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Neuroimaging has revealed that migraine is linked to alterations
in both the structure and function of the brain. However, the re-
lationship of these changes with aging has not been studied in
detail. Here we employ the Brain Age framework to analyze
migraine, by building a machine learning model that predicts
age from neuroimaging data. We hypothesize that migraine pa-
tients will exhibit an increased Brain Age Gap (the difference
between the predicted age and the chronological age) compared
to healthy participants. We trained a machine learning model to
predict Brain Age from 2,771 T1-weighted magnetic resonance
imaging scans of healthy subjects. The processing pipeline in-
cluded the automatic segmentation of the images, the extraction
of 1,479 imaging features (both morphological and intensity-
based), harmonization, feature selection and training inside a
10-fold cross-validation scheme. Separate models based only on
morphological and intensity features were also trained, and all
the Brain Age models were later applied to a discovery cohort
composed of 247 subjects, divided into healthy controls (HC,
n=82), episodic migraine (EM, n=91), and chronic migraine pa-
tients (CM, n=74). CM patients showed an increased Brain Age
Gap compared to HC (4.16 vs -0.56 years, P=0.01). A smaller
Brain Age Gap was found for EM patients, not reaching sta-
tistical significance (1.21 vs -0.56 years, P=0.19). No associa-
tions were found between the Brain Age Gap and headache or
migraine frequency, or duration of the disease. Brain imag-
ing features that have previously been associated with migraine
were among the main drivers of the differences in the predicted
age. Also, the separate analysis using only morphological or
intensity-based features revealed different patterns in the Brain
Age biomarker in patients with migraine. The brain-predicted
age has shown to be a sensitive biomarker of CM patients and
can help reveal distinct aging patterns in migraine.
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Introduction

Migraine is a prevalent and chronic condition known for its
recurrent and debilitating headache episodes. Migraine can
be classified into two categories based on the frequency of
headache days per month, namely episodic migraine (EM)
and chronic migraine (CM) (1). Due to the inherent char-
acteristics of migraine and its widespread occurrence, it im-
poses a substantial burden on both individuals and society as
a whole (2).
Migraine is associated with changes in the brain. Beyond
the direct effects (i.e., the experience of pain during the ic-

tal phase), neuroimaging studies have discovered alterations
in the migrainous brain during the interictal phase encom-
passing both the structural and functional levels (3–5). Dif-
ferences between EM and CM have also been reported (6–
8). Even though the structure and function of the brain are
also impacted by changes due to brain development and ag-
ing, the interplay between those and changes related to mi-
graine has not been explored in depth. Bell et al. (9), for
instance, focused on the pediatric age range, finding age- and
puberty-dependent alterations in the functional connectivity
of multiple networks in children with migraine using resting-
state functional Magnetic Resonance Imaging (fMRI) and
showing that brain changes associated with migraine begin
in infancy and are modulated by development. Chong et al.
(10) studied morphological changes of EM patients along age
and found that patients with migraine have age-related thin-
ning of regions compared to the control group. Using fluo-
rodeoxyglucose positron emission tomography (FGD-PET),
M. Lisicki et al. (11) showed that episodic migraine patients
exhibit specific metabolic brain modifications while aging.
Recently, the so-called Brain Age paradigm has been pro-
posed to explore the relationship between aging and disease
(12). Using machine learning techniques from neuroimaging
data, chronological age can be accurately predicted in healthy
individuals. After training a Brain Age model, the difference
between an individual’s chronological age and the age pre-
dicted by the Brain Age model is usually referred to as "Brain
Age Gap", "Brain Age Gap Estimate" or "brain-predicted age
difference" (brain-PAD), and has been proposed as an age-
adjusted index of structural brain health. Research has shown
the Brain Age paradigm to be sensitive to many neurologi-
cal, psychiatric, and metabolic disorders, showing a positive
Brain Age Gap, higher age compared- to the healthy brain,
in disorders such as Alzheimer’s, schizophrenia, and type II
diabetes, among others (13–15). Conversely, protective so-
ciological and lifestyle factors including years of education,
physical exercise, playing music, or meditation have been
associated with a negative Brain Age Gap (16–18). An in-
creased predicted Brain Age has even been associated with
higher allostatic load and elevated overall mortality risk (19).
Even though other pain-related conditions have been stud-
ied using the Brain Age paradigm (20–23), to the best of our
knowledge, migraine has not been explored from this per-
spective.
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In this work, the Brain Age framework was employed to in-
vestigate migraine on a dataset composed of structural T1-
weighted (T1w) MRI from EM and CM patients, together
with normal controls. We hypothesized that migraine patients
will exhibit an increased Brain Age Gap compared to healthy
participants. Furthermore, we aimed to detect possible as-
sociations between the Brain Age Gap and clinical charac-
teristics in the patient groups exploring the role of different
imaging features.

Materials and methods

Developing a robust brain age model involves several crucial
steps. Firstly, it is imperative to assemble a diverse, broad,
and representative dataset that encompasses neuroimaging
data alongside corresponding chronological ages. The size
of the dataset plays a significant role, as a larger dataset en-
ables greater precision and generalizability in the final model.
Subsequently, feature extraction is performed to capture per-
tinent information from the neuroimaging data. This process
ensures that only informative and discriminative features are
included in the model.
Once the features have been extracted, an appropriate ma-
chine learning algorithm is selected for age prediction based
on the neuroimaging data. Common choices include support
vector machines or neural networks. The chosen algorithm
is then trained using the dataset, and techniques such as reg-
ularization, cross-validation, and hyperparameter tuning are
employed to optimize performance and prevent overfitting.
The trained model is next evaluated using a separate dataset,
employing metrics such as mean absolute error (MAE) or
correlation coefficients to assess accuracy and generalization
capabilities. This evaluation step provides valuable insights
into the model’s performance and its ability to accurately es-
timate brain age.
Finally, the trained brain age model can be applied to new
and unseen neuroimaging data. In our case, we apply it to a
dataset composed of healthy controls, patients with episodic
migraine, and patients with chronic migraine.

