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Abstract 

Background 

A critical step in evaluating healthcare interventions is to understand their impact on 
healthcare costs. However, there is a limited understanding of the causal impact that 
biomarkers and risk factors for disease have on healthcare-related costs. Previous 
studies based on observational data have major limitations including residual 
confounding and reverse causation. Here, we used a genetically-informed design, 
Mendelian Randomization (MR), to infer the causal impact of 15 routinely measured and 
clinically relevant risk factors on annual total healthcare costs. 

Methods 

We considered 373,160 participants from the FinnGen Study, which were linked to 
detailed healthcare costs covering inpatient, outpatient, and medication costs. Several 
MR approaches were used to assess the causal effects of 15 risk factors (e.g., waist 
circumference (WC), HDL cholesterol, vitamin D), with strong genetic bases on annual 
total healthcare costs, as well as stratified by service type, age, and sex. We further 
assessed the generalizability and robustness of our results by accounting for selection 
bias and by leveraging additional data from 323,774 individuals from the United 
Kingdom and Netherlands.  

Results 

Robust causal effects were observed for waist circumference (WC), adult body mass 
index, and systolic blood pressure, in which a one standard deviation increase in the 
risk factors corresponded to 22.78% [95% CI: 18.75, 26.95], 13.64% [10.26, 17.12], and 
13.08% [8.84, 17.48] increased annual total healthcare costs, respectively. The relative 
effect of WC on annual total healthcare costs was consistent across age and sex and 
was not attenuated when accounting for increased risk of five major diseases: back 
pain, chronic ischemic heart disease, type 2 diabetes, chronic obstructive pulmonary 
disease, and stroke. A lack of causal effects was observed for some clinically relevant 
biomarkers, such as albumin, C-reactive protein, and vitamin D.  

Conclusion 

Our results indicated that increased WC is a major contributor to annual total healthcare 
costs and more attention should be given to WC screening, surveillance, and mitigation. 
On the contrary, several biomarkers relevant in clinical settings did not have a direct 
impact on annual total healthcare costs. 
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Introduction 

Healthcare costs continue to rise worldwide, and in 2018, global healthcare spending 
reached $8.3 trillion, or 10% of the global gross domestic product.1 While healthcare 
costs continue to rise, morbidity is rising, so better understanding of healthcare costs 
and cost efficiency is critical.1 Accurate measurement of healthcare costs caused by 
different risk factors and health outcomes is important to prioritize public health 
promotion and prevention programs.2 Moreover, healthcare costs can act as a proxy of 
disease burden when investigating the effects of risk factors. Thus, epidemiology, public 
health, and policy stakeholders are very interested in the analysis of healthcare costs.3 

Several studies have quantified the healthcare costs associated with different risk 
factors.4 5 For example, Bolnick et al.4 calculated the correlation between United States 
healthcare spending and 84 modifiable risk factors from the Global Burden of Disease 
study, and Goetzel et al.5 calculated the correlation between healthcare costs and 10 
modifiable risk factors including blood glucose, obesity, stress, depression, and physical 
inactivity. However, there are several limitations with such studies. First, associations 
between risk factors and healthcare burden are based on observational data and suffer 
from challenges such as confounding and reverse causation. Second, most studies do 
not estimate the direct association between risk factors and healthcare costs, but first 
estimate the impact of risk factors on different diseases and subsequently link each 
disease to estimated healthcare costs.4 6 7 Thus, the impact of risk factors on healthcare 
costs that are not directly captured by diseases (e.g., medications) were not considered. 
Third, while modifiable risk factors such as smoking and alcohol consumption have 
been studied,8 little is known about the impact on healthcare costs of commonly 
measured biomarkers, which are generally the direct targets of pharmacological 
interventions. 

An alternative source of evidence to assess the effects of diseases and biomarkers on 
healthcare costs is Mendelian Randomization (MR), which addresses some of the 
previous limitations. MR is a method that uses genetic variants as instrumental 
variables to estimate causal relationships between exposures and outcomes and can 
address the issues of confounding and reverse causation.9 MR is particularly powerful 
for estimating the effects of biological risk factors with a strong genetic bases, such as 
clinical biomarkers and biometrics, including body mass index and blood pressure. 

