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ABSTRACT 35 
 36 
Objective 37 
To develop a clinical prediction model to diagnose neonatal sepsis in low-resource settings. 38 
 39 
Design 40 
Secondary analysis of data collected by the Neotree digital health system from 01/02/2019 to 41 
31/03/2020. We used multivariable logistic regression with candidate predictors identified 42 
from expert opinion and literature review. Missing data were imputed using multivariate 43 
imputation and model performance was evaluated in the derivation cohort. 44 
 45 
Setting 46 
A tertiary neonatal unit at Sally Mugabe Central Hospital, Zimbabwe. 47 
 48 
Patients 49 
We included 2628 neonates aged <72 hours, gestation ≥32+0 weeks and birth weight ≥1500 50 
grams. 51 
 52 
Interventions 53 
Participants received standard care as no specific interventions were dictated by the study 54 
protocol. 55 
 56 
Main outcome measures 57 
Clinical early-onset neonatal sepsis (within the first 72 hours of life), defined by the treating 58 
consultant neonatologist. 59 
 60 
Results 61 
Clinical early-onset sepsis was diagnosed in 297 neonates (11.3%). The optimal model 62 
included eight predictors: maternal fever, offensive liquor, prolonged rupture of membranes, 63 
neonatal temperature, respiratory rate, activity, chest retractions and grunting. Receiver 64 
operating characteristic analysis gave an area under the curve of 0.736 (95% confidence 65 
interval 0.701-0.772). For a sensitivity of 95% (92-97%), corresponding specificity was 11% 66 
(10-13%), positive predictive value 12% (11-13%), negative predictive value 95% (92-97%), 67 
positive likelihood ratio 1.1 (95% CI 1.0-1.1), and negative likelihood ratio 0.4 (95% CI 0.3-68 
0.6). 69 
 70 
Conclusions 71 
Our clinical prediction model achieved high sensitivity with modest specificity, suggesting it 72 
may be suited to excluding early-onset sepsis. Future work will validate and refine this model 73 
before considering it for clinical use within the Neotree. 74 
  75 
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What is already known on this topic 76 
Various clinical prediction models exist to diagnose neonatal sepsis. However, there is a 77 
paucity of literature on models in low-resource settings, particularly sub-Saharan Africa. 78 
 79 
What this study adds 80 
We developed a clinical prediction model to diagnose clinical early-onset neonatal sepsis 81 
with over 2,500 neonates in a lower middle-income, low-resource neonatal unit. Our model is 82 
easy to implement, does not require laboratory tests and achieved high sensitivity with 83 
modest specificity in the derivation cohort. 84 
 85 
How this study might affect research, practice or policy 86 
Our model could support less experienced healthcare professionals avoid unnecessary 87 
antibiotic therapy in the absence of immediate local senior support. Before implementation, 88 
this model must be externally validated and its impact on sepsis-related neonatal morbidity 89 
and mortality must be assessed in future studies.  90 
  91 
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INTRODUCTION 92 

 93 

Neonatal sepsis caused 15% of the 2.5 million neonatal deaths worldwide in 2018 and has a 94 

mortality rate of 110-190 per 1000 livebirths.[1, 2] It can be difficult to diagnose as the 95 

clinical features overlap with non-infectious diseases.[3] Failing to treat sepsis with timely 96 

antimicrobials increases the risk of death or disability, but empirical antimicrobial therapy in 97 

non-infected neonates contributes to antimicrobial resistance and adverse outcomes.[4, 5] 98 

 99 

Isolating a pathogenic organism from a normally sterile site is the gold standard diagnostic 100 

method,[6] but has limitations. In low-resource settings (LRS), cultures and blood counts are 101 

often unavailable,[7] or turnaround times are too long to usefully inform management.[8, 9] 102 