Brain age model. To create and evaluate our age predic-
tion models, we compiled a dataset (hereinafter referred to
as Model Creation Dataset) consisting of 2,771 structural
T1w MRI scans of healthy adults aged 18 to 60 from differ-
ent studies and databases that were either publicly available.
These include: the Dallas Lifespan Brain Study (DLBS) (24);
the Consortium for Reliability and Reproducibility dataset
(CoRR) (25); the Neurocognitive aging data release (Neu-
roCog) (26); The OASIS-1 dataset (27); the Southwest Uni-
versity Adult Lifespan Dataset (SALD) (28); the Informa-
tion eXtraction from Images dataset (IXI) (29); and the Cam-
CAN repository (available at http://www.mrc-cbu.
cam.ac.uk/datasets/camcan/) (30, 31). In addition
to these, we included a set of healthy adults from the Labo-
ratorio de Procesado de Imagen (LPI), our own institution.
Individuals who presented neurological or psychological di-
agnoses or cognitive impairments were eliminated from the

OASIS-1 or CoRR databases. Table 1 depicts the basic fea-
tures of the Model Creation Dataset.
Table 1: Summary characteristics of the datasets used in the Model Creation
Dataset, sorted by median age.

Dataset No.
Cases

No. Females
(%)

Age Range
(Median)

CoRR 935 479 (51.2) 18-60 (22)

NeuroCog 190 107 (56.3) 18-60 (22)

LPI 91 33 (36.3) 18-53 (24)

OASIS-1 218 126 (57.8) 18-60 (25)

IXI 384 203 (52.9) 20-60 (39)

DLBS 174 112 (64.4) 21-60 (39)

SALD 393 249 (63.3) 19-60 (40)

CamCan 386 198 (51.2) 18-60 (42)

Model
Creation
Dataset

2771 1507 (54.4) 18-60 (28)

From the T1w images, FastSurfer (32) was employed to ex-
tract a total of 1,479 features. Fastsurfer uses Deep Learning
to perform brain segmentation based on the Desikan-Killiany
atlas (33, 34). Two types of features were extracted:

• 624 morphological features, including whole brain fea-
tures, the volume of cortical and subcortical gray mat-
ter regions and white matter regions from the atlas, as
well as the surface, thickness and curvature of the cor-
tical regions. This feature set will be referred to as
Morphological Feature Set.

• 855 intensity-based features extracted from the same
regions. This feature set will be referred to as Intensity
Feature Set.

Together, all 1,479 features make up the Combined Feature
Set. The three feature sets obtained using this procedure were
the basis for further analysis.
To assure their quality, segmentations were manually in-
spected. In Supplementary Table 1, Supplementary Figure 1
and Supplementary Table 2, features and regions of interest
are covered in greater detail.
MRI acquisitions obtained at different sites and/or using dif-
ferent protocols can differ in their intensity levels, which can
introduce a bias in the Brain Age-predicting models. In or-
der to cope with this problem, we used ComBatGAM (35)
to harmonize the features from the Intensity Feature Set and
the Combined Feature Set, using age, sex, and estimated total
intracranial volume (eTIV) as covariates.
Afterwards, the cases were randomly divided into an 8:1:1
ratio for training, validation, and testing. We conducted a 10-
fold cross-validation training procedure over the harmonized
features to predict age. We flattened outliers of each feature,
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Figure 1: Comprehensive illustration of the methodologies employed for the training of the Brain Age models and the generation of brain predicted-ages. Model Creation
shows the steps taken to train the Brain Age model on the Model Creation Dataset and choose the final model applied on the Application Dataset : a) Image processing
includes Fastsurfer for brain segmentation and extraction of intensity and morphological features, thus building three feature sets: the Morphological Feature Set, Intensity
Feature Set and the Combined Feature Set. For each of these feature sets, a feature selection procedure is performed in a 10-fold cross-validation scheme creating feature
sets of 20, 30 and 40 features to feed the machine learning models (SVR, RF and MLP) for each fold. b) Validation is performed to select the best combination of feature set
size and machine learning technique. c) Test on the Model Model Creation Dataset to assess performance of the Brain Age prediction model. Model Application depicts the
use of the chosen model on the patient and healthy groups. Brain Age Gap is calculated as the difference between the predicted and the actual age. Differences in Brain Age
Gap are then analyzed.

defined as values on the 97.5th or 2.5th percentile. In ad-
dition, each characteristic was adjusted to the range (-1, 1)
using min-max normalization. Each fold underwent feature
selection, defining three sets of 20, 30, and 40 characteristics.
The selection of features was accomplished in two steps. Ini-
tially, a filter was used to choose the first decile features based
on the mutual information between features and age in the
training set. Next, the final feature were chosen by employ-
ing a forward feature selection approach with gaussian mix-
ture models to optimize the mutual information between a
subset of features and age (36). As regressors, support vector
regressor (SVR), random forest (RF), and a multilayer per-
ceptron (MLP) were evaluated. Figure 1 depicts the process
followed. By combining these three regressors with distinct
feature sets of 20, 30, and 40 characteristics for each fold, a
total of 90 models were trained. Predictions were obtained
for the validation and test set for each fold. Validation re-
sults were used to select the Brain Age model to be selected
as the best-performing, while test results were exclusively
employed to report the accuracy of the Brain Age model on
the Model Creation Dataset. We are aware that Brain Age
models suffer from regression dilution, which causes bias in
Brain Age predictions. Therefore, in order to avoid possible
spurious associations, a correction for this effect was applied
(37, 38). A linear regression was fitted between the real age
and validation results of each of the regressors of the ensem-
ble. The intercept (α) and slope (β) of each fit were then
used to correct the predictions obtained for the studied groups
following the equation:

CorrectedPredictedAge = (Predicted Age−β)/α (1)

This approach was repeated for each of the aforementioned
feature sets. The training procedure was performed using the
scikit-learn Python library for machine learning (39). The

SVR and RF models were imported from the library while
the MLP was implemented using PyTorch (40). Details of
the MLP implementation and the hyperparameters for each
model are described in Supplementary Table 3.