Previous studies have used MR to identify the causal effects of adiposity,10 body mass 
index,11,12 and common health conditions.13 However, these studies were either based 
in the UK Biobank (e.g., limited to relatively healthy individuals between 40 and 69 
years old) or did not have complete coverage of healthcare costs associated with 
medication and primary care costs. No studies to date have used MR to 
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comprehensively link a diverse set of biological risk factors to healthcare costs. In this 
study, we used a large prospective study from Finland, the FinnGen Study, with genetic 
information available for 373,160 individuals linked to several national health registries 
covering primary, secondary, and medication costs. Because of the high-quality, long 
follow-up, and detailed healthcare costs available in these registries, we were able to 
obtain an accurate and comprehensive estimate of annual healthcare expenditure. We 
further assessed the generalizability and robustness of our findings by accounting for 
selection bias and by leveraging additional healthcare cost data from 323,774 
individuals from the United Kingdom and Netherlands. 
 
In this study, we aimed to (1) evaluate the causal impact of 15 risk factors, with strong 
genetic bases, on annual total healthcare costs, (2) identify whether the effects vary by 
service type, age, and sex, and (3) quantify the mediating of effects of major diseases.  

Methods 

Study cohort 

This study utilized data from the FinnGen Study, which is an ongoing prospective cohort 
study aiming to recruit 520,000 individuals by combining population-based legacy 
cohorts, disease-based cohorts, and volunteers recruited by biobanks.14 The average 
age at baseline (i.e., date of DNA sample collection) is 54 years old and 56% of the 
study cohort is female. Participants are linked to national health registries that provide 
rich longitudinal information. Such registries include the Register of Primary Health Care 
Visits (AvoHILMO) which captures outpatient visits, the Care Register for Health Care 
(HILMO) which captures hospital visits, and the Medication Reimbursement Register 
(Kela). Individual-level genotypes and register data from FinnGen participants can be 
accessed by approved researchers via the Fin-genious portal 
(https://site.fingenious.fi/en/) hosted by the Finnish Biobank Cooperative FinBB 
(https://finbb.fi/en/). Data release to FinBB is timed to the bi-annual public release of FG 
summary results which occurs twelve months after FG consortium members can start 
working with the data. 

Given that the study participants in FinnGen may differ from the entire Finnish 
population due to its hospital-based recruitment (e.g., individuals in FinnGen are 
typically sicker and have higher disease prevalence), we adjusted the study cohort in 
FinnGen to the entire Finnish population using inverse probability weights in a 
subsequent sensitivity analysis. We used the calibration weighting method, which uses 
the marginal proportions of variables to adjust the sample weights to satisfy the 
population margins.  We used the following five health and sociodemographic 
characteristics: age, gender, education, occupation, and region of birth. 
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Estimation of healthcare costs 

(1) AvoHILMO and (2) HILMO are registries maintained by the Finnish Institute for 
Health and Welfare (THL) for (1) primary outpatient and (2) secondary and tertiary 
inpatient and outpatient hospital visits, respectively. The Finnish Institute for Health and 
Welfare publishes average unit cost estimates for different types of healthcare services 
(e.g., outpatient visits, inpatient episodes). The Social Insurance Institution (SII, also 
known as Kela), the Finnish government agency in charge of national social security 
programs, maintains a registry of all reimbursed prescription medication purchases in 
Finland. The AvoHILMO registry was started in 2011, the HILMO registry in 1998, and 
the medication purchases registry in 1998. All AvoHILMO, HILMO, and medication 
costs capture total costs regardless of the payer. We did not capture costs related to 
non-reimbursed medications and home care. Going forward, we referred to any 
AvoHILMO costs as “primary care costs”, HILMO costs as “secondary care costs”, and 
Kela costs as “medication costs”. 

We used the unit cost estimates published by the Finnish Institute for Health and 
Welfare to obtain costs associated to each medical encounter.15,16 Primary care costs 
were linked to each medical encounter by profession (e.g., physician, nurse), service 
type (e.g., primary healthcare, mental health), and contact type (e.g., visit, phone call). 
Secondary care costs were linked based on service (e.g., emergency room visit, 
outpatient visit, inpatient visit), specialty (e.g., cardiology, neurology), and hospital (e.g., 
university, central, other) types. Medication costs were linked using the Nordic Article 
Number (VNR), which is an identifier that exactly captures the type of medicinal product 
(e.g., manufacturer, dosage) purchased. We used the yearly average costs for each 
VNR code across Finnish pharmacies to link the costs. Primary care costs prior to 2011 
were excluded, and secondary care and medications costs prior to 1998 were excluded 
to reflect the start dates of each registry. Individuals with secondary care or medication 
records, but without primary care records, were assumed to be individuals using private 
primary healthcare services. There were 294 (0.08%) such individuals in FinnGen, and 
they were assigned the median primary care cost of €71.62. For all cost categories, we 
examine costs in 2017 euro values such that the same service contributes similarly to 
costs whether it occurred for example in 2010 or 2017. Other missing values were 
assigned zero values (i.e., individuals with primary and secondary care records, but 
without medication records, were assigned a zero value for medication costs). To adjust 
for fluctuating healthcare costs by different years, each unique set of identifiers was 
assigned to the standardized healthcare costs in 2017.  