Blood cultures have high sensitivity provided sufficient inoculate volume is obtained, but 103 

sampling can be difficult in unwell neonates.[10] Therefore, clinicians may diagnose sepsis 104 

and initiate empirical antimicrobial therapy despite negative cultures, based on clinical 105 

presentation, risk factors and/or raised inflammatory markers. This is often called ‘culture-106 

negative’ sepsis and up to 16 times more neonates receive antibiotics for culture-negative 107 

sepsis than for sepsis with a positive culture.[11] Diagnostic challenges are increased in LRS 108 

where early neonatal care may be led by less experienced healthcare professionals (HCPs) 109 

without immediate local senior support.[8] 110 

 111 

Clinical prediction models combine patient or disease characteristics to estimate the 112 

probability of a diagnosis or outcome.[12] Models to diagnose neonatal sepsis may improve 113 

diagnostic accuracy and rationalise antibiotic use. In LRS, they could provide clinical 114 

decision support for less experienced HCPs, especially if models do not require laboratory 115 

tests. Several existing models estimate the probability of neonatal sepsis,[13] for example, the 116 
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Kaiser Permanente Early-Onset Sepsis Calculator.[14] Unfortunately, few studies have 117 

investigated models in LRS, particularly in sub-Saharan Africa.[13] 118 

 119 

Our primary objective was to develop a clinical prediction model to diagnose neonatal sepsis 120 

in a LRS neonatal unit, with the aim to support less experienced HCPs make this diagnosis. 121 
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METHODS 122 

 123 

We describe methods according to the TRIPOD statement (Additional File 1).[15] Further 124 

methods are in Additional File 2 and accompanying R code at 125 

https://doi.org/10.5281/zenodo.6969912. 126 

 127 

Source of data 128 

 129 

We performed secondary analysis of data from the Neotree at the neonatal unit of Sally 130 

Mugabe Central Hospital (SMCH), Zimbabwe. Data were collected over 14 months from 131 

01/02/2019 to 31/03/2020. 132 

 133 

The Neotree is an open-source digital health system for newborn care in LRS.[16, 17] It 134 

combines evidence-based clinical decision support, education and digital data capture at 135 

admission and discharge. It is embedded in routine practice at three neonatal units in sub-136 

Saharan Africa (Kamuzu Central Hospital, Malawi; SMCH, Zimbabwe; and Chinhoyi 137 

Provincial Hospital, Zimbabwe). 138 

 139 

On admission, HCPs complete an admission form using the Neotree application on an 140 

Android tablet. The application guides assessment of the neonate and collects predefined 141 

data. At discharge or after neonatal death, HCPs complete an outcome form, which includes 142 

the final diagnoses or cause(s) of death after review by a consultant neonatologist (Additional 143 

File 2, section 1). 144 

 145 

Participants 146 
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 147 

SMCH has the largest of three tertiary neonatal units in Zimbabwe, with 100 cots. It admits 148 

neonates born within the hospital and accepts national referrals for specialist surgical care. 149 

 150 

We included neonates with chronological age <72 hours, ≥32+0 weeks gestation at birth, and 151 

birth weight ≥1500 grams. We excluded non-first-born multiples and those with a diagnosis 152 

of major congenital anomaly, no outcome form completed, or anomalous admission durations 153 

(e.g. date of discharge before date of admission). 154 

 155 

Outcome 156 

 157 

The primary outcome was clinical early-onset neonatal sepsis (EOS), defined as sepsis with 158 

onset within the first 72 hours of life, as diagnosed by the treating consultant neonatologist 159 

and recorded on the outcome form as one or more of: (i) primary discharge diagnosis, (ii) 160 

additional problem during admission, (iii) primary cause of death, or (iv) contributory cause 161 

of death. No specific actions were performed to blind outcome assessment. 162 

 163 

Predictors 164 

 165 

We identified candidate predictors through a modified Delphi method study,[18] and 166 

literature review.[13] We mapped these predictors to available Neotree data, yielding 22 167 

candidate predictors (Additional File 2, section 2). No specific actions were performed to 168 

blind predictor assessment. 169 

 170 

Statistical analysis 171 
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 172 