Participants. A total of 247 subjects were included in this
study, divided into healthy controls (HC, n=82), EM (n=91),
and CM patients (n=74). This dataset, on which the Brain
Age model previously described was applied, will be here-
inafter referred to as Application Dataset. Patients were
recruited from the outpatient headache unit at the Hospital
Clínico Universitario de Valladolid (Spain), a public tertiary
care institution that accepts patients from both secondary care
and primary care. Inclusion criteria were: a) migraine diag-
nosis using the third edition of the International Classifica-
tion of Headache Disorders (ICHD-3) beta and ICHD-3 cri-
teria (1, 41); b) a stable clinical state in the last six months;
and c) expressed willingness to partake in the study, coupled
with the voluntary signing of the informed consent document.
We excluded patients with the following conditions: a) high-
frequency episodic migraine, with 10 to 14 headache days
per month; b) other painful conditions; c) known major psy-
chiatric diseases (described as anamnesis or the presence of
depression or anxiety in the Hospital Anxiety and Depres-
sion Scale (42)); d) other neurological diseases; e) drug or
substance abuse; and f) pregnancy. At the time of inclusion,
no preventive treatment was given to the patients. Partici-
pants were requested to complete a headache diary and were
diagnosed with EM if they experienced 10 headache days per
month or less and CM if they met the ICHD-3 criteria.
Age- and sex-matched HC were recruited through hospital
and university colleagues, as well as ads at these institutions,
using convenience sampling and snowball sampling. No HC
were included if they had a current or previous history of mi-
graine, or if they had any other neurological or mental dis-
order following the same exclusion criteria as for migraine
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Figure 2: Age distributions of studies in the Model Creation Dataset and the Application Dataset, ordered by median age.

patients.
We gathered sociodemographic and clinical data from all
patients, including migraine illness duration (years) and
headache and migraine frequency (days per month).
The study was approved by Hospital Clínico Universitario
de Valladolid’s local Ethics Committee (PI: 14- 197). All
participants read and signed a written consent form before
their participation.

Image acquisition and processing. High-resolution 3D
T1w MRI data were acquired for all subjects using a Philips
Achieva 3T MRI unit (Philips Healthcare, Best, the Nether-
lands) with a 32-channel head coil in the MRI facility at the
Universidad de Valladolid (Spain). Acquisition parameters
were the following: Turbo Field Echo (TFE) sequence, rep-
etition time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, flip
angle=8o, 256× 256 matrix size, 1× 1× 1 mm3 of spatial

resolution, and 160 sagittal slices covering the whole brain.
Image acquisitions for migraine patients were performed dur-
ing interictal periods (defined as at least 24 hours from the
last migraine attack). Details about the acquisition protocols
of each public dataset are described in Supplementary Ta-
ble 4. If more information is required, further details can be
found in each portal of the databases used.

Following the image acquisition, image segmentation, fea-
ture extraction and harmonization were also performed on
the Application Dataset as described for the creation of the
Brain Age model. Next, Brain Age was estimated for each
participant, including correction from the regression dilution.
Since we conducted a 10-fold cross-validation for the train-
ing, validation and testing of the Brain Age model, an ensem-
ble formed with the average result of the trained model from
each fold was used to obtain the final prediction. Finally, the
Brain Age Gap was calculated as the difference between the
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Table 2: demographic and clinical characteristics for the Application Dataset. Not all patients completed the headache diary. Complete data was available from 87 EM
patients and 72 CM patients.

HC (n = 82) EM (n = 91) CM (n = 74) Statistical Test

Woman Nº. (%) 68 (82.9 %) 75 (82.4 %) 68 (91.9 %) sex - χ2 = 3.56, P = 0.17†

Age, y 35.7 ± 12.0 36.4 ± 9.9 37.8 ± 9.7 age - ANOVA = 0.86, P = 0.43‡

EM n = 87; CM n = 72;

Duration of migraine history, y 14.1 ± 10.7 19.8 ± 10.7 t = -3.32, P = 0.001§

Duration of Chronic migraine, mo 28.4 ± 35.3

Headache frequency d/mo 3.5 ± 2.1 23.5 ± 6.0 U = 66, P < 0.001‖

Migraine frequency d/mo 3.6 ± 2.0 13.6 ± 6.8 U = 225.5, P < 0.001‖

Data expressed as mean ± SD
†Chi-square test
‡ANOVA
§Two-tailed, unpaired Student t test
‖Mann-Whitney U test

corrected predicted age and the chronological age of each in-
dividual.

Model interpretation. The significance of each imaging
feature in the Brain Age estimation was evaluated using
SHapley Additive exPlanations (SHAP) (43). SHAP is a
game-theory-based model-agnostic explanation method for
machine learning models that evaluates the contribution of
each feature to a given prediction. By employing this ap-
proach, a group-level comparison of distinct brain imaging
features can be conducted to determine their significant con-
tribution to age prediction. Additionally, the evaluation of the
influence of individual features on each participant’s Brain
Age prediction is made possible, as exemplified in the study
conducted by Ballester et al. (44).
The SHAP value for a particular feature for a specific pre-
diction can be interpreted as the difference in the prediction
when that feature is omitted from the model. SHAP values
reinterpret complex models as a linear function:

g(z′) = φ0 +
∑

φiz
′
i (2)

where z’ is a simplified version of the input features of the
model, φ0 is a reference value of the model (in our case is a
value close to the average age of the training data), and φi, the
attribute effect of the feature which deviates the prediction
from the reference value. In a database with N participants
and M features, for example, SHAP generates anN×M ma-
trix, where each value represents the contribution of feature
m to the prediction of participant n.
We calculated the SHAP value for each subject for a deeper
understanding of the regressors. Since many features are
repeated across the different regressors, we summed up the
contribution of repeated features into a single value. The fi-
nal matrix was divided by 10 since our ensemble model is the
average of the results of the 10 regressors trained during the
10-fold cross-validation.

Once we had the final matrix, we aggregated the values for
each of the groups considered (HC, EM and CM) by sum-
ming up the absolute values of the matrix along the partic-
ipant’s axis. The best 15 features in terms of their absolute
contribution for each group were selected for each model of
the ensemble. Unique features among the three groups stud-
ied were selected as the most informative features.

Statistical analysis. The performance evaluation of the
Brain Age models was conducted using two metrics: the
MAE and Pearson’s correlation coefficient (r). The MAE
was calculated as the average of the absolute values of the
residuals, which were obtained by subtracting the predicted
age from the actual age for each individual in the group. The
MAE serves as a comprehensive measure of the prediction
error across the entire group, with lower values indicating a
better fit. On the other hand, Pearson’s correlation coefficient
measures the strength and direction of the linear relationship
between the predicted ages and the real ages. Higher values
of r indicate a better fit of the model. The specific formu-
las for these metrics can be found in equations Eq. (3) and
Eq. (4). Further exploration of these performance metrics
can be found in the work from de Lange et al. (38).