We estimated the annual total healthcare costs, primary care, secondary care, and 
medication costs adjusted by the total follow-up time that individuals were observed in 
each registry. The start of follow-up was defined as 2011 for AvoHILMO and 1998 for 
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HILMO and Kela. The end of follow-up (EOF) was defined as date of death, date of 
emigration, or the end-of-registry date (October 11, 2021). The annual total healthcare 
costs for each individual are estimated as: 

������ ����� 	
���	���
 ��� �

 
����� ��	
��� ��� �����

����� ���������� ���
 ���� �� ���
�

����� �������� ��� �����

����� ���������� ���
 ���� �� ���
�

����� 
�	���	�� �����

����� ���������� ���
 ���� �� ���
  

As healthcare costs were highly right-skewed in this sample, a log(X + 1) transformation 
was implemented before modeling. Annual total healthcare costs were main outcome 
studied. In sensitivity analyses, we examined healthcare costs stratified by: (1) service 
type (e.g., primary care, secondary care, and medication costs), (2) sex, and (3) age 
(individuals under 30 years old, individuals between 30 and 60 years old, and individual 
over 60 years old). 

Mendelian Randomization 

We performed MR, which is a method that uses genetic variants as instrumental 
variables to estimate the effect of specific exposures on healthcare costs.9 The 
exposures included 15 biological risk factors based on the following criteria: (1) has 
strong genetic instruments (e.g., F-statistic > 50) and (2) of clinical interest and 
relevance (e.g., can be measured through available laboratory tests). We used 
summary statistics from the GWAS of healthcare costs conducted in FinnGen for the 
outcomes and non-overlapping summary statistics from the MRC IEU OpenGWAS 
Database for the exposures (Supplementary Table 1).17 Some summary statistics 
were back-transformed from standardized to raw units on the original scale (e.g., adult 
body mass index, HDL cholesterol, LDL cholesterol, triglycerides, systolic blood 
pressure, and waist circumference).  

The primary outcome was log-transformed annual total healthcare costs, and our 
secondary outcomes included (1) log-transformed primary care, secondary care, and 
medication costs, (2) log-transformed annual total healthcare costs for females and 
males, and (3) log-transformed annual total healthcare costs for individuals under 30 
years old, individuals between 30 and 60 years old, and individuals over 60 years old. 
We performed genome-wide association studies (GWAS) of healthcare costs to identify 
genetic variants associated with healthcare costs using REGENIE, which is a method 
for fitting a whole-genome regression model.18 Briefly, REGENIE uses a two-step 
process that fits a whole-genome regression model and performs single-variant 
association testing. We used the default model with the following covariates: birth year, 
birth year squared, sex, 10 principal components, and batch covariates. 
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To evaluate the causal effect of the 15 risk factors on healthcare costs, we performed 
two-sample MR, which utilizes summary statistics from GWAS of exposures and 
outcomes in non-overlapping cohorts.19 MR relies on several assumptions: (1) genetic 
instruments must be robustly associated with the exposure, (2) there must be no 
confounders of the genetic instruments-cost associations, and (3) genetic instruments 
must not influence costs except through the exposure of interest.9 We performed two-
sample MR using the TwoSampleMR package in R.17,20 

We performed LD clumping with a window of 10000 kilobases and an R2 cutoff of 0.002 
and utilized the MR Egger, weighted median, inverse variance weighted, simple mode, 
and weighted mode methods. The inverse variance weighted method estimates the 
causal effect based on a ratio of association estimates from a univariable regression of 
the outcome on the genetic variant and the exposure on the genetic variant, averaging 
each ratio estimate with inverse variance weights. The MR Egger method uses a similar 
method, with the exclusion of an intercept term. The simple mode, weighted mode, and 
weighted median methods rely on similar approaches, with different weights. Several 
methods were used in combination due to differing advantages and disadvantages. For 
example, the MR Egger method, is more robust to pleiotropy (e.g., one variant affecting 
multiple phenotypes), yet suffers from lack of power, while the inverse variance 
weighted method retains more statistical power.  

