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Abstract—This paper proposes a deep learning (DL) model for
automatic sleep stage classification based on single-channel EEG
data. The DL model features a convolutional neural network
(CNN) and transformers. The model was designed to run on
energy and memory-constrained devices for real-time operation
with local processing. The Fpz-Cz EEG signals from a publicly
available Sleep-EDF dataset are used to train and test the model.
Four convolutional filter layers were used to extract features and
reduce the data dimension. Then, transformers were utilized
to learn the time-variant features of the data. To improve
performance, we also implemented a subject specific training
before the inference (i.e., prediction) stage. With the subject
specific training, the F1 score was 0.91, 0.37, 0.84, 0.877, and 0.73
for wake, N1- N3, and rapid eye movement (REM) stages, re-
spectively. The performance of the model was comparable to the
state-of-the-art works with significantly greater computational
costs. We tested a reduced-sized version of the proposed model
on a low-cost Arduino Nano 33 BLE board and it was fully
functional and accurate. In the future, a fully integrated wireless
EEG sensor with edge DL will be developed for sleep research
in pre-clinical and clinical experiments, such as real-time sleep
modulation.

I. INTRODUCTION

Sleep quality and health are closely related; therefore, it is
important to understand one’s sleep quality to improve health
condition. A measurement of sleep quality is the time spent
in each sleep stage. There are five sleep stages, which are
wake, N1, N2, N3, and REM, with each stage progressively
deeper sleep. Most of the sleep occurs between stages N1
and N3 [1]. The clinical evaluation of sleep stages is per-
formed by polysomnogram (PSG), a procedure that records
one’s electroencephalogram (EEG), electrooculogram (ECG),
and other physiological features. Medical professionals will
manually classify their sleep stages over time according to
one or more of the features mentioned above.

With the development of electronic technology and machine
intelligence, wearable devices, such as smartwatches, can
measure user biosignals and potentially classify their sleep
stages. However, the cost of these devices is high and the
performance of sleep stage classification is limited. In addition,
classification often requires the transmission of data to mobile
phones or the cloud, raising concerns about cybersecurity [2].

Fig. 1. An overview of the envisioned wireless device for real-time sleep
stage classification using edge DL. This paper focuses on the development
and deployment of the DL model.

High-quality real-time sleep classification and sleep modula-
tion still needs to be performed in sleep laboratories. There is
a need for low-cost at-home sleep monitoring devices that can
perform sleep stage classification on device, and potentially
use the sleep stage to generate auditory stimulation for treating
sleep disorders or enhancing sleep quality [3].

In this paper, we develop a lightweight DL model for
running on devices with restricted energy and memory, such
as microcontrollers [4]. There are two main constraints to the
development of the model for hardware. The first constraint
is that the size of the model will be limited by the memory
resources available on the hardware, including the non-volatile
Flash memory for model storage and the random-access mem-
ory (RAM) for model computing. The second constraint is
that the computational demand of the model will be limited
by the clock rate, bit width, and computational capabilities
(such as floating point or fixed point) of the device. Key
trade-offs are between model performance and complexity. In
this work, we developed a DL model that can run on a low-
power wireless microcontroller, based on a low-cost Arduino
Nano 33 BLE development board. Despite its small size, our
model achieved performances comparable to the state-of-the-
art during a validation using a publicly available sleep dataset.

Fig. 1 shows the overall block diagram of the envisioned
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fully integrated sleep stage classification device featuring the
developed DL model. The device will be miniature in size
and fully self-contained. It can enable a wide range of sleep
research in pre-clinical and clinical studies.

II. METHODS

A. Dataset

Sleep-EDF Expanded Database (version 1, published in
2013) contains 197 whole-night Polysomnographic (PSG)
sleep recordings [5], [6]. It contains two subsets, the Sleep
Cassette Study (SC) and Sleep Telemetry Study (ST). Data
from the Sleep Telemetry Study was obtained in 1994 to study
the effects of temazepam on sleep. Since we are proposing a
model to classify the stages of sleep of healthy people, we
will not use data from this subset. Our experiments will be
performed on the SC subset.

Two 20-hour PSG recordings were taken for 77 subjects
between the age of 25 and 101. The first nights of subjects 36
and 52, and the second night of subject 13 were lost. The PSG
recordings contain three channels of EEG signals, one channel
of EOG and chin EMG signals, oronasal airflow, rectal body
temperature, and event marker. To reduce our model’s size,
we only use Fpz-Cz EEG signals as input to our model. The
EEG signals were sampled at 100 Hz. Each of the 30-second
segments of the signals was labeled by well-trained sleep
experts. There are eight stages, N1, N2, N3, N4, Wake, REM,
MOVEMENT, UNKNOWN). To make our results consistent
and comparable with previous studies [7]–[9], we preprocessed
the data with the following methods:

1) Discarded the segments with UNKNOWN and MOVE-
MENT labels.

