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Abstract 
Background: Genome-wide Association Studies (GWAS) have reshaped our understanding of 
the genetic bases of complex diseases in general and neurodegenerative diseases in particular. 
Despite being a common disorder, dementia with Lewy bodies (DLB), which, together with 
Parkinson’s disease dementia (PDD), comprise the umbrella term Lewy body dementias (LBD), is 
far from being well-characterized genetically. This is primarily due to a lack of familial cases and 
difficulty recruiting large, deeply characterized cohorts, given the high rate of misdiagnosis. By 
performing the largest GWAS in DLB, we aimed to identify novel risk loci to gain a better 
understanding of this disease’s pathobiology. 
 
Methods: Here, we conducted the largest meta-analysis of genome-wide association studies 
performed in LBD, using a total of 5,119 cases and 20,988 controls, from five independent 
datasets, aggregating all previously published DLB genome-wide association results to date, as 
well as two previously undescribed cohorts. Additionally, we performed a sex stratified GWAS 
using the discovery datasets. We updated the heritability estimates for DLB and, to fine map 
these estimates, we used local heritability analysis. We calculated genetic correlation estimates 
between DLB and a range of other diseases and traits to identify potential pleiotropy. We also 
performed gene-set analysis to identify genes with excess burden of rare variability and pathway 
analysis. Lastly, we used the UK Biobank data to perform a PheWas using individuals at the 
extremes of genetic risk for DLB. 
 
Findings: Between November 2018 and September 2022 we analyzed 8.6 million single 
nucleotide polymorphisms in 3293 DLB cases, 1826 LBD cases and 20,988 controls, as well as 
phenotypes from the UK Biobank dataset. Despite more than doubling the sample size from the 
previous GWAS in DLB, we did not identify significant loci in addition to those previously reported 
at GBA, SNCA, STX1B, and APOE. However, the sex-stratified analysis revealed that the GBA 
and SNCA signals are mainly driven by males, suggesting a sex-specific genetic architecture of 
disease. Using only clinical and neuropathologically diagnosed cases, we highlight four loci 
surpassing the significance threshold. Using the largest cohort of DLB we update our heritability 
estimates to 13% and fine map these results highlighting regions of the genome with high 
heritability but no genome-wide significant result so far.  
 
Interpretation: These data provide the most comprehensive analysis of genetic variability in DLB 
to date. The fact that no novel risk loci have been identified after doubling the cohort size 
indicates the potentially significant role of rare variants in the genetic architecture of DLB and 
stresses the urgent need for larger, well-characterized cohorts of this disease for genetic studies. 
The sex-stratified analysis shows that males and females have different signatures of genetic risk 
for DLB. These results have widespread implications for clinical practice and clinical trials’ design 
in DLB. 
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Introduction 
Lewy body dementia (LBD) is an umbrella term encompassing two clinically distinct disease 
entities: dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD). DLB is the 
second most common form of dementia after Alzheimer’s disease (AD) and comprises up to 30% 
of all dementia cases 1. It is characterized by progressive cognitive decline and additional 
symptoms, such as visual hallucinations, parkinsonism, and rapid eye movement sleep behavior 
disorder 2. Despite this prevalence, the disease remains highly understudied 3. This disease’s 
clinical and pathological hallmarks make diagnosing it challenging, as they strongly overlap with 
Alzheimer’s and Parkinson’s diseases (PD) 4. It is currently estimated that approximately 20% of 
DLB diagnoses are incorrect 5. In addition, the only reliably replicated genetic signals involved in 
DLB (SNCA, GBA, and APOE) are also prominent features of the genetic architecture of both AD 
and PD 6,7, and therefore lack specificity for DLB. 
 
Recent work has focused on analyzing the genetics of DLB in large cohorts to identify novel 
associations. In 2018, the first DLB GWAS was conducted on 1,743 cases and 4,454 controls, 
detecting significant associations at GBA, SNCA, APOE and other suggestive signals 6. Following 
this report, a separate GWAS replicated the signals at APOE and GBA (but interestingly, not 
SNCA) in 828 cases and 82,035 controls 7. More recently, a GWAS was published merging PDD 
and DLB cases, with a total of 2,981 cases and 4,391 controls showing associations at GBA, 
SNCA, and APOE (presumably driven by DLB cases) as well as two novel signals at BIN1 and 
TMEM175 8. These two additional signals have also previously been associated with AD or PD 
9,10. However, polygenic risk scores (PRS) for AD and PD are not strongly predictive of DLB 11, 
even though these have around 70% accuracy in predicting their respective diseases 9,10 and 
reaching up to 84% accuracy in AD 12. These data suggest that, despite the overlaps, DLB has a 
unique genetic architecture. 
 