Analyses were performed in RStudio version 2022.02.0+443 (R version 4.1.3).[19, 20] No 173 

specific sample size calculations were performed. 174 

 175 

Data preparation 176 

 177 

We linked admission and outcome forms using the Fellegi-Sunter framework of probabilistic 178 

record linkage (Additional File 2, section 4).[21, 22] We imputed missing values using 179 

multivariate imputation by chained equations.[23] Data were assumed to be missing at 180 

random and we created 40 imputed datasets (Additional File 2, section 6). 181 

 182 

Model development and specification 183 

 184 

We used multivariable logistic regression to predict diagnosis of clinical EOS. For 185 

convenience, model selection was performed in one dataset randomly selected from all 186 

imputed datasets. First, we fitted a ‘full’ main effects model containing all candidate 187 

predictors assuming linearity of continuous predictors and additivity at the predictor scale. 188 

We excluded categorical variables with skewed distributions (<5% category prevalence in 189 

either outcome group) if Fisher’s exact test was non-significant (p ≥ 0.05) for the �� � 190 

contingency table. Otherwise, skewed categorical predictors were retained, and smaller 191 

categories combined into an ‘other’ category. Next, we compared plausible variations to the 192 

full model, selecting the model which minimised both Akaike’s information criterion (AIC) 193 

and the Bayesian information criterion (BIC) as the ‘optimal’ model (Additional File 2, 194 

section 8). We explored non-linear effects of continuous predictors with natural cubic spline 195 

functions (2 to 10 degrees of freedom) and polynomial transformations (second-degree to 196 
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fifth-degree polynomials). We tested for the biologically plausible interaction between birth 197 

weight and gestational age. Finally, we fitted the optimal model across all imputed datasets 198 

and obtained pooled regression coefficients and their standard errors (SEs) using Rubin’s 199 

rules.[24] 200 

 201 

Model performance 202 

 203 

We evaluated performance of the optimal model in the derivation cohort. Discrimination was 204 

quantified by plotting a receiver operating characteristic (ROC) curve in each imputed 205 

dataset. We pooled the area under the curve (AUC) and variance across imputed datasets 206 

using Rubin’s rules.[24] Discrimination was visualised with a box plot and density plot of the 207 

distributions of predicted probabilities for each observed outcome group (in the single dataset 208 

used for model selection). We calculated Yates’ discrimination slope as the absolute 209 

difference in mean predicted probabilities between the two observed outcome groups.[25] 210 

Sensitivity, specificity, predictive values, and likelihood ratios of the optimal model were 211 

estimated in the single dataset used for model selection. These metrics are presented for the 212 

‘optimal’ probability threshold according to Youden’s J statistic,[26] and for thresholds 213 

corresponding to sensitivities of 80, 85, 90 and 95%. Confidence intervals for likelihood 214 

ratios and Yates’ discrimination slope were obtained using bootstrap with 10,000 resamples 215 

(basic method or normal approximation).[27] 216 

 217 

Research ethics approval 218 

 219 

Research ethics approval was granted by the University College London Research Ethics 220 

Committee (16915/001, 5019/004), Medical Research Council Zimbabwe (MRCZ/A/2570), 221 
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and Sally Mugabe Central Hospital Ethics Committee (250418/48). The ‘session ID’ numbers 222 

shown in Additional File 2 were generated at the time of data import and, thus, were not 223 

known to anyone outside of the research group.   224 
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RESULTS 225 

 226 

Participants 227 

 228 

Of the 3577 neonates with matched admission and outcome records, 2628 (73.5%) were 229 

included (Figure 1). Mean gestational age was 38.0 (SD = 2.5) weeks, mean birth weight 230 

2889 (SD = 703) grams, and 221 (8.4%) neonates died (Table 1). In total, 297 had clinical 231 

EOS (11.3%, incidence 113 per 1000 admissions).  232 

 233 

Missing data 234 

 235 

In total, 14 variables had missing values. All variables had <1% missing values except 236 

temperature (31%) and birth weight (1.2%). Time since the start of data collection predicted 237 

missing temperature (odds ratio [OR] 0.96, 95% CI 0.96-0.96, p < 0.001) as limited 238 

thermometers were available early in the study. Missing temperature was not associated with 239 

clinical EOS (OR 0.79, 95% CI 0.60-1.03, p = 0.084). 240 

 241 

Model development 242 

 243 

From the set of 22 candidate predictors (Table 2), eight were excluded due to <5% category 244 

prevalence with a non-significant Fisher’s exact test (cyanosis, seizures, fontanelle, colour, 245 

abdominal distention, omphalitis, abnormal skin appearance, and history of vomiting). Three 246 

of the five categories for activity had a prevalence of <5% in either outcome group but 247 