Multivariate Mendelian Randomization 

Multivariate MR (MVMR) uses genetic variants for two or more exposures to 
simultaneously estimate the causal effect of each exposure on the outcome, controlling 
for the effect of the other included exposures. MVMR can therefore use genetic variants 
for several risk factors to estimate independent and direct effects of these risk factors, 
as well as estimating mediation.21 MVMR requires the same assumptions as univariate 
MR, but the genetic instruments must be associated with the set of exposures rather 
than the single exposures, but it is not necessary for each genetic instrument to be 
associated with every exposure.21  

We performed MVMR to identify mediators of the exposures on healthcare costs, in 
which the mediators were the top five noncommunicable diseases from the Global 
Burden of Disease:22 back pain, chronic ischemic heart disease, type 2 diabetes, 
chronic obstructive pulmonary disease, and stroke. Summary statistics for mediators 
were obtained from the UK Biobank (Supplementary Table 1). For example, we 
estimated the simultaneous effects of chronic ischemic heart disease and waist 
circumference on healthcare costs by including two exposures in our model, which were 
identified using genetic variants associated with each exposure. This allowed us to 
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obtain the direct effect of waist circumference on healthcare costs by adjusting out the 
indirect effect of chronic ischemic heart disease on healthcare costs.  

Replication analyses in the United Kingdom and Netherlands 

We performed validation analyses in the UK Biobank 23 (N=307,048) and Netherlands 
Twin Register 24 (N=16,726) to evaluate the generalizability and robustness of our 
results to different healthcare systems in different countries. For the Netherlands Twin 
Register, we used published GWAS summary statistics 24. For UK Biobank, we expand 
upon published analyses for BMI 23. We repeated our analyses to estimate the annual 
monetary impact per capita associated with each risk factor. For the UK Biobank, we 
converted pounds to euros using the average exchange rate in 2021 of 1 EUR = 0.8403 
GBP. We also calculated the genetic correlation between the three sets of summary 
statistics to evaluate the consistency of associations across different healthcare 
systems using LDSC, a tool to estimate genetic correlation and heritability.25 We also 
constructed polygenic scores of healthcare costs from the UK Biobank and Netherlands 
Twin Register and estimated their associations with healthcare costs in FinnGen. We 
first used PRS-CS 26 to calculate weights of association and PLINK2 27 to calculate 
scores. Briefly, PRS-CS is a polygenic prediction method that uses Bayesian regression 
and infers posterior SNP effect sizes under continuous shrinkage priors using only 
GWAS summary statistics and an external linkage disequilibrium reference panel.26 The 
1000 Genomes EUR reference panel was used to output weights using standard PRS-
CS parameters. Only HapMap3 variants were included. PLINK2 was used to calculate 
the polygenic scores, which were then standardized across the entire FinnGen Study 
cohort with a mean of 0 and a standard deviation of 1.  

Results 

In this study (Figure 1), we estimated the causal impact of 15 risk factors with strong 
genetic bases (Supplementary Table 1) on annual total healthcare costs.  
 

Figure 1. Graphical abstract. (A): Example of how genetic 
variants associated with BMI and randomly assigned at birth 
can be used to infer the causal impact of BMI on healthcare 
costs (e.g., by modifying risk for cardiovascular disease and 
statin medication). (B): Assumptions underlying MR. 1: 
Genetic instruments must be robustly associated with the 
exposure (risk factor), 2: there must be no confounders of 
the genetic instruments-outcome association, and 3: Genetic 
instruments must not influence the outcome except through 
the exposure. (C): National healthcare registries link with the 
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FinnGen Study to estimate annual total healthcare costs. (D) 
STROBE flow diagram for study cohort, in which 373,160 
individuals were included.  
 

 
Distribution of healthcare costs 

We included 373,160 FinnGen participants (data freeze 8) followed-up to a maximum of
22 years. The average age at baseline (i.e., date of DNA sample collection) was 54
years old and 56% of the study cohort was female. The mean and median annual total
healthcare cost was €2,706 and €1,313, respectively (Figure 2).  Primary care (mean =
€169, median = €109) and medication (mean = €518, median = €202) costs were lower
than secondary care (mean = €2019, median = €852) costs. Mean (females = €2244,
males = €3303) and median (females = €1245, males = €1433) costs were similar in
male and females but males (SD = €15545) had greater variability than females (SD =
€4445). Individuals over the age of 60 (mean = €3406, median = €1800) had greater
healthcare costs than individuals between the age of 30 and 60 (mean = €1851, median
= €891) and individuals under the age of 30 (mean = €1484, median = €621).  