MAE = 1
N

N∑
i=1
|ỹi−yi| (3)

r =
∑

(yi− ȳ)(ŷi− ¯̂y)√∑
(yi− ȳ)2 ∑

(ŷi− ¯̂y)2
(4)

We assessed the normality and homogeneity of variance for
age and duration of migraine in the Application Dataset using
the Kolmogorov-Smirnov test and Levene’s test for equal-
ity of variances, respectively. If the null hypothesis was not
rejected in both tests, we performed a one-way analysis of
variance (ANOVA) to determine significant differences in
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Table 3: Validation results for the three regressors tested. Results are given as the average and the standard deviation of the values obtained from each fold of the 10-fold
cross-validation scheme after age bias correction. The values in bold show the combination with the best result.

SVR RF MLP

MAE r MAE r MAE r

20 features 7.40 ± 0.50 0.82 ± 0.02 6.59 ± 0.51 0.84 ± 0.02 5.99 ± 0.55 0.86 ± 0.02

Combined Feature Set 30 features 7.21 ± 0.50 0.83 ± 0.02 6.59 ± 0.48 0.84 ± 0.02 5.81 ± 0.47 0.86 ± 0.02

40 features 7.10 ± 0.42 0.83 ± 0.02 6.58 ± 0.48 0.84 ± 0.02 5.79 ± 0.38 0.87 ± 0.01

20 features 8.49 ± 0.66 0.78 ± 0.02 8.75 ± 1.05 0.76 ± 0.03 7.46 ± 0.85 0.80 ± 0.02

Morphological Feature Set 30 features 8.18 ± 0.65 0.79 ± 0.02 8.62 ± 0.93 0.77 ± 0.03 7.31 ± 0.76 0.81 ± 0.02

40 features 7.96 ± 0.55 0.80 ± 0.02 8.50 ± 0.74 0.77 ± 0.02 7.13 ± 0.52 0.81 ± 0.02

20 features 9.25 ± 0.67 0.75 ± 0.02 9.12 ± 0.68 0.75 ± 0.02 8.39 ± 0.76 0.77 ± 0.02

Intensity Feature Set 30 features 9.15 ± 0.75 0.75 ± 0.02 9.10 ± 0.75 0.76 ± 0.02 8.33 ± 0.93 0.78 ± 0.03

40 features 9.09 ± 0.65 0.76 ± 0.02 9.19 ± 0.77 0.75 ± 0.02 8.24 ± 0.68 0.78 ± 0.02

the ages of the three groups. Gender-significant differences
were identified using a chi-square test. For comparing clin-
ical characteristics between migraine patients (i.e., duration
of migraine history in years for both groups of patients), we
used a two-tailed unpaired t-test if the null hypothesis was
not rejected by the Kolmogorov-Smirnov; alternatively, we
used the Mann-Whitney U test.
We performed an analysis of covariance (ANCOVA) on the
Brain Age Gap results for each pair of groups, adding eTIV
and sex as covariates. To verify that the Brain Age Gap calcu-
lated for each group was approximately normal and that the
variances between groups were comparable, we performed
the Kolmogorov-Smirnov test and the Levene test. In the case
of a negative Levene’s test, we verified that the variance ratio
did not exceed 2 (45). We reset the P value threshold correct-
ing for multiple comparisons using the Bonferroni correction
method (P threshold = 0.0167).
Regarding the model interpretation, We conducted a Kruskal-
Wallis test on the SHAP values obtained for each of the
highly important features of each regressor trained to analyze
differences in feature importance among the studied groups.
A non-parametric test was chosen due to the non-normality of
the SHAP values. To account for multiple comparisons, we
applied the Benjamini-Hochberg correction method. We per-
formed pairwise comparisons using the post-hoc Connover-
Iman test, correcting its p-values for multiple comparisons
using the Benjamini-Hochberg method if the Kruskal-Wallis
Test was significant.
Finally, we computed the Pearson’s correlation coefficient
between the Brain Age Gap and the clinical characteristics
of the migraine groups, correcting for multiple comparisons
using the Benjamini-Hochberg method. All statistical tests
were conducted in Python.

Results

Demographics. There were no significant differences be-
tween the groups (HC, EM and CM) in the Application

Dataset regarding age or sex. Table 2 shows the demo-
graphic and clinical characteristics of the dataset, while Fig-
ure 2 shows the age distribution of the subjects, together with
those in the Model Creation Dataset.

Performance of the Brain Age model. Table 3 provides a
summary of the validation results for the models tested with
the three feature sets studied after age bias correction. Re-
sults before the bias correction can be found in Supplemen-
tary Table 5. The ensemble model formed by MLPs with a
set of 40 selected features provided the greatest performance
among the evaluated models in all feature sets and was there-
fore selected to perform all the Brain Age predictions whose
results are described next.
For the test data, training on the Model Creation Dataset, the
Brain Age model working with the Combined Feature Set
obtained a MAE and r of 5.95 years and 0.85. On the Appli-
cation Dataset, this same model yielded an MAE and Pear-
son’s correlation of 6.26 years and 0.84 for the HC group.
With regard to the Brain Age model working only with the
Morphological Feature Set, its performance was MAE = 7.12
years and r = 0.80 on the Model Creation Dataset, and MAE
= 7.83 years and r = 0.74 on the Application Dataset for the
HC group. Finally, the Brain Age model working only with
the Intensity Feature Set, it yielded MAE = 8.19 years and r
= 0.78 on the Model Creation Dataset, and MAE = 9.27 and
years r = 0.64 on the Application Dataset for the HC group.