DLB has a different incidence in males vs. females, suggesting a sex-specific genetic component 
13,14. However, the effect of genetics on risk for DLB in a sex-stratified manner has not been 
determined thus far. In AD, some evidence suggests a role for different genetic risk loci in females 
vs. males 15,16, while in PD, a sex-stratified GWAS reported no differences between sexes but 
showed some sex-specific associations 17. 
 
In this study, we meta-analyzed four DLB GWAS cohorts and one cohort of LBD, including a total 
of 5,119 cases and 20,988 controls, making it the largest cohort assembled for any of the Lewy 
body dementias. We dissected the demographic stratification and potential functional implications 
of these results. We reviewed the polygenicity of the trait and compared it to AD and PD, as well 
as other common polygenic traits. 
 

Methods 

Study cohorts 
Cohort 1 consisted of the samples previously reported in 6 (1,191 DLB cases and 3,723 controls), 
with the exclusion of 25 samples due to updated diagnoses or cryptic relatedness, which were re-
calculated together with samples from Cohort 2.  
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Cohort 2 comprised 1,166 DLB cases and 5,831 controls and was genotyped on Illumina’s 
HumanOmniExpress chip (Supplementary Table 1). Control samples were obtained from the 
Cutaneous Melanoma GWAS Combining Multiple Populations and Risk Phenotypes 
(phs001868.v1.p1) and the National Cancer Institute (NCI) Head and Neck Cancer Study 
(phs001173.v1.p1). QC was conducted in the same manner described for Cohort 1, removing 
variants with a call rate below 95% and GenTrain scores below 0.7.   
 
Both Cohorts 1 and 2 were lifted over to hg38 and prepared for imputation using the tool from the 
McCarthy group available on (https://www.well.ox.ac.uk/~wrayner/tools/). Imputation was 
performed on the TOPMed platform 18. Samples of non-European ancestry were excluded via 
PCA analysis with 1000 Genomes, and individuals with relatedness above a 0.04 KING cut-off 
were excluded. SNPs deviating from Hardy-Weinberg equilibrium (5e-8), with a minor allele 
frequency below 0.001, and genotyped in less than 99% of samples were also excluded. The 
majority of cases in Cohorts 1 and 2 were pathologically diagnosed using the 2005 McKeith 
criteria 19, including individuals with an “intermediate” or “high” likelihood of meeting diagnostic 
criteria for DLB (n = 1,503). 
 
Cohort 3 summary statistics comprised 355 clinical DLB cases and 6,318 controls, before quality 
controls, from the Spanish GR@ACE/DEGESCO Study 20. Samples were genotyped using the 
Axiom 815K Spanish biobank array and imputed on the TopMed platform. Before imputation, 
SNPs with missingness above 0.025 and a Hardy-Weinberg equilibrium p-value of less than 1e-
15 were excluded. Samples with missingness greater than 0.02, excessive heterozygosity rates 
(F_HET > interval mean +/- 3sd), and outside +/- 3 median absolute deviation of the 1000 
Genomes European population were also excluded to control for population outliers and 
genotyping errors. Samples with discordant sex assignments were also excluded. After excluding 
these samples, any SNPs genotyped in less than 95% of samples were also removed. 
 
Cohort 4 summary statistics comprised 594 DLB cases and 2,112 controls, before quality 
controls, from the European E-DLB consortium. A subset of these samples was described 
previously 7. These samples were genotyped on the Illumina Infinium Omni Express-24 v1.1 
platform. QC parameters for this cohort followed those described in the original publication except 
imputation, which has been updated to use the TopMed platform.  
 
All four cohorts were harmonized using the sumstat-harmoniser from Open Targets 
(https://github.com/opentargets/genetics-sumstat-harmoniser) to correct for allele discrepancies 
between datasets. This tool was run using the TopMed reference VCF. Post harmonization, the 
summary statistics were also annotated using the dbSNP reference VCF for GRCh38. 
 