Figure 2. Distribution of healthcare costs in 373,160 
FinnGen participants. (A) Annual total healthcare cost in 
euros. (B) Annual healthcare costs in euros for primary care, 
secondary care, and medication costs. (C) Annual total 
healthcare costs in euros for females and males. (D) Annual 
total healthcare costs for individuals under 30 years old, 
between 30 and 60 years old, and over 60 years old. X-axis 
is on a log10-transformed scale. 
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Causal impact of risk factors on total healthcare costs 

We estimated the causal impact of risk factors on healthcare costs using MR. All risk 
factors had strong genetic instruments (e.g., F-statistic > 50) obtained from genome-
wide association studies of at least 173,082 individuals. We detected significant effects 
of six risk factors on costs (i.e., waist circumference, adult body mass index, systolic 
blood pressure, triglycerides, cystatin C, and HDL cholesterol) at the Bonferroni-
corrected significance level (P < 3.33×10-3) (Figure 3). We performed sensitivity 
analyses using five different robust MR approaches (Supplementary Table 2) and 
identified three risk factors that consistently affected total annual healthcare costs 
across at least three of the sensitivity analyses: waist circumference (WC), adult body 
mass index (BMI), and systolic blood pressure (SBP). One standard deviation (SD) 
increase in WC increased the annual total healthcare costs by 22.78% (95% CI: [18.75, 
26.95], P = 1.90×10-33); one SD increase in adult BMI increased the annual total 
healthcare costs by 13.64% (95% CI: [10.26, 17.12], P = 1.06×10-16); and one SD 
increase in SBP increased the annual total healthcare costs by 13.08% (95% CI: [8.84, 
17.48], P = 2.80×10-10). Using MR methods robust to pleiotropy, we found similar effects 
for WC (17.19% - 22.78%), adult BMI (8.21% - 13.64%), and SBP (13.08% - 32.36) 
(Supplementary Table 2). 
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Several biomarkers did not have a significant (e.g., Bonferroni-corrected significance 
level of P < 3.33×10-3) impact on annual total healthcare costs (e.g., alanine 
aminotransferase, P = 4.58×10-2; glycated hemoglobin, P = 6.44×10-3; C-reactive 
protein, P = 1.64×10-2; LDL cholesterol, P = 1.86×10-1; lipoprotein(a), P = 2.20×10-1; 
creatinine, P = 6.39×10-1; vitamin D, P = 4.75×10-1; albumin, P = 3.73×10-1; glucose, P = 
1.50×10-1), indicating that genetically-increased levels of these biomarkers do not result 
in a significant downstream impact on healthcare costs. LDL cholesterol (1.79%, 95% 
CI: [-0.85, 4.50], P = 1.86×10-1) had a null effect on healthcare costs, despite the strong 
genetic instruments for LDL cholesterol. We performed sensitivity analyses using 
genetic instruments for triglycerides, HDL cholesterol, and LDL cholesterol that were 
adjusted for statin usage and observed similar results (Supplementary Table 2) 

Figure 3. Mendelian Randomization on 15 biological risk 
factors on annual total healthcare costs for 373,160 FinnGen 
participants using the two-sample, inverse variance weighted 
approach. Bars indicate 95% confidence interval. Black bars 
and the * symbol indicate biological risk factors that are 
statistically significant at the Bonferroni-corrected 
significance level (P < 3.33×10-3). The # symbol indicates 
biological risk factors that were significant across at least 
three of the MR approaches used in sensitivity analyses. SD 
is standard deviation. 
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Impact of risk factors on total healthcare costs 

To quantify the amount of annual total healthcare costs associated with WC, adult BMI, 
and SBP in absolute euros (instead of percent changes), we assumed a median annual 
total healthcare cost of €1312.53 (Table 1). One SD increase in WC, adult BMI, and 
SBP resulted in increases of €298.99, €179.03 and €171.68 of annual total healthcare 
costs, respectively. Using clinically interpretable units, we estimated €202.13 annual 
increase per additional 10 cm of WC; €178.51 per 5 kg/m^2 of adult BMI; and €84.00 
increase per 10 mmHg of SBP.  

Table 1. Monetary impact of three main biological risk 
factors for 343,160 FinnGen participants as estimated from 
Mendelian Randomization. SD is standard deviation.  