Fisher’s exact test indicated a significant difference in the distribution between the two 248 
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groups (p < 0.001). Activity was retained as a predictor and the three smaller categories were 249 

collapsed into one ‘other’ group. 250 

 251 

Therefore, 14 candidate predictors were considered for model development. Of these, 12 had 252 

a significant univariable association with clinical EOS (Table 3). The strongest univariable 253 

predictor was maternal fever (OR 5.99, 95% CI 2.06-17.4). Neither birth weight (OR 1.14, 254 

95% CI 0.96-1.35) nor grunting at triage (OR 1.23, 95% CI 0.95-1.59) predicted clinical EOS 255 

in univariable models. 256 

 257 

Among plausible multivariable models, a model containing eight of the 14 candidate 258 

predictors was selected as the optimal model (Additional File 2, section 8). Fitting non-linear 259 

effects for temperature or birth weight, or allowing for an interaction between birth weight 260 

and gestational age, did not improve fit. 261 

 262 

Model specification 263 

 264 

The optimal model included eight predictors: temperature at admission, respiratory rate, 265 

maternal fever during labour, offensive liquor, premature rupture of membranes, activity, 266 

chest retractions, and grunting (Table 4). It can be written as 267 

 268 

������� �  
39.4 � 0.99 � ����������� � 0.06 � ������������ ���� ������� �� 5� �  1.44

� �����"�� #���� ����"$ ������ � 0.54 � �##�"���� ��%��� � 0.36

� �����"$�� ������� �# ������"�� � 0.59 � ���&��$� � 0.84

� ������������, ���)���� �� *��� � 0.41 � *&��� �����*���"� � 0.18 � $��"��"$ 

 269 
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where lp(EOS) is the logit transformation of the probability of clinical EOS. The probability 270 

of clinical EOS (Pr(EOS)) is thus given by the inverse-logit function 271 

 272 

+������ �
��������

1 � ��������
 

 273 

Model performance 274 

 275 

The pooled AUC was 0.736 (95% CI 0.701-0.772) (Figure 2). Median predicted probability 276 

was higher for observed cases with EOS than without EOS but there was significant overlap 277 

(Figure 3). Yates’ discrimination slope was 0.11 (95% CI 0.064-0.13). 278 

 279 

The ‘optimal’ classification threshold was 0.121 (i.e. 12.1% predicted probability of clinical 280 

EOS) yielding sensitivity 65% (95% CI 59-70%) and specificity 74% (95% CI 72-75%) 281 

(Table 5). For a sensitivity of 95%, the corresponding classification threshold was 0.034 282 

giving sensitivity 95% (95% CI 92-97%) and specificity 11% (95% CI 10-13%) (Table 5). 283 
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DISCUSSION 284 

 285 

We developed a clinical prediction model to diagnose clinical EOS that can be applied in 286 

LRS. The optimal model included eight predictors: three perinatal risk factors (maternal fever 287 

during labour, offensive liquor, and prolonged rupture of membranes), and five clinical signs 288 

in the neonate (temperature, respiratory rate, activity on neurological examination, chest 289 

retractions, and grunting). Using a classification threshold for high sensitivity, this model had 290 

a relatively low specificity in the derivation cohort. 291 

 292 

Interpretation 293 

 294 

Incidence of clinical EOS in this cohort was 113 per 1000 admissions. This is greater than 295 

other estimates from low-income and middle-income countries, but there is marked 296 

heterogeneity between relatively few studies worldwide. For example, a 2019 meta-analysis 297 

estimated global EOS incidence of 31.1 per 1000 livebirths (95% CI 8.98-102.22; I2 298 