The replication cohort was obtained from a recently published association in LBD 8. It was QCed 
together with cohorts 1 and 2 to ensure no sample overlap. PLINK IBD analysis of relatedness 
revealed 784 samples with pi-hat values above 0.8 indicating sample overlap. These samples 
were excluded from the replication cohort leaving 1,826 cases and 1,920 controls (Table 1). The 
cases in the replication cohort comprise diagnoses of DLB and PDD, while the discovery cohorts 
focus on DLB exclusively. 
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Table 1: Discovery and replication cohorts 

  Total Males Females Neuropathologically 
diagnosed 

Cohort 1 
cases 1191 710 481 936 
controls 3723 1745 1978 . 

Cohort 2 
cases 1166 711 455 570 
controls 5831 3192 2639 . 

Cohort 3 
cases 355 123 232 0 
controls 6603 3382 3221 . 

Cohort 4 
cases 581 356 225 0 
controls 2911 1490 1421 . 

Meta-Analysis 
cases 3293 1900 1393 1506 
controls 19068 9809 9259 . 

Replication 
cases 1826 1131 674 1065 
controls 1920 972 948 . 

Meta-Analysis + Replication 
cases 5119 3031 2067 2571 
controls 20988 10781 10207 . 

Meta-analysis 
Analyses of the individual datasets were conducted using logistic regression implemented in 
PLINK v1.9, using covariates for sex and population stratification. Meta-analysis was also 
conducted in PLINK using the log-scale model, adjusting for unequal case-control cohorts 
(effective sample size = 4/(1/cases + 1/controls)). This association was also performed, including 
only males and females separately for the sex-stratified results. The Bonferroni threshold for 
genome-wide significance was 5.0 × 10!". A conditional analysis was performed for each GWAS 
locus significantly associated with disease by the addition of each respective index variant to the 
covariates. Quantile–quantile plots revealed minimal residual population substructure, as 
estimated by the sample-size-adjusted, genome-wide inflation factor λ1,000 of 1.01 (Supplementary 
Fig. 1). Power calculations were performed using the genpwr package in R using a logistic model. 
 

Heritability analysis 
We estimated the proportion of heritable SNPs in the meta-analysis results using LD score 
regression 21. Local heritability estimates were calculated using LAVA 22. LD blocks for the local 
heritability were obtained using the predefined regions provided by LAVA. For PD and AD, we 
used publicly available summary statistics 9,10. 
 

Genetic correlation 
The genetic correlation analysis was performed using publicly available summary statistics for PD 
10 and AD 9, which include the UK biobank dataset. Regression coefficients were calculated using 
LD score regression (LDSC) 21. We used the IEU Open GWAS database for other traits, which 
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contains over 10,000 curated, quality controlled, and harmonized complete GWAS summary 
datasets 23. Traits were filtered to only look at IEU-A datasets (datasets curated for the MR-Base 
tool) 24. Only summary statistics including more than 2,000 samples with data from males and 
females of European ancestry were included. Datasets were then munged and regressed using 
LDSC. 
 

Gene-set analyses 
Genome-wide gene-based association (burden) and pathway analyses were performed using 
MAGMA 25. For burden association, variants from the meta-analysis results were assigned to 
genes based on the overlap of their location with a gene window of 35 kb upstream and 10 kb 
downstream to include regulatory elements. Variants with MAF < 0.05, present in at least 3 out of 
the four cohorts and annotated with either missense or predicted high impact, were included in a 
model to assess gene burden. The association between variants in gene units and DLB was 
tested by mean-SNP association. The MAGMA p-values were corrected for multiple testing by 
adjusting for the total number of genes. For gene-set association, we included all variants with 
MAF greater than 0.01 that were present in at least three discovery datasets. Pathways were 
derived from MSigDB available gene sets, including Gene Ontology, KEGG, REACTOME, 
BIOCARTA, and the hallmark pathways (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). We 
used Bonferroni correction to determine enrichment. 
 

Phenome-wide association scan 
We used PHESANT—PHEnome Scan ANalysis Tool 26 to perform an automated phenome scan 
in the UK Biobank (UKBB). We derived polygenic risk scores from the meta-analysis results using 
PRSice-2 27 and applied those to the entire UKBB genotyping dataset (filtering for UKBB-
described European ancestry). We defined quantiles from the PRS distribution with individuals in 
the 5% lowest PRS and the 5% highest PRS, as described in 28. Phenotypes with more than 20% 
missing answers were filtered out. We adjusted for sex, age at recruitment, Townsend deprivation 
index at recruitment, genotype measurement batch, and the first ten principal components. In 
addition, we considered phenotype categories with a minimum size of 200 answers and converted 
fields with multiple instances to categorical (multiple) fields as implemented in PHESANT. The 
same procedure was repeated for sex-stratified meta-analyses and applied to males and females 
separately. 
 