Exposure 

Percent 
change in cost 

per unit 
change in 
exposure 

Confidence 
Interval 

Estimated absolute change 
in euros 

Waist 
circumference 

22.78 per 1 SD [18.75, 26.95] 
€298.99  
per 1 SD 

15.40 per 10 cm [12.90, 17.90] €202.13  
per 10 cm 
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Body mass 
index 

13.64 per 1 SD [10.26, 17.12] €179.03  
per 1 SD 

2.72 per 5 
kg/m^2 [2.07, 3.37] €178.51 per  

5 kg/m^2 

Systolic blood 
pressure 

13.08 per 1 SD [8.84, 17.48] 
€171.68  
per 1 SD 

0.64 per 10 
mmHg [0.44, 0.84] 

€84.00 per  
10 mmHg 

Impact of risk factors on total healthcare costs by service type, sex, and age 

We quantified the impact of six risk factors with significant effects on annual total 
healthcare costs by repeating the analyses by each service type (i.e., primary care, 
secondary care, medication), sex, and age (Figure 4). SBP (medication vs. secondary 
care costs, P = 5.75×10-9 for difference in effect size) and triglycerides (medication vs. 
secondary care costs P = 1.09×10-4) had larger effects on medication costs than 
secondary (or primary) care costs. Such effects reflected relative rather than absolute 
increases. For example, a one SD increase in SBP caused a large relative difference in 
annual medication costs than secondary care costs (34.18% increase (95% CI: [27.16, 
41.59]) vs 8.17% increase (95% CI: [3.10, 13.49], respectively). However, the estimated 
absolute euro changes were similar (i.e., medication costs of €69.04 vs. secondary care 
costs of €69.61).  

We found little evidence that the relative impact of the risk factors on healthcare costs 
differ between females and males. Similarly, we found few differences between 
individuals younger than 30 years old, between 30 and 60 years old, and older than 60 
years old. The only exception was a modest difference in the relative impact of SBP on 
healthcare costs between individuals aged 30 to 60 years old (7.79%, 95% CI: [2.12, 
13.77]) compared to individuals older than 60 years old (18.38%, 95% CI: [13.71, 
23.23]) for SBP (P = 3.20×10-3). 

Figure 4. Mendelian Randomization on six biological risk 
factors for 373,160 FinnGen participants using the two-
sample, inverse variance weighted approach stratified by (A) 
service type, (B) sex, and (C) age. Bars indicate 95% 
confidence interval. The * sign indicates significant 
differences between different levels of the stratification 
variable within the risk factor at the Bonferroni-corrected 
significance level (P < 8.33×10-3). SD is standard deviation. 
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Factors mediating the impact of risk factors on total healthcare costs  

For the three risk factors with the largest percent change on healthcare costs (WC, adult 
BMI, SBP), we used MVMR to understand how much of their impact on healthcare 
costs can be explained by increased risk for major diseases associated with high 
healthcare costs (Supplementary Table 6). We considered the top five 
noncommunicable diseases from the Global Burden of Disease study:22 back pain, 
chronic ischemic heart disease, type 2 diabetes, chronic obstructive pulmonary disease, 
and stroke. For SBP, we additionally studied blood pressure medications as a mediator, 
which was not immune from collider bias but provided context for indirect effects of SBP 
on healthcare costs.  

After accounting for the genetic effects mediated by the five noncommunicable 
diseases, we found that type 2 diabetes and blood pressure medications modestly 
mediated the effects of adult BMI and SBP on annual total healthcare costs, 
respectively. Adjusting for type 2 diabetes slightly attenuated the effect of adult BMI on 
healthcare costs from 13.64% [95% CI: 10.26, 17.12] to 10.18% [95% CI: 4.88, 15.76]. 
Adjusting for blood pressure medications attenuated the effect of SBP on healthcare 
costs from 13.08% [95% CI: 8.84, 17.48] to 4.06% [95% CI: -2.45, 10.47]. Interestingly, 
even after adjusting for the top five noncommunicable diseases, WC effects on 
healthcare costs remained similar suggesting that WC affects healthcare costs broadly 
beyond the increased risk of the top five major diseases.  

