68], [74], or behavioural performance [62], [65], [75], [76], is unclear. 

 

Although the magnitude of the haemodynamic response during the VFT may not be clinically 

useful, the spatial patterns of activation during the VFT may differentiate between healthy 

ageing and dementia, as well as across MCI type [41], [64]. For example, differences between 

AD and controls are localised to frontal and bilateral parietal regions [67], whereas differences 

between AD and MCI are localised to right parietal regions [66]. A loss of activation 

asymmetry is also evident in both dementia [63], [65] and MCI [64] during word retrieval, 

however, one study found no significant lateralisation in either controls or MCI [73]. Despite 

this, the extent of lateralisation has been suggested to be a potential biomarker which indicates 

the recruitment of contralateral resources to support declining function [64], as is supported by 

the fMRI literature [77].  

Motor tasks previously used in NIRS may be too simplistic  

Of the seven studies testing motor function (Table S4), five used the dual-task walking 

paradigm [78]–[82] with wearable NIRS devices. This paradigm involves performing a single 

task (e.g., walking on their own) and a dual task, (e.g., completing a cognitive task, such as a 

VFT, whilst walking). This task revealed a potentially non-linear relationship between 

dementia severity, cerebral oxygenation, and motor performance, unlike memory function [24] 

or word retrieval [61]. For example, people with memory complaints had higher activation 

during dual-task walking compared to controls, whereas people with dementia had higher 

activation compared to both healthy controls and people with memory complaints in single-

task walking, yet significantly reduced activation in dual-task walking [79]. In addition, certain 

studies found differences between single- and dual-walking in MCI [78] or associations 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.11.23.22282361doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282361
http://creativecommons.org/licenses/by-nc/4.0/


 10 

between cognitive scores and activation [80], whereas others did not [81]. Such a lack of 

consensus is likely due to the fact that all of these studies, except one, recorded from the frontal 

cortex, which has a large degree of inter-subject variability [83], as opposed to recording from 

the motor cortex.  

 

Concerning studies directly assessing motor function, none used naturalistic tasks, such as 

walking or social interaction, but used simplistic motor tasks, such as hand-grip movements 

[84] and finger tapping [85]. This is surprising due to the advantages that NIRS has in terms of 

low sensitivity to movement and lack of physical restrictions, and the characteristic motor 

symptoms of certain dementia subtypes, such as DLB [86], which cannot be easily explored 

using imaging techniques such as MRI or PET. However, the emergence of wearable NIRS is 

relatively recent which may explain the lack of naturalistic task designs.  

 

 

More demanding visuo-spatial tasks may reveal clearer deficits in dementia 

Four studies explored visuo-spatial processing [25], [74], [87], [88] (Table S5, Fig 3d). Three 

of these used angle discrimination tasks, such as the Benton Line Orientation task, which 

requires participants to judge the angle at which a presented line is oriented [89]. However, 

these yielded unclear or contradictory alterations in patient groups [25], [74], [88], possibly 

due to a lack of standardised methodologies making it difficult to compare across studies. For 

example, Zeller et al [25] use a combined ‘dementia’ patient group. The absence of 

performance difference across groups [25], [74] may also suggest that more demanding visuo-

spatial tasks are required to reveal differences in the NIRS data.  

 

 

A handful of studies used ‘unconventional’ stimuli or oddball tasks 

Three studies explored sensory responses in dementia using NIRS (Table S6), such as 

responses to music [90] and olfactory stimuli, both of which discriminated healthy ageing from 

prodromal [91] and dementia stages [92].  

 

Alternatively, seven studies employed oddball tasks such as the Stroop task. Three found no 

difference in the haemodynamic response [27], [43] and connectivity [31] between MCI and 

controls, whereas three found reduced frontal activation in MCI [39], [40] and AD [24]. As 

most of these studies used the same task design and patient groups, except for Ho et al [24] 
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which used a four-minute task block, these mixed results may be surprising. This could be due 

to differences in statistical methods and signal metrics used to determine activation.   

 

 

c.  Experimental methods 

 

A wide range of NIRS devices and analysis methods were used which may underlie the range 

of results observed across studies  

All of the included studies used continuous-wave NIRS systems bar [36] which used a time-

resolved system, and [26] which used a frequency-domain system. Concerning analysis 

methods, none of the included studies performed subject-specific image reconstruction or 

source localisation. The variable results of the included studies may ultimately be explained by 

the widespread cortical atrophy and shrinkage present in dementia [93]. The subsequent 

increased distance of the cortex from the scalp may lead to data being recorded from 

extracerebral tissues rather than from the cortex. The integration of subject-specific anatomical 

data is thus necessary to avoid apparent differences in function being caused by anatomical 

variability or structural degeneration. High-density, variable length NIRS channel systems may 

also achieve better sensitivity to the cortex in dementia [94]. 