Role of the funding source 
The funders of the study had no role in study design, data collection, data analysis, data 
interpretation, or writing of the report. The corresponding author had full access to all the data in 
the study and had final responsibility for the decision to submit for publication. 
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Results 

Meta-analysis 
The four discovery cohorts were meta-analyzed using a fixed-effects model implemented in 
plink2.0. The model was selected given the strict inclusion-exclusion criteria set for each cohort, 
such as filtering out those with strong evidence of originating from a non-European population, 
diagnostic criteria, adjustment for age, plus similar sex distributions in the full analysis and later, 
sex stratification. Because of this, we expect each cohort to be estimating the same common 
effect size. Despite more than doubling the sample size from previous analyses, no genome-wide 
associations were detected beyond those previously reported in GBA, SNCA and APOE (Fig. 1). 
As expected, all three loci replicated in the replication cohort. The STX1B/BCL7C locus on 
chromosome 16 showed suggestive significance, and when performing a joint analysis including 
discovery and replication cohorts, it showed a genome-wide significant p-value (Table 2).  
 
Given the mentioned diagnostic challenges with DLB and the substantial overlap we see between 
genetic signals with AD and PD, we also assessed the association using only individuals with 
both clinical and pathological diagnoses (Fig 1b). This analysis yielded the previously detected 
peaks at GBA, SNCA, APOE, and STX1B/BCL7C and additional genome-wide significant loci 
near FER, CTNNA3, LINGO1.  
 

 
Figure 1: Manhattan plots of the full DLB meta-analysis (a) and the meta-analysis including only pathologically 
diagnosed cases (b). The dashed black line indicates the genome-wide significant threshold at P < 5x10-08, while the 
dashed grey line indicates suggestive threshold of 5x10-07. Note that the y-axis has been capped at P=1x10-22 for 
better visualization of signals below APOE. Please refer to labels for maximum p-values of APOE. 

 
Recently, two loci have been suggested to be associated with LBD - TMEM175 and BIN1 8. Using 
the reported effect size and allele frequency for each of the leading variants at these loci, despite 
being adequately powered to detect them (0.988 and 0.993 power, respectively), we did not 
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identify significant associations in either of these loci. We also did not detect common variants at 
the LRP10 or PLCG2 loci, which were also reported to modulate risk for DLB recently 29,30. The 
reported variant in PLCG2 is of lower frequency, so it was excluded in our minor allele frequency 
filtering. However, frequencies in cases and controls in each tested cohort show no evidence of a 
difference, as indicated by the overall p-value calculated using the same methods above, without 
a frequency filter (rs72824905; p-value = 0.1566; BETA = -0.2821). 
 
The conditional analysis did not yield any additional genome-wide significant peaks. However, 
there was some evidence for independent signals at the GBA and SNCA loci (Supplemental Fig. 
2). 
 
Table 2: Top SNPs from meta-analysis.  

Chr Pos SNP Locus A1 AX P Beta A1_Freq Replication_P  Joint_P Joint_BETA 

1 155143675 rs12742181 GBA T C 1.99E-20 1.0838 0.011067 0.000616 1.99E-20 1.0838 

4 89837794 rs2301134 SNCA-AS1 G A 7.12E-14 0.2311 0.507666 0.000407 1.84E-16 0.2171 

16 30985551 rs12443627 BCL7C/STX1B C G 6.48E-08 0.1726 0.587742 0.078258 3.20E-08 0.1507 

19 44908684 rs429358 APOE C T 1.73E-122 0.8976 0.142765 1.62E-30 1.90E-150 0.863 

Results show p-values and effect sizes from fixed effects model. Joint_P and Joint_BETA refer to the joint analysis of 
discovery and replication. 

Sex-stratified meta-analysis 
Cohorts were stratified by sex and meta-analyzed as described in the discovery meta-analysis 
section. This yielded a male cohort of 1,900 cases and 9,809 controls and a female cohort of 
1,393 cases and 9,259 controls. Significant associations at GBA and SNCA were only present in 
males (Fig. 2). Stratifying these results by sex reduces some of the heterogeneity in the overall 
meta-analysis. However, there is still high heterogeneity within the most significant SNPs in 
males, suggesting perhaps population or diagnostic heterogeneity (Supplementary Fig. 3).  