Replication analysis for generalizability and robustness of healthcare costs 
findings 

We conducted several analyses to evaluate the robustness of our findings. First, we 
perform similar MR analysis in UK Biobank (N=307,048) and we estimated a £96.90 
(€115.32) increase per SD of WC; a £94.59 (€112.57) increase per SD of adult BMI; 
and a £24.36 (€28.99) increase per SD of SBP. In clinical units, we estimated a £77.40 
(€92.11) increase per 10 cm of WC; a £102.82 (€122.36) increase per 5 kg/m^2 of adult 
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BMI; and a £11.77 (€14.01) increase per 10 mmHg of SBP. Similarly, in the Netherlands 
Twin Register (N=16,726), we estimated a €182.52 increase per SD of WC; a €264.85 
increase per SD of adult BMI; and a €10.07 increase per SD of SBP. In clinical units, we 
estimated a €129.91 increase per 10 cm of WC; a €261.44 increase per 5 kg/m^2 of 
adult BMI; and a €87.69 increase per 10 mmHg of SBP. Results from these other 
sources are therefore in the range of our estimates, despite the different healthcare 
systems, data sources (e.g., different cost categories captured), and population 
structures (Figure 5, Supplementary Table 3).  

Second, we compared the genetic association with annual healthcare costs in FinnGen 
with those publicly available from the United Kingdom and Netherlands 
(Supplementary Table 4). We observed that the genetic correlation was significant 
between between Finland, the United Kingdom, and Netherlands. Comparing secondary 
care costs, Finland and the United Kingdom had a genetic correlation of 0.804 (SE = 
0.05492, P = 1.61×10-48). Comparing primary care costs, Finland and the Netherlands 
had a genetic correlation of 0.7694 (SE = 0.3387, P = 2.31×10-2). For the Netherlands 
total, secondary care, and medication costs, heritability was too low to calculate genetic 
correlation.  

Third, we calculated polygenic scores (PGS) for healthcare costs using weights from the 
United Kingdom (UK) and Netherlands (NL). In general, there was a large and 
significant association between Finnish healthcare costs and UK- and NL-based PGS, 
suggesting that cross-country analyses of healthcare costs may be valuable 
(Supplementary Figure 1). A 1 SD increase in the UK-based PGS for secondary care 
costs was associated with an increase in €128 per year (95% CI: [97, 160], P = 
2.09×10-15) or 9.29% per year (95% CI: [8.74, 9.84], P = 6.70×10-293). A 1 SD increase 
in the NL-based PGS for total healthcare costs was associated with an increase of €15 
per year (95% CI: [-19, 50], P = 3.83×10-1) or 2.84% per year (95% CI: [2.46, 3.21], P = 
1.66×10-50). The lower increase observed for NL-based PGS is expected given the PGS 
was derived on a smaller sample size. 

Finally, FinnGen is not fully representative of the general Finnish population and 
enriched with individuals that have been in contact with the healthcare system due 
recruitment being predominantly based in hospital-based settings. To evaluate the 
generalizability of our results to the entire Finnish population, we used inverse 
probability weighting with weights calculated by comparing five health and 
sociodemographic characteristics (i.e., age, gender, education, occupation, and region 
of birth) between FinnGen participants and the full Finnish population (Supplementary 
Figure 2, Supplementary Table 5). We found a high correlation between the effect 
sizes from the GWAS of healthcare costs and the weighted linear regression (R2 = 
0.76). We also found similar results for the MR analysis, in which one SD increase in 
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WC increased healthcare costs by 22.64% (95% CI: [16.84, 28.72], P = 1.53×10-16), one 
SD increase in adult BMI increased healthcare costs by 12.42% (95% CI: [6.96, 18.16], 
P = 4.06×10-6), and one SD increase in SBP increased healthcare costs by 12.56% 
(95% CI: [6.66, 18.80], P = 1.67×10-5).  

Figure 5. Mendelian Randomization results for total 
healthcare costs for 3 three main biological risk factors in a 
replication analysis including data from the United Kingdom 
(N=307,048), Netherlands (N=16,726), Finland (N=373,160) 
and re-weighting the FinnGen cohort to reflect the entire 
Finnish population. SD is standard deviation. 
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Discussion 

We linked genetic information to detailed healthcare costs covering primary, secondary, 
and medication costs for 373,160 participants in FinnGen followed-up to a maximum of 
22 years. This allowed us to evaluate the association between the genetic 
underpinnings of 15 clinically relevant risk factors and annual total healthcare costs. 
Generally, making causal inferences about the effects of these risk factors is 
challenging because of confounding, reverse causation, and the unfeasibility of 
randomized controlled trials. We address these limitations using a genetically-informed 
causal inference design. Under the assumptions of Mendelian Randomization, we 
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estimated the causal effects of these risk factors on total healthcare costs. Our 
approach was conservative, and we chose risk factors that have strong genetic bases 
and high heritability. However, we did not consider important modifiable risk factors 
such as smoking and alcohol consumption because using MR with such risk factors 
represents additional challenges.  

