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Abstract

An automated medical procedure or-
der recommender can facilitate patient
referrals and consultations from pri-
mary care providers to specialty care
sites. Here, we propose to solve this
task using a novel graph representa-
tion learning approach. We develop
a heterogeneous graph neural network
to model structured electronic health
records and formulate the procedure
recommender task as a link predic-
tion problem. Our experimental results
show that our model achieves a 14% im-
provement in personalized recommen-
dations over state-of-the-art neural net-
work models and existing clinical tools
including referral guidelines and check-
lists.

Keywords: Graph Neural Network,
Endocrinology, Medical Consultation.

1. Introduction

Access to medical specialty care is often de-
layed due to growing limitations in clinicians

time and resources leading to higher mortal-
ity rates (Prentice and Pizer, 2007). Early
prediction of procedures to be ordered during
initial outpatient specialty consultation care
can facilitate specialist consultations as well
as decision making (Chiang et al., 2020; Kim-
Hwang et al., 2010). Leveraging artificial in-
telligence (AI) to solve this task is largely un-
explored; even though AI has shown success-
ful application in solving real-world problems
in healthcare (Yu et al., 2018).

To this end, Noshad et al. (2021) have
proposed an endocrinology procedure recom-
mender using an ensemble of multi-layer per-
ceptron neural networks and collaborative
filtering. However, the heterogeneity and
structured nature of electronic health records
(EHR) can be captured more effectively us-
ing graphical models (Park et al., 2022; Choi
et al., 2018, 2017).

Graph Convolutional Transformer (GCT)
(Choi et al., 2020) maps encounters into a
fully connected graph and infers the under-
lying structure by computing self-attentions
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on the graph connection. Liu et al. (2020)
addressed the high visibility (Li et al., 2018)
of hub nodes such as demographic nodes and
showed the effectiveness of modeling EHR
data into heterogeneous graphs. Further,
heterogeneous graph neural networks (GNN)
have been utilized in drug pairs side effect
prediction (Zitnik et al., 2018), medical diag-
nosis prediction (Liu et al., 2021) and medi-
cal concept representations (Wu et al., 2021;
Vretinaris et al., 2021).

Motivated by Hamilton et al. (2017), Zit-
nik et al. (2018), and Veličković et al. (2018)
we propose a novel GNN based framework
to provide personalized procedure order rec-
ommendations prior to or during patients
initial specialty care visits. Note, here
we use the terminology ‘order’ to refer to
the surgical/follow-up procedures ordered by
physicians. This work is part of a larger body
of work to develop digital specialty consulta-
tion systems to expand the access to quality
medical expertise. In this paper, we focus
on referrals to endocrinology as one of the
highest demand and use patients historical
structured EHR data.

2. Materials and Methods

2.1. Data

Our data includes all outpatients referred
by Stanford primary care providers to the
Stanford endocrinology clinic between Jan-
uary 2008 and December 2018. Use of this
data for this study was approved as an ex-
empt protocol by Stanford Institutional Re-
view Board. We only included patients’ first
visit with their endocrinologist within four
months of their referral dates. Our final data
set include 6,821 referrals.

We denote the list of patient referrals as
P = {p1, . . . , pn} in which n is the number
of patient referrals. Each patient referral pi
constitutes a tuple (ti,D

i,Oi,Li,Y i), where
ti is referral’s date and Di ∈ R10, Oi ∈ R60,

and Li ∈ R300×3 are multi-hot encoded vec-
tors representing diagnoses codes, procedure
orders, and lab results for pi prior to ti. We
used a two month look back window for lab
results and procedures. Each lab result was
converted to a vector with three elements in-
dicating (a) if pi has had the lab result, (b)
if the result was high, and (c) if the result
was low. Y i is a multi-hot encoded vector
representing the procedures ordered by the
specialist during patient’s special care visit.

Our final feature set includes 370 features:
10 most common endocrinology related di-
agnoses codes, 300 lab result features, and
60 procedures. The target set includes 60
procedure orders (see variable names in Ap-
pendix A).