2) Combined N4 and N3 together as N3 stage.
3) Ignored wake epochs longer than 30 minutes outside of

sleep periods.

TABLE I
DATA DISTRIBUTION

Wake N1 N2 N3 REM
of Segment 44752 15793 54682 12268 20976
Distribution 30.14% 10.64% 36.83% 8.26% 14.13%

Total Number 148471

B. Performance Metrics

We evaluated our model’s performance using per-class Pre-
cision (PR), per-class Recall (RE), per-class F1-score (F1), and
overall accuracy (acc). Overall accuracy is the ratio between
the number of correct predictions and the population. For a
category prediction, there are four outcomes: true positive
(TP), false positive (FP), true negative (TN), false negative
(FP). Metrics are defined as:

PR =
TP

TP + FP
(1)

RE =
TP

TP + FN
(2)

F1 =
2TP

2TP + FN + FP
(3)

Overall accuracy is commonly used to measure classi-
fication performance. However, for an imbalanced dataset,
precision does not provide adequate information on classifiers,
because it hardly reveals performance in minority groups [10].
Table I shows the distribution of the dataset. The dataset
is highly imbalanced, so we introduced additional metrics,
PR, RE, and F1, to correctly measure the performance of our
model.

C. Proposed Model

Raw EEG data contains time-invariant and time-variant
features. Each 30-second input data segment with 100-Hz
sampling frequency, so the input shape is (3000,1). It is
too large to feed it into a transformer unit. Fig. 2 shows
our model’s architecture. A convolutional neural network can
extract time-invariant data and output smaller data. We imple-
mented four sequential convolutional layers to output features
with shape (19,128). Then we use a transformer unit to learn
some time-variant information from the features. Its attention
mechanism learned the contexts on all positions of the time
series data. The two dense layers inside the transformer unit
work as an encoder. The output of the encoder is then added
to the input data for additional features. Finally, to correctly
classify sleep scores, we used a dense layer with a softmax
activation function to obtain the most possible categories. We
also tried other models, such as recurrent neural network and
auto-encoders. Experiments showed that our proposed model
yielded the best performance.

III. EXPERIMENTS

A. Data Preprocessing

Since our model was designed to be deployed on micro-
controllers with limited memory and computation resources,
we cannot design a complex data preprocessing method, so
we implemented a simple standarization. The performance of
deep-learning models is highly dependent on the statistical
properties of the input data. If the input data is too small or
too large, the models perform poorly. The EEG data in the
Fpz-Cz channel is within the scope of 10−5, which is too
small for our model. Standarization transforms data to have a
zero mean and a standard deviation of one. For each sample
X , we standardized it to Z using

Z =
X −M

S

where M indicates the mean of the samples and S indicates
the standard deviation of the samples. After standarization,
the input data was in the range of 10−1 to 101, and the model
showed the best performance.

B. Basic Training

We used 5-fold cross-validation to train and test our model.
There are 77 subjects in total, and each fold contains 16
subjects’ data (one fold has 13 subjects). In each iteration,
we selected four folds as training and validating data, and
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Fig. 2. Architecture of the proposed CNN-Transformer DL model for real-time sleep stage classification using single channel EEG signal.

one fold as testing data. Among the four folds of data,
we randomly sampled 10% for validation. The remaining
90% of data was for training. We used Adam algorithm for
optimization, which is a stochastic gradient descent method
based on adaptive estimation of first-order and second-order
moments. It computes efficiently and requires little memory
[11]. We utilized categorical cross-entropy as the loss function
and fed our model with a batch size of 64 samples.

C. Subject-Specific Training

We also performed subject-specific training in the testing
stage to further adapt the patterns of each subject. We ran-
domly selected 10% of the test data and fed them to our trained
model. The remaining 90% of the test data were used to test
our models after subject-specific training.

IV. RESULTS

Table IV and Table III show the confusion table and the
performance of our model, respectively. Since the dataset is
imbalanced, the per-class performance in N1 and REM was
expected to be poorer than the majority classes. The model
performed well in the Wake and N2 classes. The state-of-the-
art performances from literature are also similar. From Table
VI, all models have an F1 score per class less than 0.5 in
N1 and less than 0.8 in REM. To improve the performance of
our model, we perform a subject-specific training to further
adapt subject-wise patterns. Table IV and Table V show that
performances improved after subject-specific training. Firstly,
the overall accuracy increased from 0.775 to 0.795. Secondly,
per-class precision, recall, and F1 score increased for all
classes.