99.9%).[28] 299 

 300 

Our model shares predictors with existing models for neonatal sepsis.[13]  However, it does 301 

not need results from laboratory tests so is more applicable to LRS. Models exist for EOS 302 

that do not require laboratory tests (some of which have been validated in LRS), but data are 303 

limited to a few small studies. For example, Weber et al. developed a score with 14 clinical 304 

features to predict neonatal sepsis, meningitis, pneumonia or hypoxemia in neonates 305 

presenting to health facilities in four LRS countries.[29] Validation in the subgroup of 285 306 

neonates aged ≤6 days of life showed a sensitivity of 95% with a specificity of 26% if one or 307 

more clinical features were present.[29] Comparison of performance between models is 308 
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challenging as studies infrequently report readily comparable metrics (e.g. AUC) and often 309 

present performance at selected probability thresholds. 310 

 311 

The Kaiser Permanente Early-Onset Sepsis Calculator has gained interest for managing 312 

neonates born at ≥34 weeks’ gestation.[30, 31] It combines maternal perinatal risk factors 313 

with the neonate’s clinical appearance to provide management recommendations based on the 314 

estimated probability of EOS. Meta-analyses suggest its use reduces rates of admission, 315 

antibiotic use and use of laboratory tests, without increased mortality (although some authors 316 

have voiced concerns about ‘missed’ or delayed diagnoses).[32-35] All included studies in 317 

these meta-analyses were performed in high-income countries. 318 

 319 

The Kaiser Permanente calculator does not require results of laboratory tests but may be ill-320 

suited to LRS. First, the baseline incidences of EOS used are lower than in most LRS: 0.1-4.0 321 

per 1000 livebirths for the calculator,[30] compared to 31.1 per 1000 livebirths (95% CI 8.98-322 

102.22) in LRS.[28] Second, the calculator was developed in a population where Group B 323 

streptococcus (GBS) is the predominant organism in EOS and where antenatal GBS 324 

screening is performed routinely. The microbiology of EOS differs in LRS. Staphylococcus 325 

aureus, Klebsiella species and Escherichia coli are relatively more common isolates than 326 

GBS.[36, 37] Therefore, risk factors such as maternal GBS carriage and intrapartum 327 

antibiotic status are less relevant or unmeasured in LRS. Finally, descriptors used for 328 

categories of clinical presentation (“clinical illness”, “equivocal” and “well appearing”) 329 

include interventions such as mechanical ventilation, which are not useful measures of illness 330 

in neonatal units where these interventions are unavailable. Two studies have validated the 331 

Kaiser Permanente calculator in middle-income countries with variable results.[38, 39] No 332 

studies have validated the calculator in low-income countries or sub-Saharan Africa. 333 
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 334 

Implications 335 

 336 

Our model is easy to apply in LRS. It includes clinical predictors and risk factors that are 337 

simple to identify by any cadre of HCP with minimal additional training. Acceptable 338 

thresholds of sensitivity and specificity will vary by clinical context. High sensitivity is 339 

important to avoid missing a true case of sepsis, but higher specificity would reduce risks 340 

associated with inappropriate antimicrobial therapy. During resource shortages, lower 341 

sensitivity might be favoured for higher specificity to allow treatment of neonates with the 342 

highest probability of EOS. 343 

 344 

The high sensitivity with modest specificity of our model suggests it may be suited to 345 

excluding EOS. Approximately 300 neonates are admitted each month to SMCH.[40] At a 346 

sensitivity of 95% with our EOS incidence of 113 per 1000 admissions, we would expect one 347 

or two true cases of EOS to be missed per month. The corresponding negative predictive 348 

value of our model at this sensitivity was 95% (95% CI 92-97%). This might reassure HCPs 349 

antibiotics are not required. 350 

 351 

Limitations 352 

 353 

First, the Neotree collects data at admission and upon discharge or death. This limits granular 354 

analysis where the timing of clinical features or interventions is important. We restricted our 355 

analysis to EOS and to neonates admitted within 72 hours of birth so the association between 356 

clinical presentation at admission and final diagnoses was clearer. It is plausible neonates 357 

admitted for ‘safekeeping’ (while their mother received inpatient care) could have 358 
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unremarkable clinical appearance and vital signs on admission but develop symptoms of 359 

sepsis a few hours or days later. 360 

 361 

Second, no specific actions were performed to blind assessment of the outcome. As we 362 

performed secondary analysis of data from a quality improvement project, the consultant 363 

neonatologist is unlikely to have been biased in their classification of EOS. 364 