 
Figure 2: Meta-analysis stratified by males (a) and females (c) and locus zoom plots of GBA (b) and SNCA (d) loci in 
females. The purple diamonds in locus zoom plots indicates the top associated SNPs from the males GWAS. 
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In addition to not showing significance in females, the GBA and SNCA loci have significantly 
different effect sizes between sexes with no overlap in their confidence intervals (Table 3). 
 
Table 3: Significant loci in the sex-stratified analysis 

Chr Pos SNP Locus A1 A2 Male_BETA Male_SE Male_P Female_BETA Female_SE Female_P 

1 155401328 rs145330152 GBA C A 1.1848 0.1373 6.14E-18 0.6514 0.1745 0.0001891 

4 89860504 rs6841352 SNCA-AS1 T G 0.3098 0.0417 1.08E-13 0.1362 0.0462 0.003199 

19 44908684 rs429358 APOE C T 0.8512 0.0516 4.66E-61 0.9648 0.0572 7.83E-64 
Chr: chromosome; Pos: Position; SNP: top significant SNP from the noon-stratified analysis; A1: allele 1; A2: allele 2; 
Male_BETA: beta values in males; MALE_SE: standard error values in males; Male_P: p-value in males; 
Female_BETA: beta values in females; Female_SE: standard error values in females; Female_P: p-value in females. 

For rs145330152 and rs6841352, there is significant evidence that these effects differ by sex (p = 
0.016 and p = 0.005, respectively). For rs145330152, males had an effect ~1.8 times larger than 
females (95% CI:1.15 - 2.5-fold increase) and 2.27 times larger for rs6841352 (95% CI:1.38 - 
3.17-fold increase). There was no difference between the sex-stratified datasets at the APOE 
locus (rs429358; p=0.14, 95% CI 0.95 - 1.31). P-values were calculated using a z-test as 
described in 31. 

Low Frequency Variants  
A gene burden analysis was conducted to assess the role of low frequency variation (MAF < 0.05) 
(Fig. 3). Only GBA was significantly associated with DLB, with three variants leading the signal 
(NM_000157.4:p.(Glu365Lys), p.(Asn409Ser) and p.(Thr408Met)).   
 

 
Figure 3: Genome-wide plot of gene burden results. Shown here are associations from variants with Ensembl VEP 
annotation of either missense or high impact, and those variants with MAF below 0.05 and found in at least ¾ of the 
meta-analysis cohorts 

Heritability 
Using the full meta-analysis data, we estimated the heritability of DLB on the liability scale using a 
disease prevalence of 0.004 32 to be 13.11% (SE = 0.03). To obtain a fine-mapping of the overall 
heritability in DLB, we applied the tool LAVA, using predefined blocks of LD to identify regions of 
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high heritability in the genome. Unsurprisingly, APOE and GBA were in the two highest heritability 
regions, with highly significant heritability estimates (p= 6.45E-123 and p= 7.13E-21, 
respectively). Interestingly, the third highest region was on chromosome 13, encompassing three 
genes not previously associated with DLB: EFNB2, ARGLU1 and FAM155A (Table 4). This result 
is in line with our previous analysis showing a disproportionate high heritability on chromosome 
13 despite identifying no genome-wide significance results 6, using an orthogonal method (Fig. 
4a).  
 
To identify potential pleiotropic associations between the high heritability regions and other 
complex traits, we interrogated the PhenoScanner database 33. Associations within these regions 
include IgG modifications in the chr3:186602046-187939199 locus, as well as associations 
relating to metabolism and growth in the chromosome 8 locus. Notably, the SNCA locus is not 
among the regions with the highest heritability (Fig. 4b). 
 

 
Figure 4: Genome-wide plot of LAVA h2 values in DLB meta-analysis (a). Positions are in hg19. Regions with the 
largest number of associations as detected by PhenoScanner within these top heritable loci (b). Trait groupings based 
on OLS ontology search. 

 
Table 4: LAVA loci with the highest DLB heritability 

Locus chrom start stop n.snps h2.obs p 

1 19 45040933 45893307 148 0.0249706 6.45E-123 

2 1 154685546 156813845 492 0.008275 7.13E-21 

3 13 107037865 108521978 743 0.00807014 2.73E-16 

4 3 186602046 187939199 633 0.00714227 5.73E-15 

5 4 20086839 21416380 531 0.00712706 6.50E-15 

6 13 101573737 103050417 837 0.00707812 3.21E-13 

7 10 79952997 81190573 618 0.00695684 3.19E-12 

8 7 36507691 37981936 701 0.00675776 7.81E-12 

9 8 116094204 118300068 587 0.00651134 1.60E-12 
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Positions are in hg19. Chrom: Chromosome; start: locus start position as defined by LAVA; stop: locus end position as 
defined by LAVA; n.snps: number of snps within the locus; h2.obs: estimated local heritability; p: p-value of heritability 
estimate. 