The risk factor with the largest quantitative impacts on healthcare costs were WC, 
followed by adult BMI and SBP. An increase of 10 cm in WC results in 15.40% increase 
in annual healthcare costs, which, in Finland, corresponds to approximately €202.13. 
The effect of WC, unlikely BMI, was not attenuated when considering the potential 
mediating effect of five major diseases. Previous studies have suggested that WC may 
be more informative than adult BMI for certain health outcomes, as WC may better 
reflect the accumulation of intra-abdominal fat compared with BMI.28 The MR study of 
Hazewinkel et al.  in the UK Biobank found that an adverse fat distribution rather than 
the level of BMI may drive the relationship between BMI and higher rates of hospital 
admission.29 

Importantly, we found that the impact several biomarkers (e.g., alanine 
aminotransferase, glycated hemoglobin, C-reactive protein, LDL cholesterol, 
lipoprotein(a), creatinine, vitamin D, albumin, and glucose) have on healthcare costs 
was modest and not significant at the Bonferroni-corrected significance level. It has 
been argued the MR is more valuable to reject causal claims when the genetic 
instrument is sufficiently strong,30 as in our case.  

There may be two main reasons why we did not find significant effects for these 
biomarkers. First, elevated biomarkers can be consequences of underlying disease 
processes, for example, by reflecting inflammation, as in the case of C-reactive protein. 
Moreover, their levels can simply capture (un)healthy behaviors. For example, 
numerous trials have shown no benefits for Vitamin-D supplements on reducing risk for 
several diseases, such as cardiovascular diseases, despite supporting evidence from 
observational studies,31 32 but not from MR-based studies.33 34 35 Second, the effect of 
risk factors on healthcare costs reflects current clinical practice. If a risk factor is 
routinely measured and those with high levels of the risk factor are correctly targeted by 
preventive interventions, the increased healthcare costs associated with the preventive 
interventions should be counterbalanced by the reduced healthcare costs associated 
with the prevented disease burden. Such is the case of LDL cholesterol - if LDL 
cholesterol was sufficiently treated in the population, LDL cholesterol would have less of 
an impact on healthcare costs. Indeed, Harrison et al. observed a null impact of total 
serum cholesterol on other social and economic outcomes in the UK Biobank.36 
Similarly, while glycated hemoglobin is a known marker for type 1 and 2 diabetes, 
proper management may results in a lower impact of glycated hemoglobin on 
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healthcare costs as compared to a theoretical scenario where patients with high 
glycated hemoglobin were untreated.  

Our study has limitations. First, the power and precision of our MR analysis was limited 
by the availability of SNPs associated with the risk factors. Second, MR is an 
instrumental variable analysis that uses linear model estimates that may not accurately 
capture non-linear effects of risk factors on healthcare costs. Third, MR uses the genetic 
variation assigned at conception (e.g., genetically determined risk factors), and 
therefore estimates the lifetime effects of risk factors on healthcare costs, rather than 
acute or temporary effects. For example, an intervention that reduces WC in older ages 
may not result in reductions in healthcare costs consistent with our estimates. 

Fourth, healthcare systems worldwide vary. Finland, which has a public healthcare 
system, is ideal for the analysis of healthcare costs, as healthcare services are 
uniformly priced, and is similar to other European countries with public healthcare 
systems. On the other hand, countries that rely more heavily on private healthcare and 
insurance, such as the United States, may offer healthcare services at different costs 
depending on insurance plans and other factors, making the analysis of healthcare 
costs difficult. Moreover, our results are based on individuals of European ancestry, and 
genetic effects might vary across ancestry groups. 

Our approach opens different research venues. Drug makers can quantify healthcare 
costs associated with specific drug targets, including proteins and metabolites, for which 
large-scale GWAS have been performed and use these results to inform drug 
development. Public health specialists can extend these approaches to evaluate 
whether screening procedures for certain biomarkers are cost-effective. Future large-
scale genetic studies will likely identify genetic variants associated with healthcare costs 
and inform the implementation of genomic medicine approaches. 
 
In conclusion, our results not only indicate that elevated WC, BMI and SBP are major 
causal contributors to healthcare costs, but could also quantify their impact on 
healthcare costs within a causal inference framework. This has implications for the cost-
effectiveness of interventions and policies that influence these biomarkers. Several 
other biomarkers routinely measured in clinical setting are unlikely to directly impact on 
healthcare costs, either because they are not causal to healthcare cost, or because they 
are already well managed in the clinic.   
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