 365 

Third, although blood culture is the gold standard method for diagnosing EOS, erratic 366 

supplies of lab reagents meant we could not assess the correlation between positive blood 367 

cultures and the consultant neonatologists’ diagnosis of EOS. 368 

 369 

Fourth, relatively small sample size caused imprecise estimates of the effects of low 370 

prevalence predictors: history of maternal fever had the largest effect size in our optimal 371 

model with OR 4.21 and wide 95% CI 1.27-14.0. Similarly, we could not evaluate the 372 

predictive ability of some identified candidate predictors; for example, only 10 neonates 373 

(0.4%) had a bulging fontanelle. Large sample sizes would be needed to determine if 374 

inclusion of these features is beneficial. 375 

 376 

Finally, we present model performance in the derivation data to maximise sample size for 377 

model development. Predictions made on the derivation cohort can be optimistic due to 378 

overfitting.[12]  379 

 380 

Conclusions 381 

 382 
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Our prediction model to diagnose clinical EOS includes eight predictors: three perinatal risk 383 

factors (maternal fever during labour, offensive liquor, and prolonged rupture of membranes), 384 

and five clinical signs in the neonate (temperature, respiratory rate, activity on neurological 385 

examination, chest retractions, and grunting). With high sensitivity it achieved modest 386 

specificity in the derivation cohort suggesting it may be suited to excluding EOS, which 387 

could support HCPs’ decisions to withhold antibiotics in non-septic neonates. Our future 388 

work will include (1) validating and refining this model; (2) evaluating the acceptability and 389 

feasibility of implementing this model via the Neotree; and (3) evaluating the impact of 390 

implementing this model on sepsis-related neonatal morbidity and mortality.  391 
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Table 1. Characteristics of the study participants 
 
Characteristics Overall No sepsis Sepsis p-value 

n 2628 2331 297  
Admission     

Gestational age, weeks 38.0 (2.5) 38.0 (2.5) 38.4 (2.3) 0.005 
Birth weight, grams 2889 (703) 2881 (716) 2950 (595) 0.067 
Sex    0.7 

Male 1503 (57%) 1338 (57%) 165 (56%)  
Female 1122 (43%) 990 (42%) 132 (44%)  
Unsure 3 (0.1%) 3 (0.1%) 0 (0.0%)  

Type of birth    0.032 
Singleton 2496 (95%) 2205 (95%) 291 (98%)  
First-born twin 127 (4.8%) 121 (5.2%) 6 (2.0%)  
First-born triplet 2 (<0.1%) 2 (<0.1%) 0 (0.0%)  

Mode of delivery    0.074 
SVD 1889 (72%) 1663 (71%) 226 (76%)  
Elective C-section 136 (5.2%) 124 (5.3%) 12 (4.0%)  
Emergency C-section 561 (21%) 510 (22%) 51 (17%)  
Instrumental 42 (1.6%) 34 (1.5%) 8 (2.7%)  

Postnatal age    <0.001 
< 2 hours of life 1001 (38%) 901 (39%) 100 (34%)  
2-24 hours of life 1257 (48%) 1136 (49%) 121 (41%)  
24-48 hours of life 235 (9.0%) 181 (7.8%) 54 (18%)  
48-72 hours of life 110 (4.2%) 91 (3.9%) 19 (6.5%)  

Outcome     
Admission duration 2.3 [1.3-4.9] 2.1 [1.2-4.1] 6.0 [3.5-8.8] <0.001 
Death 221 (8.4%) 184 (7.9%) 37 (12%) 0.008 

Data are presented as mean (SD), n (%) or median [quartile 1 - quartile 3]. P-values are from Welch’s two-
sample t-test for gestational age and birth weight; the Wilcoxon-Mann-Whitney U test for admission duration; 
Pearson’s chi-squared test for postnatal age at admission and death; and Fisher’s exact test for sex, type of birth, 
and mode of delivery. C-section = caesarean section; SVD = spontaneous vaginal delivery. 
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Table 2. Distributions of candidate predictors in the study cohort 
 