Genetic Correlation 
We determined the genetic correlations between DLB and traits reported in the MRCIEU GWAS 
catalog using LDSC. As previously reported, we saw a positive correlation between DLB and 
“Years of schooling”. This correlation seems to be driven exclusively by the male genetic results. 
Most negatively correlated traits included multiple sclerosis, phenotypes relating to smoking use, 
type 2 diabetes, and anthropometric traits corresponding to a greater body mass (Fig. 5). When 
performing the genetic correlation estimate between males and females, we identified a non-
significant correlation (rg=0.30; se=0.28; p=0.28), further supporting a sex-specific genetic 
architecture. 

 
Figure 5: Top genetic correlations between MRCIEU traits. Color indicates -log10(pvalue). 

 
To dissect the specific loci that underpin genetic correlations between common 
neurodegenerative diseases, we mapped each of the previously identified GWAS hits in AD, PD 
and DLB to the blocks predefined by LAVA for the European population mentioned above. We 
then estimated the level of genetic correlation at each locus between the diseases. Interestingly, 
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some loci, such as the HLA region, TMEM175, ECHDC3, and ADAMTS4 showed strong 
correlation between AD and PD. 
 
Additionally, several AD and PD loci showed strong correlations with DLB, with GBA, APOE, 
BIN1, and SCIMP displaying the most significant p-values (Fig. 6). 
 

 
Figure 6: AD and PD GWAS loci correlations across the three most common neurodegenerative diseases. Note that 
genes with multiple correlations reflects multiple LAVA loci being mapped to the same GWAS association locus. Color 
indicates -log10(p-value). APOE p-value has been capped at 1e-15 to capture variation at less significant loci. The 
APOE region has a p-value of 5.45E-132 between AD and DLB. 

Gene-set Enrichment 
Gene-set enrichment revealed the strongest enrichments in aspartic-type endopeptidase activity, 
APP catabolic processing, and cell surface-related proteins (Fig. 7). These two most significant 
associations were mainly driven by the association at chromosome 1, upstream of GBA.  
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Figure 7: Summary of top (P<0.001) associated GO biological processes genesets in the meta-analysis. The size of 
points reflects beta values. 

Phenome-wide association study 
We investigated the relationships between weighted PRSs constructed from the meta-analysis 
results and phenotypes or traits available from the UK Biobank. This analysis showed significant 
associations with family history of dementia, apolipoprotein, and cholesterol levels (Fig. 8). Many 
of these associations can be directly attributed to the strong effect APOE has on various 
measured phenotypes, while others, such as anthropometric measurements, are unlikely to be 
directly driven by APOE genotype.  
 
Phenotypic characterization of the male and female PRSs was limited due to low sample size in 
these cohorts and yielded no significant associations. However, the impact of these different 
genetic profiles is particularly appreciable in the effect sizes for AD and PD-related risk. Males 
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with high male-DLB genetic risk have an increased incidence of familial PD, but only paternally 
(Fig. 9). Likewise, females with high female-DLB genetic risk have an increased incidence of 
maternal AD, while this trait was not among the most significant in males (Supplementary Table 
2).   

 
Figure 8: PheWAS summary generated via PHESANT software in the DLB meta-analysis. Results shown stratified by 
PRS extremes generated with (A) and without (B) the APOE region to better understand this strong effect on risk. 
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Figure 9: Male vs female differences in PheWas results. Since no phenotypes were genome-wide significant, only betas 
were plotted to visualize areas of greatest differences between males and females based on the respective sex-
stratified GWAS previously described. 