 

Such subject-specific information is also necessary for creating detailed topographical maps of 

brain activity using High-density Diffuse Optical Tomography (HD-DOT). Whilst no studies 

used HD-DOT and only a few studies used high-density systems (e.g., [27], [42]), Talamonti 

et al [82] used DOT and Li et al [59] performed source localisation of the NIRS signal, 

however, neither of these used subject-specific information.  Moreover, many studies only 

analysed the HbO signal and discarded the HbR signal, citing a higher signal-to-noise ratio of 

the HbO signal and greater correlation with BOLD fMRI signal [95]. Although the individual 

diagnostic potential of the HbO and HbR signal is not clear [33], several studies do find 

significant differences between these two signals (e.g., [96]), with HbR possibly being more 

relevant than HbO [73].  

 

Almost half of the reviewed studies either do not describe or have not performed motion 

correction. Older papers (1990s-2000s) usually did not correct for motion as such methods are 

a more recent development, however, many newer papers did not do so either. Instead, many 
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of these studies state that participants were instructed to remain still during recording (e.g., 

[13]) or that cables and optodes were tightly fixed to prevent motion (e.g., [17], [23]). Some 

performed motion detection and excluded channels or blocks that exhibited sharp signal 

changes (e.g., [24], [27]). Others performed explicit motion correction using a variety of 

algorithms, the most common of which are cubic spline interpolation (e.g., [18]) and wavelet-

based artifact removal (e.g., [57]). Similarly, several studies did not perform short-channel 

regression (e.g., [29]) to remove the influence of systematic scalp data. Most studies also only 

record from pre-specified regions of interest, limiting functional connectivity analyses. A more 

comprehensive review of the optical methods and their use in dementia is available at 

Srinivasan et al. (under review in Neurophotonics). 

 

 

The majority of studies focused on AD, with few studies exploring less common types of 

dementia 

A large proportion of studies (33) focused on AD, with 47 in MCI and only 3 in VaD, 1 in 

FTD, and none in DLB. The mixed evidence observed in MCI is perhaps due to the relatively 

small number of studies (11) that directly compare MCI with AD, and as MCI can be difficult 

to diagnose and classify into subtypes [97]. There was only a single longitudinal study 

exploring how brain oxygenation changes with disease progression [82], in which exploring 

even earlier prodromal stages such as APOE-4 carriers [98] is necessary for the assessment of 

NIRS’ clinical value. Few studies used NIRS simultaneously with other imaging modalities: 1 

PET, 3 EEG, and 1 fMRI. Additionally, many, particularly those measuring task-related 

activation, recorded exclusively from frontal regions. This is despite the established posterior 

degeneration in AD and DLB [99], areas not generally recorded from in the included studies. 

 

 

5. Conclusion 

Broadly, the previous literature identified disorganisation of the cortex, involving the DMN, 

fronto-parietal networks, and long-range connections across the brain (e.g., [34]). Dementia 

presented with hypoactivation (e.g., [35], [50]) with strong evidence for a generally suppressed 

haemodynamic response across cognitive domains. In prodromal stages, several studies found 

hypoactivation [41], [66] whereas others identified a possible compensatory response in the 

form of hyperactivation [42], [61]. Alongside the generally blunted haemodynamic response 
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in dementia, these mixed findings partially agree with the hypothesis of a ‘break point’ in 

prodromal stages [100]. This review highlights the necessity for standardised protocols both 

with regards to experimental design, e.g., ecologically valid task designs, and analysis methods, 

e.g., using subject-specific structural information for source localisation, for more holistic and 

generalisable outcomes. 
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Figure 1. The PRISMA flow 

diagram [106] depicting the 

number of records at each stage of 

the selection process.  
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Figure 2. Cumulative histogram of the number of studies identified using 

NIRS in dementia. 
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Figure 3. Increased resting-state functional connectivity variability (Q) from healthy 

controls to mild cognitive impairment, to Alzheimer’s Disease [34].. (B) Left. Schematic 

overview of the 1-back task. Right. Mild cognitive impairment is associated with a reduced 

and delayed rise in the haemodynamic response and Alzheimer’s Disease is associated with 

a decrease and delay in the response compared to healthy controls during memory encoding 

[49] . (C) Left. Schematic representation of the semantic verbal fluency task. Right Healthy 

controls have higher pre-frontal cortex activity compared to both mild cognitive impairment 

and dementia groups [27]. (D) Left. An example of the Benton Line Orientation task [89]. 

Right. Significantly reduced average HbO change in individuals with late life depression 

compared to Alzheimer’s Disease in a parietal channel during a visuo-spatial task [74]. 
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