Candidate predictor Overall No sepsis Sepsis p-value 

n 2628 2331 297  
Infant risk factors     

Gestational age, weeks 38.0 [37.0-40.0] 38.0 [37.0-40.0] 38.0 [37.0-40.0] 0.032 
Birth weight, grams 2950 [2400-3350] 2900 [2400-3350] 3000 [2600-3350] 0.035 

Maternal risk factors     
Maternal fever 14 (0.5%) 8 (0.3%) 6 (2.0%) 0.003 
Offensive liquor 163 (6.2%) 131 (5.6%) 32 (11%) 0.001 
PROM 303 (12%) 257 (11%) 46 (15%) 0.027 

Infant clinical features     
Grunting at triage 750 (29%) 654 (28%) 96 (32%) 0.13 
Cyanosis at triage* 69 (2.6%) 60 (2.6%) 9 (3.0%) 0.6 
Seizures at triage* 14 (0.5%) 10 (0.4%) 4 (1.3%) 0.064 
Respiratory rate, breaths/min 56 [48-68] 56 [48-68] 60 [50-72] <0.001 
Heart rate, beats/min 138 [126-146] 138 [126-146] 139 [127-150] 0.011 
Temperature, Celsius 36.5 [36.0-37.0] 36.5 [36.0-36.9] 36.9 [36.2-38.0] <0.001 
Fontanelle*    0.9 

Flat 2,608 (99%) 2,312 (99%) 296 (100%)  
Sunken 10 (0.4%) 9 (0.4%) 1 (0.3%)  
Bulging 10 (0.4%) 10 (0.4%) 0 (0%)  

Activity†    <0.001 
Alert 2,152 (82%) 1,933 (83%) 219 (74%)  
Lethargic 382 (15%) 327 (14%) 55 (19%)  
Irritable 62 (2.4%) 45 (1.9%) 17 (5.7%)  
Seizures 14 (0.5%) 9 (0.4%) 5 (1.7%)  
Coma 18 (0.7%) 17 (0.7%) 1 (0.3%)  

Nasal flaring 912 (35%) 791 (34%) 121 (41%) 0.023 
Chest retractions 986 (38%) 848 (36%) 138 (46%) <0.001 
Grunting 421 (16%) 360 (15%) 61 (21%) 0.029 
Work of breathing    <0.001 

Normal 1,405 (54%) 1,263 (55%) 142 (48%)  
Mildly increased 413 (16%) 378 (16%) 35 (12%)  
Moderately increased 614 (24%) 529 (23%) 85 (29%)  
Severely increased 170 (6.5%) 139 (6.0%) 31 (11%)  

Colour*    0.11 
Pink 2,507 (95%) 2,220 (95%) 287 (97%)  
Pale 10 (0.4%) 7 (0.3%) 3 (1.0%)  
Blue 62 (2.4%) 58 (2.5%) 4 (1.3%)  
Yellow 49 (1.9%) 46 (2.0%) 3 (1.0%)  

Abdominal distention* 28 (1.1%) 26 (1.1%) 2 (0.7%) 0.8 
Omphalitis* 6 (0.2%) 4 (0.2%) 2 (0.7%) 0.14 
Abnormal skin* 27 (1.0%) 23 (1.0%) 4 (1.3%) 0.5 
Vomiting*    0.3 

No 2,605 (99%) 2,309 (99%) 296 (100%)  
Yellow 7 (0.3%) 7 (0.3%) 0 (0%)  
Bilious 13 (0.5%) 13 (0.6%) 0 (0%)  
Blood-stained 3 (0.1%) 2 (<0.1%) 1 (0.3%)  

*Eliminated from the final set of candidate predictors due to very skewed distributions. †The three smallest 
categories of activity were collapsed into one ‘other’ category for model development. Data are presented as 
median [quartile 1 - quartile 3] for continuous predictors or n (%) for categorical predictors. P-values are from 
the Wilcoxon-Mann-Whitney U test for continuous predictors and Fisher’s exact test for categorical predictors. 
Distributions are presented for the observed data only, before multiple imputation of missing values. 
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Table 3. Univariable association between candidate predictors and outcome 
 