Table VI compares the F1 score of different models from
the literature. Since our proposed model is lightweight and
small, it cannot yield the best performance. However, it still
had performance comparable to that of the state-of-the-art. For
the wake stage, we yielded the highest F1-score of 0.91. For
other classes, we were close to the highest. There is no model
that could beat our performances in all classes. Some models
performed better on certain classes.

TABLE II
CONFUSION MATRIX BEFORE SUBJECT-SPECIFIC TRAINING

Actual/Predict Wake N1 N2 N3 REM
Wake 0.90 0.04 0.01 0 0.04

N1 0.20 0.26 0.31 0.01 0.21
N2 0.01 0.04 0.82 0.07 0.06
N3 0 0 0.19 0.80 0

REM 0.05 0.08 0.12 0 0.74

TABLE III
PERFORMANCE BEFORE SUBJECT-SPECIFIC TRAINING

Wake N1 N2 N3 REM
Precision 0.90 0.26 0.72 0.80 0.74

Recall 0.89 0.42 0.81 0.70 0.64
F1-Score 0.90 0.32 0.82 0.75 0.69
Accuracy 0.775

TABLE IV
CONFUSION MATRIX AFTER SUBJECT-SPECIFIC TRAINING

Actual/Predict Wake N1 N2 N3 REM
Wake 0.91 0.05 0.01 0 0.02

N1 0.21 0.31 0.29 0.01 0.18
N2 0.01 0.04 0.84 0.06 0.05
N3 0 0 0.20 0.80 0

REM 0.05 0.08 0.10 0 0.78

TABLE V
PERFORMANCE AFTER PATIENT-SPECIFIC TRAINING

Wake N1 N2 N3 REM
Precision 0.92 0.31 0.84 0.80 0.78

Recall 0.90 0.46 0.83 0.74 0.69
F1-Score 0.91 0.37 0.84 0.77 0.73
Accuracy 0.795

V. DISCUSSION

Our lightweight model was designed for memory-
constrained microcontroller units. It had around 300,000 pa-
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TABLE VI
F1-SCORE COMPARISON WITH STATE-OF-ART

Reference Year Architecture
F1-Score

Accuracy
Wake N1 N2 N3 REM

[12] 2022 DSSNet 0.86 0.20 0.87 0.87 0.71 0.82
[13] 2018 1-Max-CNN 0.77 0.33 0.87 0.86 0.76 0.80
[7] 2017 DeepSleepNet 0.88 0.37 0.83 0.77 0.80 0.80
[14] 2019 SleepEEGNet 0.91 0.44 0.82 0.73 0.76 0.80
[15] 2021 CNN 0.91 0.42 0.77 0.66 0.69 N/A

This work 0.91 0.37 0.84 0.77 0.73 0.80

rameters, and its size was 2 MB. We used an Arduino
Nano 33 BLE board, which integrates a wireless microntroller
(nRF52840, Nordic Semiconductor) with a 64 MHz 32-bit
ARM CPU, 1 MB of flash memory, and 256 KB of SRAM
[16]. The deployed model was stored in the flash memory, so
the model was supposed to be less than 1 MB. We planned
to add an external memory unit to the model in the future.
To test the availability of our design in the current stage, we
implemented a smaller version of the model and deployed it on
the Arduino board. The model had an accuracy of 68%, but the
microcontroller was fully functional for target classification.
To reduce the size of our model, we also quantized the model
in the deployment stage.

We randomly selected 10% of the test data set to perform
subject-specific training. If a dataset is large, the randomly
selected data should follow the distribution of the dataset. In
our experiments, the distribution varied as the dataset was not
large enough. The improvement of performance was highly
dependent on the distribution of the selected data. Therefore,
we will enforce the distribution of the subject-specific training
data. This means that the number of selected data in each
category is calculated and fixed based on the test dataset.
This method would maximize the benefits of subject-specific
training.

As mentioned previously, the dataset has an imbalanced
class distribution, which significantly affects models’ per-
formance, especially on the minority categories. There are
different methods to mitigate the effect of imbalance data, such
as oversampling and undersampling. Oversampling is used to
duplicate samples in minority classes, while undersampling
is used to remove samples from the majority classes. There
are two common ways in training imbalanced data. Another
method we will try in the future is to add weights to the loss
function. The loss function can be weighted differently for
different classes, so that minority classes are learned more.

VI. CONCLUSION

In this work, we developed a lightweight DL model for real-
time sleep stage classification using single-channel EEG data.
The DL model features CNN and transformers. We validated
the model using the Sleep-EDF dataset and tested it in a
low-power microcontroller. The model achieved performance
comparable to the state-of-the-art works. In the future, we plan
to develop a fully integrated wireless EEG sensor using the

model. The developed device can enable a wide range of sleep
research.
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