Brain Age Gap in migraine. Using the Combined Fea-
ture Set, CM patients exhibited a statistically significant in-
creased Brain Age Gap (average +4.16 vs -0.52 years, P =
0.010) compared to HC. EM patients showed an intermediate
Brain Age Gap (average +1.21 years), and neither compar-
isons with HC nor CM yielded statistical significance. Fig-
ure 3 graphically depicts these results, together with scatter-
plots showing the brain-predicted age and the chronological
age in both the Model Creation Dataset and the Application
Dataset.
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Figure 3: The results of each of the regressors build are shown. The MLPs selecting 40 features demonstrated the best results in validation for all the feature sets. For each
trained regressor on every feature set: I) Ensemble MLPs result in the test set of each fold of Model Creation Dataset. II) Distribution of the Brain Age Gap values obtained
for each of the studied groups. III) Brain Age Gap for the three groups. Statistical significance is denoted by an asterisk (*) to indicate significant findings.

When only employing the Morphological Feature Set, CM
showed an increased Brain Age Gap with respect to both
HC and EM (+7.54 vs 3.15 and 3.56 years, respectively), al-
though these differences were not statistically significant (P
= 0.07 and P = 0.17). Interestingly, the average Brain Age
Gap for HC and EM were very similar in this case.
Finally, when only employing the Intensity Feature Set, CM
again showed an increased Brain Age Gap with respect to
HC and EM, although differences were not statistically sig-
nificant in this case either. Figure 3 and Table 4 depict these
results.

Model interpretation. Following the SHAP procedure de-
scribed in Methods, 16 features from the regressor trained
on the Combined Feature Set were selected. Among them,
SHAP values differed significantly between CM patients and
HC for the left hemisphere lateral orbitofrontal cortex gray
matter volume, left hemisphere superior frontal gyrus gray
matter volume and the left hemisphere Insula average thick-
ness (p < 0.001 for all cases). For the first two features,
the left hemisphere lateral orbitofrontal cortex gray matter

volume and the left hemisphere superior frontal gyrus gray
matter volume, significant differences were also found in the
SHAP values between EM and CM (p < 0.01 in both cases).
No other significant differences were found for the remain-
ing characteristics among the studied groups. These results
are graphically depicted in Figure 4.

Regarding the regressor trained on the Morphological Fea-
ture Set, 17 features were selected. Among them, nine fea-
tures were significantly different between HC and CM, and
ten, (the previous one plus one more) were significantly dif-
ferent for the EM-CM comparison. These are: the volume of
the right Putamen (HC-CM p < 0.05, EM-CM p < 0.01), the
volume of the superior frontal gyrus of the left hemisphere
(HC-CM p < 0.001, EM-CM p < 0.01), the volume of the
lateral orbitofrontal cortex of the left hemisphere (HC-CM
p < 0.001, EM-CM <0.01), the volume of the subcortical
gray matter (EM-CM p < 0.01), the volume of the superior
frontal gyrus of the right hemisphere (HC-CM p < 0.001,
EM-CM p < 0.01), the total gray matter volume (HC-CM
p < 0.001, EM-CM p < 0.001), the volume of the middle
temporal gyrus of the right hemisphere (HC-CM p < 0.01,
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Table 4: ANCOVA results for Brain Age Gap calculated for each regressor trained. Normality and equality of variances were tested before applying the ANCOVA. Age, sex,
and eTIV were included as covariates. The η2

p effect sizes were small (η2
p < 0.06) for all comparisons. Statistically significant elements are shown in bold.

ANCOVA

HC-EM

ANCOVA

HC-CM

ANCOVA

EM-CM

F-value 1.734 6.796 1.110

Combined Feature Set Effect size (η2
p) 0.012 0.043 0.007

p-value 0.190 0.010 0.294

F-value 0.102 3.237 1.924

Morphological Feature Set Effect size (η2
p) <0.001 0.021 0.012

p-value 0.750 0.074 0.167

F-value 1.802 4.094 0.336

Intensity Feature Set Effect size (η2
p) 0.011 0.026 0.002

p-value 0.181 0.045 0.563

EM-CM p < 0.001), the folding index of the rostral middle
frontal gyrus of the right hemisphere (HC-CM p < 0.001,
EM-CM p < 0.01), the volume of the supramarginal gyrus of
the right hemisphere (HC-CM p < 0.01, EM-CM p < 0.05)
and the volume of the insula of the right hemisphere (HC-CM
p < 0.001, EM-CM p < 0.001). These features and P values
are also shown in Figure 4.
Finally, no features from the regressor trained on the Inten-
sity Feature Set (among the 17 that were selected) showed
significant differences after the Kruskal-Wallis test. Feature
importance for each ensemble studied are depicted Supple-
mentary Figure 2, Supplementary Figure 3 and Supplemen-
tary Figure 4.

Relation between Brain Age Gap and clinical charac-
teristics. Employing the regressor trained on the Combined
Feature Set, and both considering EM and CM separately
or together, we found no significant association between the
Brain Age Gap and headache frequency (CM - p = 0.89, ME -
p = 0.72, both - p = 0.30), migraine frequency (CM - p = 0.71,
EM - p = 0.62, both - p = 0.62), migraine duration in years
(CM - p = 0.52, ME - p = 0.52, both - p = 0.52) or chronic mi-
graine duration (p = 0.32). No significant associations were
found either when considering the regressors trained on the
Morphological Feature Set or the Intensity Feature Set. Re-
sults are shown in Supplementary Figure 5, Supplementary
Figure 6 and Supplementary Figure 7.

Discussion
In this study, we explored for the first time the Brain Age
paradigm in migraine patients. To that end, a machine learn-
ing model was developed to predict age from brain T1w MRI
acquisitions from a large sample of healthy subjects and later
applied to a dataset composed of HC, EM and CM. Several
important findings emerged from this investigation. First,
CM patients showed an increased predicted Brain Age com-
pared to their healthy counterparts. EM patients, on the other

hand, appear to have a much milder increase in their predicted
Brain Age, which does not reach statistical significance. Sec-
ond, different behaviors seem to arise when separately con-
sidering morphological and intensity-based features. Distinct
difference patterns of difference appear when using either
morphological or intensity-based features, furthermore, mor-
phological features seem to be key in the statistically signif-
icant difference found. Finally, we could not prove an addi-
tional effect of headache frequency or duration of migraine
disease in patients’ Brain Age. However, careful consider-
ation is necessary for this point. Most patients presented
extremely low (less than 5) or high (20 or more) headache
frequency values, and some CM patients included in the rel-
atively small sample could transition between EM and CM
states annually.