2.2. Proposed Method

2.2.1. Graph Structure

We modeled patients EHR data set into a
heterogeneous graph neural network G =
(V,E) (see Figure A1 in Appendix A). V
contains two node types: patient refer-
ral nodes {gp1 , ..., g

p
|P |}, and procedure order

nodes {go1, ..., go|O|}. Each patient node gpi
is assigned a 310-dimensional feature vector
consisting of concatenation of Di and Li and
each procedure order node goi are associated
with one-hot encoding of the entity IDs (Isi
and Ioi , respectively).

Edge set E contains two edge types.
‘ordered-with’ edges with edge labels set to
0 that are edges between patient nodes and
the procedures they have done before ti, and
‘ordered-with’ edges with edge label set to
1 that connect the patients with the pro-
cedures that their specialist ordered dur-
ing the specialty care visit after ti. Note,
‘ordered-with’ edges with edge labels equal
to 1 that represent specialist’s orders after
referral date were not used during training
and were only used in the prediction phase
as we are aiming to predict procedure orders
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Figure 1: General architecture of our data,
graph, and our proposed model.

after ti. We formulate this task as binary
link prediction of the existence of ‘ordered-
with’ edges between a patient and an order.
Further, node degree, node clustering coeffi-
cient and centrality transformations were ap-
plied to add synthetic features to each node
feature vector. While the model can learn
those features on its own, we added them to
help the model focus on learning other fea-
tures. We apply a different Graph Convo-
lutional layers with independent parameters
to each message type of (head, relation, tail)
and aggregate embeddings across all node
types. The same graph attention mechanism
was applied to all node types.

2.2.2. Message Passing and Graph
Attention

Figure 1 shows our proposed architecture. A
fully connected layer with hidden size of 128
was used to map each node feature vector to
pre-embedding vectors. Distinct fully con-
nected layers were used for each node type.
Two message passing layers was used each
consisting of a dropout layer, a PReLU ac-
tivation function, and a graph convolutional
layer.
A custom heterogeneous graph attention

layer was used using 1-head attention mostly

following the structure of the original graph
attention networks (Veličković et al., 2018),
with the following modifications: 1) we ap-
plied fully connected layers with batch nor-
malization to the node embeddings and the
neighbor embeddings,and 2) we aggregated
neighbor embeddings using the attention
mechanism and concatenated the aggregated
embedding to the current node’s embedding.
This is then passed into a fully connected
layer that reduces this down to a single out-
put embedding followed by a batch normal-
ization operation. Equation (1) shows our
massage passing function

x(1)v = MLP(x(0)v )

x(2)v = GATConv(PReLU(Dropout(x(1)v )))

x(3)v = GATConv(PReLU(Dropout(x(2)v ))

+ x(0)v )

x(4)v = MLP(x(3)v )
(1)

and Equation (2) shows the GATConv up-
date function

aggr = Σvo∈N (v)αvo ∗MLP(x(k)vo )

x(k+1)
v = MLP(aggr +MLP(x(k)v ))

(2)

Where αvo is the 1 head GAT attention
score calculated for vo, N (v) is neighbors of

v, and x
(0)
v represents the node features of

node v.

The final predictions on existence of an
‘ordered-with’ edge eij between nodes gpi and
goj is inferred by concatenating their node
embeddings and passing that through a fully
connected two-layer perceptron, a batch nor-
malization, a ReLU activation, and a fi-
nal fully connected layer that outputs 2-
dimensional logit vectors that are converted
to final binary predictions using a softmax
function.
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The formula for the link prediction head is
as follows:

p = FC(ReLU(BN(MLP([x
(4)

gpi
;x

(4)
goj

])))) ∈ R2

(3)
where BN refers to Batch Normalization and
the first value corresponds to the probability
that the edge exists and the second that it
doesn’t.