Discussion 
This is the largest genome-wide study in DLB, using a cohort that doubles the size of previous 
studies. Despite the substantial increase in cohort size, we do not observe additional associations 
to those previously identified at GBA, SNCA, and APOE. The genetic architecture of DLB may be 
comprised of associations with lower frequency variants that we are still not powered to identify 
with the current cohort size, as previously suggested 11. It is also possible that the clinical 
heterogeneity and difficulty in accurately diagnosing DLB contribute to these findings. As an 
example of this heterogeneity, we identify a sex difference in the genetic results suggesting that 
genetics are a more prominent risk factor for DLB in males than females. Using cohorts of 
comparable size, we failed to identify associations at GBA and SNCA in females. This finding may 
also partially contribute to the higher prevalence of DLB in males compared to females and is an 
important aspect to consider when selecting cohorts for clinical trials. A recent report on AD has 
shown that using sex-dependent autosomal effects improves the predictive ability of the genetic 
results 34. Additionally, it has been recently shown that there are sex-specific associations with 
cerebrospinal fluid biomarkers in DLB 35. One of the results was lower levels of CSF alpha-syn in 
females, a finding that would be in agreement with a lack of association at this locus, assuming 
the mechanism of association is through an increase in expression of SNCA, as previously 
demonstrated 6. Lastly, sex is an important driver of brain pathology and clinical phenotypes of 
DLB, as recently stated in both clinical and neuropathologically-confirmed samples 36. Together, 
these findings add support to a disease pathobiology that has some sex-differences. 
The absence of an association at GBA in females is interesting as this locus has shown 
heterogeneous results in different publications. A study in an Italian cohort of DLB observed 79% 
of GBA mutation carriers were male. Notably, this sex stratification was less pronounced in PDD 
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(64%) and absent in PD (49%) in the same study 37. On the other hand, Blauwendraat and 
colleagues reported that GBA has a more significant p-value in females compared to males in 
their sex-stratified GWAS in PD 17. Lastly, in a Spanish GWAS in PD, GBA showed no association 
with disease 38, further highlighting the heterogeneity present at this locus in PD. 
One approach to minimize heterogeneity is using cases with the highest diagnostic confidence. 
For DLB, that means including individuals with both clinical and pathological diagnoses of the 
disease. Performing a GWAS using this subset of cases highlights the same three loci as 
associated with disease in the larger cohort and shows four other loci surpassing Bonferroni. The 
chromosome 16 locus (BCL7C/STX1B) had been previously highlighted as associated with DLB 
and is also associated with both PD and AD. The LINGO1 locus has been previously associated 
with essential tremor 39, and given that there is a recognized increase in dementia among 
essential tremor patients 40, it is plausible these results reflect the same association reported 
here. CTNNA3 encodes alpha-T-catenin and is a binding partner of β-catenin, which interacts with 
PSEN1 41. It was also shown to be associated with the level of plasma Aβ42 in LOAD 42, 
suggesting a role in dementia. The FER locus has not been associated with neurodegenerative 
phenotypes, although associations have been reported with anthropometric traits 43. The loci 
identified in the pathological subset analysis should be interpreted with caution. Although they are 
genome-wide significant, they are borderline significant, and we are unable to properly replicate 
them in independent datasets since these are not available. 
An important locus in PD is the one encompassing LRRK2; mutations in this gene are one the 
most common causes of PD and common variants are associated with sporadic forms of disease. 
This makes LRRK2 an interesting therapeutic target in PD. Interestingly, we do not see a signal at 
this locus (lowest p-value at LRRK2 was rs138538499; p=2.76E-3), with the nearby by locus 
CNTN1, which we previously reported contained a suggestive signal, showing a p-value of 
p=8.29E-6. These data suggest that therapeutic approaches targeting LRRK2 might be less 
effective in DLB than PD. 
 
The increase in sample size also allows us to attempt to replicate recently published associations. 
For example, a recent report 30 detailed how a low-frequency variant in PLCG2 is associated with 
DLB. We did not see that association in our cohort that uses about 4x the number of cases. 
Similarly, two loci were recently reported to be associated with LBD (TMEM175 and BIN1) 8. 
Although the inclusion criteria for LBD are different than that for DLB (the former includes PD with 
dementia, the latter does not), we do not see evidence of association for either locus in our data. 
It is plausible that these are associations driven by PDD cases, reinforcing the importance of 
properly characterizing cases and datasets, particularly when studying diseases with clinical and 
diagnostic heterogeneity. 
 