It is well documented that the process of aging induces
changes in both the macroscopic and microstructural prop-
erties of the brain (46–48). However, much less is known re-
garding whether and how disease can affect or interact with
this process. A few studies have investigated age-related
studies in the migraine brain. Chong et al. (10) examined
if aging affects cortical thickness differently in patients with
migraine compared to age-matched HC, potentially exacer-
bating cortical thinning in patients with migraine. For EM
patients, the study found that patients with migraine expe-
rienced age-related thinning in regions that do not thin in
HC. This suggests that migraine may be linked to atypical
cortical aging. Lisicki et al., on the other hand, (11), em-
ployed FGD-PET to investigate possible specific age-related
metabolic changes in the brain. They found that for EM pa-
tients advancing age was positively correlated to increased
metabolism in the brainstem, hippocampus, fusiform gyrus
and parahippocampus, regardless of the frequency of mi-
graine or the duration of the disease. Taken together, these re-
sults suggest that migraine and aging do interact in the brain,
and the nature of these interactions needs to be investigated.

We found a notable difference in the Brain Age Gap between
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Figure 4: P-values derived from the Kruskal-Wallis test and the post-hoc Connover-Iman test for each of the most significant characteristics chosen for each regressor.
Features are ranked from highest importance in the HC group to lower, left-right. a) A total of 16 unique features were selected for the combined regressor, from which 3
demonstrated significant differences in the pairwise comparisons. b) A total of 17 unique features were chosen for the regressor trained on the Morphological Feature Set. Up
to 10 features demonstrated significant differences in importance between groups. c) shows the 17 most significant characteristics for the regressor trained on the Intensity
Feature Set. No significant differences were found during the Kruskal-Wallis test.

CM patients and HC. The aforementioned studies, however,
did not investigate CM patients but rather focused on EM.
For these patients, although we identified a trend towards an
increased Brain Age Gap with respect to HC, no significant
differences were identified.
Our correlation analysis showed no association between the
Brain Age Gap and clinical variables such as headache or
migraine frequency and duration of the disease. Whereas
these types of associations have been found in many condi-
tions within the Brain Age framework (49–51), in other cases
no associations were found between the Brain Age Gap and
disease severity or duration (52). This is also the case in (53)
with migraine patients, although the Brain Age framework
was not explicitly employed in that study. Nevertheless, more
extensive research including individuals with high-frequency
episodic migraine and greater variation in the duration of the
migraine may unveil subtle variances that were eluded in our
study.
As with other cerebral changes found in migraine, observa-
tional studies such as the present one cannot elucidate pos-
sible causalities in the increased Brain Age Gap in CM pa-
tients. Interestingly, Vidal-Pineiro et al. (53) found no as-

sociation between cross-sectional Brain Age and the rate of
Brain Age change measured longitudinally. Instead, they
found that the Brain Age Gap seems to be related to early-
life factors. Although those results were obtained from large
datasets composed of healthy subjects, this “stability” feature
of the Brain Age Gap for an individual would be consistent
with our findings. Rather, an increased Brain Age Gap could
be more related to the susceptibility of an individual to suf-
fer from migraine than to the actual disease. Of course, lon-
gitudinal studies are needed to elucidate the nature and the
evolution of the Brain Age Gap in migraine.

The literature on Brain Age prediction has utilized a vari-
ety of methods for creating machine learning models, includ-
ing feature-based approaches or Deep Learning techniques
(12, 54). In any case, accurate models are needed in or-
der to obtain reliable predictions and good sensitivity to dis-
ease. We chose to compile a large dataset (Model Creation
Dataset) consisting of 2,771 MRI scans from different stud-
ies and public databases in order to perform training and val-
idation of the model, and to report its accuracy. The accuracy
of our model (MAE and Pearson’s correlation coefficient of
5.95 and 0.85, respectively) when tested on the (Model Cre-
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ation Dataset) is comparable to similar approaches in the lit-
erature. More importantly, only a slight accuracy reduction
was obtained when applying our model to the Application
Dataset (MAE and Pearson’s correlation coefficient of 6.26
and 0.84, respectively), which indicates a good generaliza-
tion capability and performance of the feature harmonization
method.

Combining different types of features, as we did with the
Combined Feature Set, is a prevalent technique in computer
vision (55–57). The combination of these features is typi-
cally accompanied by an enhancement in the performance of
the employed machine learning models (58), as is the case
with our study in comparison to the performance obtained
for the models trained using the Morphological Feature Set
and the Intensity Feature Set. This is typically explained by
the lack of correlation between distinct feature spaces. How-
ever, the separate results obtained for the Brain Age models
trained using the Morphological Feature Set and the Inten-
sity Feature Set allow to gain more insight into the behav-
ior of CM and EM patients, since they offer complementary
viewpoints of the nature of the Brain Age Gap in migraine.
When employing the Morphological Feature Set, there is vir-
tually no difference between HC and EM, whereas CM shows
an increased Brain Age Gap that appears to vanish for older
ages (see Figure 3 (b) II). Although further investigation is
required to corroborate this, it suggests that morphological
changes in the brain that are associated with CM are more
prominent at younger ages, but aging then absorbs these alter-
ations. Conversely, the behavior of the Brain Age Gap when
using the Intensity Feature Set seems more stable across ages
(see Figure 3 (c) II).

The interpretation of the Brain Age predicting model through
SHAP allows us to better understand which brain imaging
features mostly drive the Brain Age prediction, and which
are responsible for the differences found. For the regressor
trained on the Combined Feature Set, we identified a total of
16 features that highly influenced the prediction of the regres-
sor across the studied groups. These characteristics primarily
pertain to the frontal cortex (8), which is expected since fea-
tures related to the frontal and temporal cortices are common
in Brain Age models due to their generalized thinning as part
of the normal process of aging (48). Features related to the
size of the ventricles are also common in Brain Age models,
but not so much in our case (two features) since the increase
in the volume of the ventricles is more pronounced after the
sixth decade of life (47), while the subjects employed in our
study were only between 18 and 60 years old. Ten out of
the 16 most significant features were intensity-based, likely
representing changes in the tissue microstructure (59).