3. Experimental Results

We used transductive disjoint training with
a 1:4 positive:negative sampling using PyG
(Fey and Lenssen, 2019; pyg). Adam opti-
mizer with a learning rate of 1e-3, weight
decay of 5e-4, and 400 epochs were used to
train the model. Further, dropout of 0.2, and
pre-embedding sizes, hidden sizes, and final
embedding sizes of 128 were used. Our GNN
model was tested on predictions made on all
‘ordered-with’ edges between a patient and
an order placed during specialty visit.

Table 1 compares prediction results of our
proposed model (CR-GNN) with the base-
lines presented by Noshad et al. (2021) in-
cluding fully connected multi-layer neural
network (Diagnostic Model), a collaborative
filtering auto-encoder (AE), singular value
decomposition (SVD), probabilistic matrix
factorization (PMF), an aggregate neural
networks (Aggregated ANN), and an ensem-
ble model (Ensemble Model) that uses a
multi-layer neural network to combine the
outputs of the diagnostic model, the collabo-
rating filtering auto-encoder and the special-
ists identifiers as a separate input signal.

Our proposed model can predict en-
docrinology specialty procedures more ef-
fectively (ROC-AUC=0.91) compared to all
models proposed by Noshad et al. (2021)
(best ROC-AUC=0.80). Further, our model
showed significantly higher precision at re-
calls 0.5, 0.4 and 0.3 compared to all base-
line models. Note, we used the same data

as the data that were used in Noshad et al.
(2021) except we removed features related
to the specialists that patients were referred
to, because specialists’ information can add
bias to the model. Additionally, we trained
and tested our proposed model using all fea-
tures used in Noshad et al. (2021) including
specialists’ information as well. This didn’t
significantly affect our model’s performance.
The model’s ROC-AUC using all features
including specialists’ information was 0.912
and precisions at recalls 0.5, 0.4 and 0.3 were
0.60, 0.65, and 0.70, respectively.

Table 1: Performance of endocrinologist pro-
cedure order prediction models.

Model AUC
ROC

P@R
0.50

P@R
0.40

P@R
0.30

Diagnostic
Model

0.65 0.33 0.42 0.46

AE 0.73 0.23 0.33 0.49
PMF 0.62 0.22 0.31 0.43
SVD 0.74 0.23 0.33 0.50
Aggregated
NN

0.73 0.31 0.41 0.53

Ensemble
Model

0.80 0.37 0.47 0.57

CR-GNN 0.91 0.62 0.68 0.73

Figure 2 compares precision-recall curves
for our proposed method with the baselines.
The precision for the baseline models are
higher than our proposed model toward the
tail of the curves. However, our proposed
model has higher precision compared to all
baselines over a wide range of recalls in-
cluding recalls 0.3, 0.4 and 0.5. This can
provide clinicians with the ability to adjust
our model based on their preferred precision-
recall trade off. Further, our proposed model
has significantly higher precision than all
baseline precisions at recalls close to the re-
call of existing clinical guideline and check-
list.
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Figure 2: Comparing precision-Recall curve
of our proposed model with the baselines.

4. Conclusion

In conclusion, embedding graph neural net-
work models into clinical care can improve
digital specialty consultation systems and ex-
pand the access to quality medical expertise.

There are some limitations in this work
that should be considered before using our
proposed model. The proposed model is lim-
ited to trandsuctive learning and patients
structured data.
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Appendix A. Features

Table A1: Diagnosis features.

Diagnosis name

Diabetes mellitus Type I or II
Hypercalcemia
Hyperlipidemia
Hypothyroidism
Hyperthyroidism
Osteopenia
Osteoporosis
Thyroid cancer
Thyroid nodule
Obesity
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Table A2: Procedure features.