To quantify how much of the genetic liability the large meta-analysis can explain, we generated 
updated heritability estimates. Using our discovery cohort, we estimate the liability-scale 
heritability of DLB as 0.1313 (S.E. 0.0317), which is only slightly lower than the heritability 
estimated for PD (0.18-0.26) 10. We used the recently developed method LAVA in our discovery 
dataset to narrow down the genome regions harboring high heritability. As expected, the two loci 
with highest heritability overlap APOE and GBA. Interestingly, chromosome 13 contains the next 
highest heritability regions, following previous data suggesting a disproportionally high heritability 
given the chromosome size 6. Using LAVA, we can fine-map that chromosome-wide heritability to 
specific loci. Since we do not identify significant associations, variants of lower frequency or 
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exceedingly low effects in these loci likely drive these results, highlighting the need for larger DLB 
cohorts to be studied. 
To identify traits that have been associated with loci within our highest heritability regions, we 
performed a PhenoScanner analysis using these regions. As expected, we identify Alzheimer’s-
related traits in chromosome 19 and Parkinson's in chromosome 1. We also identify several 
immune-related traits in chromosomes 3 and 13, suggesting a potential overlap between DLB and 
these phenotypes.  
 
Given the many parallels between DLB, PD, and AD, we sought to use the known genetic risk loci 
for each of them to identify local correlations using LAVA. Two AD loci are correlated with both 
PD and DLB - BCL7C/STX1B and CLU, while no PD loci are strongly correlated with AD and 
DLB. The BCL7C/STX1B locus, which also encompasses the KAT8 gene, seems to be the only 
locus with some evidence of association across all three neurodegenerative diseases. One of the 
genes at the locus, KAT8, directly interacts with KANSL1 of the NSL complex 44. KANSL1 has 
been suggested to be the causative gene driving the MAPT signal and has also been associated 
with AD 45,46. In PD, the locus has been associated via GWAS and differential expression data 
47,48.  
 
We identified significant genetic correlations with other traits and diseases. “Hippocampus 
volume” showed a positive correlation with DLB, a finding that we do not see in PD or AD, even 
though this is one of the most affected brain areas in dementia. “Years of schooling” was also 
positively correlated with DLB, which seems to be driven by males since no significant correlation 
was observed for females. Our results also show a positive correlation of DLB with AD and a 
negative correlation with PD, using the publicly available summary statistics for these diseases, 
although neither of these correlations reached significance. We identified a negative genetic 
correlation between DLB and type-2 diabetes. Interestingly, a recent report found a similar result 
for AD, suggesting that therapeutic strategies for these diseases would need to be disparate 49. 
 
The PheWas analysis identified several traits associated with the genetic risk from DLB that are 
largely driven by the strong effect that APOE has in a variety of traits. When excluding APOE from 
the risk score, there were no significant traits identified. We were unable to identify significant 
associations with traits in a male and female specific PheWas, likely due to the lower sample size 
in these cohorts. However, in females there was a trend for maternal AD risk, while in males the 
risk was associated with paternal PD.  
 
We acknowledge some limitations in our study. First, our study population is of European 
descent, and the inclusion of genetically diverse samples is critical to improving our 
understanding of the genetic bases of disease. We use a cohort for replication for which the 
diagnostic criteria are not the same as those used for discovery. However, we note that no other 
cohorts are available that could be used to replicate the discovery findings. We have calculated 
heritability and genetic correlation estimates for our DLB cohort using LDSC. It is known that this 
method was designed and calibrated for large-scale sample sizes, which suggests that some of 
the heterogeneity in these analyses may be a consequence of the relatively small cohort size. 
The sex-stratified female cohort is smaller than the male cohort and this could underlie the 
differences in associations between the two cohorts. However, this cohort is well-powered to 
detect the associations identified in the male stratified cohort with >0.999 and 0.98 statistical 
power to identify the variants at GBA and SNCA at an alpha of 5x10-08, respectively. 
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In summary, despite more than doubling the size of previous GWAS in DLB, we do not identify 
additional common variants associated with this disease in our main discovery dataset. It is 
plausible that this is because the genetic architecture of DLB comprises lower frequency and/or 
effect size variants, for which larger, well-defined cohorts are necessary to identify them. It also 
may be a reflection of unappreciated heterogeneity in these cohorts as a pathologically diagnosed 
subset yielded an additional four genome-wide significant signals. However, since this is a smaller 
subset of the cohort, these signals would require independent replication. For the first time, we 
identify a sex-specific genetic signature in DLB that may contribute to the distinct disease 
prevalence in males and females. These results also suggest that some of the heterogeneity we 
observe in our data is driven by the distinct genetic basis of DLB in males and females. 
Altogether, these findings represent a substantial advance in our understanding of the genetic 
architecture of DLB and provide a foundation to develop therapeutic interventions as well as 
improved diagnostics for DLB and dementia more broadly. 
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