Three of the brain imaging features found to be most relevant
for the Brain Age estimation showed significant differences
between CM patients and HC for the regressor trained on the
Combined Feature Set. Additionally, regarding the regressor
trained on the Morphological Feature Set, significant differ-
ences between CM and HC were found in nine additional fea-
tures (and nine more features in the comparison between EM
and HC). Brain regions related to the identified features have

been shown to differ morphologically (6), connectivity-wise
(60–62), or both between HC and CM patients and between
HC and EM patients. These regions are involved in complex
cognitive functions such as information integration or work-
ing memory (63, 64) and their alteration may be related to
the cognitive changes and other alterations associated with
migraine (65, 66).
This study, however, presents several limitations that are
worth discussing. First, as a cross-sectional observational
study, causality cannot be established, and therefore the in-
terpretation of the results must be taken with caution. Longi-
tudinal studies are needed to elucidate whether susceptibility
to migraine, the course of the disease or other factors are re-
sponsible for the detected Brain Age Gap between CM and
HC, and how this gap evolves with time. Second, our Brain
Age model only employs T1w MRI, whereas other modal-
ities such as diffusion MRI have shown to be sensitive to
migraine (7). However, research has demonstrated that the
integration of various modalities can enhance the precision
of Brain Age prediction models (67). Nevertheless, the in-
clusion of new modalities, despite yielding improved out-
comes, can augment the complexity of the overall pipeline.
This is particularly exacerbated by the challenges posed by
the availability of substantial training data from diverse pub-
lic datasets and the need for harmonization. Thus, we chose
to limit ourselves to T1w scans in this work, although fu-
ture work will need to include additional modalities such as
diffusion MRI, as discussed earlier, or T2-weighted images,
given their sensitivity to white matter hyperintensities, a well-
known migraine characteristic associated with aging (68). Fi-
nally, high-frequency EM patients (10 to 14 headaches per
month) were excluded from the study. This decision was
made to prevent potentially misclassified patients from skew-
ing the results of the analysis.

Conclusions

In this study, we analyzed migraine using the Brain Age
framework, which consists of training a machine learning
model to predict age from MRI scans and later applying the
resulting model to a cohort of interest. We found that CM
patients exhibit an increased Brain Age Gap (i.e., the differ-
ence between the predicted age and the chronological age)
compared to HC. A milder Brain Age Gap was found for EM
patients, although differences did not reach statistical signif-
icance.
Further analysis of the Brain Age model indicated that
imaging features that have previously been associated with
changes in migraine were among the main drivers of the dif-
ferences in the predicted age. Also, a separate analysis us-
ing only morphological or intensity-based features revealed
different patterns, which could represent distinct processes
within the alterations that are associated with the migraine
brain.
In conclusion, the Brain Age paradigm has shown to be a
promising viewpoint for the study of migraine, and future
work will be needed to corroborate these findings.
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Additional File 1
Supplementary Material Table 1: Features extracted by regions.

Regions Features Total

Subcortical regions (45)
Volume; normalized intensity: mean,

standard deviation, minimum, maximum and range
270

Cortical regions left and

right hemispheres (31x2)

Area, volume, average thickness,

thickness standard deviation,

mean curvature, gaussian curvature, folding index,

curvature index;

White matter gray matter contrast: mean,

standard deviation, minimum

maximum and range

806

White matter left and

right hemispheres (32x2)

Volume; normalized intensity: mean,

standard deviation, minimum, maximum and range
384

Whole brain features 19

Total 1479
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Supplementary Material Figure 1: Segmentation example from case 110033 of the CamCAN database. On the left a), the segmentation is shown without the white matter
segmentation. Subcortical and cortical regions are divided. On the right b) the segmentation includes white matter segmentation.
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Supplementary Material Table 2: Features extracted from the whole brain.

Whole brain features

1 Brain Segmentation Volume

2 Left hemisphere cortical gray matter volume

3 Right hemisphere cortical gray matter volume

4 Subcortical gray matter volume

5 Total gray matter volume

6 Supratentorial volume

7 Mask Volume

8 Number of defect holes in lh surfaces prior to fixing

9 Number of defect holes in rh surfaces prior to fixing

10 Estimated Total Intracranial Volume

11 Left Hemisphere White Surface Total Area

12 Right Hemisphere White Surface Total Area

13 Left Hemisphere Cortex Mean Thickness

14 Right Hemisphere Cortex Mean Thickness

15 Total cortical gray matter volume

16 Volume of ventricles and choroid plexus

17 Left hemisphere cerebral white matter volume

18 Right hemisphere cerebral white matter volume

19 Total cerebral white matter volume
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Supplementary Material Table 3: Hyperparameters of the regressors trained for the study.

Regressors Hyperparameters

SVR
kernel=’linear’, degree=3, gamma=’scale’, coef0=0.0, tol=0.001, C=1.0,

epsilon=0.1, shrinking=True, cache_size=200

RF

n_estimators=100, criterion=’squared_error’, max_depth=None, bootstrap=True,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0,

oob_score=False, ccp_alpha=0.0

MLP
epochs=500, lr=0.01, weigth_decay=0.01, validation_size=0.2, criterion=L1,

optimizer=Adam, early_stopping=20 epochs.
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Supplementary Material Table 4: Acquisition parameters for each scanner employed in every database used to construct the Brain Age model.

Database Escaner Acquisition protocol

The Open Access Series

of Imaging Studies 1 (OASIS-1)

1.5T Siemems Vision,

Washington University,

Saint Louis, Misuri, United States

MPRAGE; RT = 9.7 ms, ET = 4.0 ms, Flip Angle = 10◦, IT = 20 ms,

DT = 200 ms, Orientation: Sagittal, thickness = 1.25 mm,

nº slices = 128, Resolution = 256×256 (1×1 mm)

3T Philips Medical Systems Intera,

Hammersmith Hospital,

London, England, United Kingdom

RT = 9.6 ms, ET = 4.6 ms, Flip Angle = 8◦ Number of Phase Encoding Steps = 208,

Echo Train Length = 208, Reconstruction Diameter = 240.0, AcquisitionMatrix = 208×208,