Procedure name Procedure name Procedure name Procedure name

TSH T4, FREE Vitamin d, 25-
hydroxyvitamin

Metabolic panel,
comprehensive

Hemoglobin A1C Parathyroid hor-
mone

Metabolic panel, ba-
sic

Cortisol, serum

ANTI - TPO AB Phosphorus,
serum/plasma

Albumin with creati-
nine, urine (random)

TSH W/ REFLEX
FT4

Prolactin US thyroid Creatinine, urine
(timed)

Calcium, urine
(timed)

FSH T3, FREE Adrenocor-
ticotropic hormone
(ACTH)

Calcium,
serum/plasma

Lab unlisted 1 Lipid panel with di-
rect ldl

Luteinizing hormone Lipid panel with cal-
culated LDL

T3, total Bone alkaline phos-
phatase, serum

IGA ANTI TTG C - peptide, serum

DXA adult Testosterone, total,
bio, free

HGB A1C W/ EST
mean glucose

Magnesium,
serum/plasma

Thyroid-stimulating
immunoglobulin
(TSI)

Collagen type i c-
telopeptide (ctx)

Albumin,
serum/plasma

TSH and free T4

Thyroglobulin and
tgab comprehensive

Vitamin B12 Thyroglobulin ab
ultra-sensitive

CBC with differen-
tial

Testosterone Dehydroepi-
androsterone, sulfate

Estradiol CBC W/O DIFF

Creatinine,
serum/plasma

Bone density adult Insulin-like growth
factor 1

Metanephrines frac-
tionated free, plasma

Aldosterone Free cortisol, urine
(timed)

Hepatic function
panel a

Thyroglobulin

US head neck soft
tissue

Cortisol, AM IGA, SERUM Urine protein im-
munofixation elec-
trophoresis

Renin ALT, serum/plasma Ferritin Thyroid stimulating
immunoglobulin
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Figure A1: Graph construction.
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Table A3: Lab result features.

Lab Test Lab Test Lab Test Lab Test

Creatinine, Ser/Plas Calcium, Ser/Plas Potassium, Ser/Plas Sodium, Ser/Plas
Glucose, Ser/Plas Chloride, Ser/Plas CO2, Ser/Plas ALT (SGPT),

Ser/Plas
Albumin, Ser/Plas WBC RBC AST (SGOT),

Ser/Plas
Hematocrit Platelet count Hemoglobin MCV
RDW MCHC MCH Alk P TASE, Total,

Ser/Plas
Protein, Total,
Ser/Plas

Globulin Anion Gap eGFR

TSH Total Bilirubin Triglyceride,
Ser/Plas

BUN, Ser/Plas

HDL Cholesterol Urea Nitro-
gen,Ser/Plas

Hemoglobin A1c Total Bilirubin,
Ser/Plas

EOS, ABS Cholesterol/HDL
Ratio

Monocyte, Absolute Lymphocyte, Abso-
lute

Eosinophil, Absolute Neutrophil, Absolute eGFR for African
American

NEUT, ABS

MONO, ABS LYM, ABS Non-HDL Chol, Calc Cholesterol, Total
Magnesium,
Ser/Plas

LDL (Calculated) INR Prothrombin Time

Glucose by Meter 25-Hydroxy D, Total pH Direct LDL Chol
Phosphorus,
Ser/Plas

Part. Thromboplas-
tin Time

Conjugated Bili C-Reactive Protein

Unconjugated Biliru-
bin

HCO3 tCO2 Glucose, Whole
Blood

Chloride, Whole Bld Potassium, Whole
Bld

Sodium, Whole
Blood

Hct (Est)

PCO2 (v), ISTAT HCO3 (v), ISTAT TCO2 (v), ISTAT O2 Saturation, IS-
TAT (Ven)

PO2 (v), ISTAT Calcium Ionized LDH, Total,
Ser/Plas

pCO2 (a)

pO2 (a) pH (a) ctO2 (a) Base Excess (vt)
Lymphocytes Calcium, Ionized HgB HCO3 (a), ISTAT
pCO2 (a), ISTAT PO2 (a), ISTAT PH (a), ISTAT O2 Saturation, IS-

TAT
Hgb(Calc), ISTAT pCO2 (v) O2 Saturation (v) pO2 (v)
ctO2 (v) tHB TCO2 (a), ISTAT Fibrinogen
Myelocytes Lym, ABS (man diff) Seg neutrophils Base Deficit (vt)
D-Dimer Hct, ISTAT Calcium,Ion, ISTAT TCO2, ISTAT
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