Information eXtraction

from Images (IXI)

initiative

1.5T Philips Medical Systems Gyroscan Intera,

Guy’s Hospital,

London, England, United Kingdom

RT = 9.8 ms, ET = 4.6 ms, Flip Angle = 8◦, Number of Phase Encoding Steps = 192,

Echo Train Length = 0, Reconstruction Diameter = 240,

Institute of Psychiatry,

London, England, United Kingdom
Not available

NeuroCognitive Aging

Data Release (NeuroCog)

3T GE Discovery,

Cornell Magnetic Resonance Imaging Facility,

New York, New York, United States

MPRAGE; RT = 2530 ms, ET= 3.4 ms, Flip Angle = 7◦,

voxel size = 1mm isotropic, acquisition time = 5m25s, 176 slices

3T Siemens TimTrio,

York University Neuroimaging Center,

Toronto, Ontario, Canada

MPRAGE; RT = 1900 ms, ET = 2.52 ms, Flip Ange = 9◦,

voxel size = 1mm isotropic, acquisition time = 4m26s; 192 slices

Cambridge Center of Aging and

Neuroscience (Cam-CAN)

3 T Siemens TimTrio,

University of Cambridge,

Cambridge, England, United Kingdom

MPRAGE; RT = 2250 ms, ET = 2.99 ms, IT = 900ms, Flip Angle=9◦, FOV=256×240×192mm,

resolution: 1mm isotropic; GRAPPA=2; acquisition time = 4mins 32s

Southwest University Adult

Lifespan Dataset (SALD)

3T MRI Siemens TimTrio,

The Brain Imaging Center of Southwest University,

Beibei, Chongqing, China

MPRAGE; RT = 1.90 ms, ET=2.52 ms, TI=900 ms, Flip Angle = 90◦,

resolution matrix = 256×256, slices = 176, thickness = 1,0 mm y voxel size = 1×1mm3

Dallas Lifespan Brain

Study (DLBS)

3T Philips Achieva,

Park aging mind Laboratory,

Dallas, Texas, United States

MPRAGE; RT = 8.1 ms, ET = 3.7 ms, Flip Angle = 12◦. Voxel size 1×1×1mm3,

slices = 160, matriz dimension 204 ×256×160

Consortium for reliability

and reproducibility (CoRR)
35 different scaners from different institutions Check parameters for each protocol at: https://www.nature.com/articles/sdata201449/tables/3
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Supplementary Material Table 5: Validation results for the three regressors tested. Results are given as the average and the standard deviation of the values obtained from
each fold of the 10-fold cross-validation scheme before age bias correction. The values in bold show the combination with the best result.

SVR RF MLP

MAE r MAE r MAE r

20 features 6.07 ± 0.29 0.82 ± 0.02 5.51 ± 0.25 0.84 ± 0.02 5.03 ± 0.29 0.86 ± 0.02

Combined Feature Set 30 features 5.94 ± 0.24 0.83 ± 0.02 5.54 ± 0.26 0.84 ± 0.02 4.92 ± 0.25 0.86 ± 0.02

40 features 5.85 ± 0.22 0.83 ± 0.02 5.55 ± 0.27 0.84 ± 0.02 4.90 ± 0.21 0.87 ± 0.01

20 features 6.68 ± 0.43 0.78 ± 0.02 6.53 ± 0.54 0.76 ± 0.03 5.74 ± 0.47 0.80 ± 0.02

Morphological Feature Set 30 features 6.52 ± 0.44 0.79 ± 0.02 6.54 ± 0.46 0.77 ± 0.03 5.66 ± 0.44 0.81 ± 0.02

40 features 6.37 ± 0.39 0.80 ± 0.02 6.46 ± 0.42 0.77 ± 0.02 5.57 ± 0.27 0.81 ± 0.02

20 features 6.91 ± 0.41 0.75 ± 0.02 6.64 ± 0.40 0.75 ± 0.02 6.17 ± 0.40 0.77 ± 0.02

Intensity Feature Set 30 features 6.87 ± 0.46 0.75 ± 0.02 6.67 ± 0.43 0.76 ± 0.02 6.13 ± 0.44 0.78 ± 0.03

40 features 6.80 ± 0.38 0.76 ± 0.02 6.72 ± 0.41 0.75 ± 0.02 6.06 ± 0.35 0.78 ± 0.02
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Supplementary Material Figure 2: The sum of the absolute SHAP values of each feature for each member of the investigated groups, calculated for the regressor trained
on the Combined Feature Set. The order of features varies between groups, but the 16 designated features are shared by the groups’ most pertinent features.

Supplementary Material Figure 3: The sum of the absolute SHAP values of each feature for each member of the investigated groups, calculated for the regressor trained
on the Morphological Feature Set. The order of features varies between groups, but the 17 designated features are shared by the groups’ most pertinent features.
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Supplementary Material Figure 4: The sum of the absolute SHAP values of each feature for each member of the investigated groups, calculated for the regressor trained
on the Intensity Feature Set. The order of features varies between groups, but the 17 designated features are shared by the groups’ most pertinent features.
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Supplementary Material Figure 5: No correlations were found between Brain Age Gap calculated with the regressor trained on the Combined Feature Set and the clinical
variables studied, a) Brain Age Gap change along with headache frequency, b) Brain Age Gap change along with migraine frequency, c) Brain Age Gap change along with
migraine duration, and d) Brain Age Gap change along with chronic migraine duration.

Supplementary Material Figure 6: No statistically significant correlation was found between clinical variables and Brain Age Gap when calculated with the regressor trained
on the Morphological Feature Set, a) Brain Age Gap change along with headache frequency, b) Brain Age Gap change along with migraine frequency, c) Brain Age Gap
change along with migraine duration, and d) Brain Age Gap change along with chronic migraine duration.
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Supplementary Material Figure 7: No statistically significant correlation was found between the clinical variables and the Brain Age Gap when calculated with the regressor
trained on the Intensity Feature Set, a) Brain Age Gap change along with headache frequency, b) Brain Age Gap change along with migraine frequency, c) Brain Age Gap
change along with migraine duration, and d) Brain Age Gap change along with chronic migraine duration.
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Results

Objective: Develop and apply a Brain Age model to healthy controls, and 

the episodic and chronic migraine cohorts. Compare its results. Understand

how features from different nature might influence the Brain Age prediction.

Results: Accelerated brain aging in chronic

migraine patients. Distinct difference patterns 

when using features from different natures.
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