Candidate predictor Coeff SE OR 95% CI p-value 
Infant risk factors      

Gestational age, weeks 0.067 0.026 1.07 1.02 – 1.12 0.009 
Birth weight, kilograms 0.131 0.087 1.14 0.96 – 1.35 0.13 

Maternal risk factors      
Maternal fever 1.79 0.544 5.99 2.06 – 17.4 0.001 
Offensive liquor 0.707 0.208 2.03 1.35 – 3.05 0.001 
PROM 0.391 0.173 1.48 1.05 – 2.08 0.024 

Infant clinical features      
Grunting at triage 0.203 0.132 1.23 0.95 – 1.59 0.13 
Respiratory rate, 5 breaths/min 0.093 0.022 1.10 1.05 – 1.14 <0.001 
Heart rate, 5 beats/min 0.047 0.019 1.05 1.01 – 1.09 0.012 
Temperature, degrees Celsius 0.886 0.087 2.42 2.04 – 2.88 <0.001 
Activity      

Alert – Lethargic 0.395 0.162 1.48 1.08 – 2.04 0.015 
Alert – Other 1.05 0.25 2.86 1.75 – 4.67 <0.001 

Nasal flaring 0.290 0.126 1.34 1.04 – 1.71 0.021 
Chest retractions 0.417 0.124 1.52 1.19 – 1.93 0.001 
Grunting 0.346 0.155 1.41 1.04 – 1.92 0.025 
Work of breathing      

Normal – Mildly increased -0.207 0.197 0.813 0.552 – 1.20 0.29 
Normal – Moderately increased 0.345 0.146 1.41 1.06 – 1.88 0.018 
Normal – Severely increased 0.674 0.217 1.96 1.28 – 3.00 0.002 

Analyses were performed on the complete data after multiple imputation of missing values. CI = confidence 
interval; OR = odds ratio; SE = standard error. 
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Table 4. Predictors and their pooled regression coefficients and odds ratios for the 
optimal model 
 
Candidate predictor Coeff SE OR 95% CI p-value 
Intercept -39.4 3.52    
Temperature, degrees Celsius 0.987 0.095 2.68 2.23 – 3.23 <0.001 
Respiratory rate, 5 breaths/min 0.055 0.026 1.06 1.00 – 1.11 0.037 
Maternal fever 1.44 0.612 4.21 1.27 – 14.0 0.019 
Offensive liquor 0.543 0.228 1.72 1.10 – 2.69 0.017 
PROM 0.360 0.192 1.43 0.98 – 2.09 0.06 
Activity (Alert – Lethargic) 0.586 0.184 1.80 1.25 – 2.58 0.002 
Activity (Alert – Other) 0.840 0.286 2.32 1.32 – 4.06 0.003 
Chest retractions 0.406 0.172 1.50 1.07 – 2.10 0.019 
Grunting 0.179 0.186 1.20 0.83 – 1.72 0.3 

Analyses were performed on the complete data after multiple imputation of missing values. CI = confidence 
interval; OR = odds ratio; SE = standard error. 
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Table 5. Model performance at several classification thresholds of predicted probability 
 
Threshold Sens Spec PPV NPV LR+ LR- 
0.121* 65 (59 – 70) 74 (72 – 75) 24 (21 – 27) 94 (93 – 95) 2.4 (1.6 – 2.9) 0.5 (0.4 – 0.6) 
0.075 81 (76 – 85) 44 (42 – 46) 15 (14 – 17) 95 (93 – 96) 1.4 (1.0 – 1.6) 0.4 (0.4 – 0.5) 
0.067 85 (80 – 88) 38 (36 – 40) 15 (13 – 17) 95 (94 – 96) 1.4 (1.2 – 1.6) 0.4 (0.2 – 0.5) 
0.047 90 (86 – 93) 22 (20 – 24) 13 (12 – 14) 95 (92 – 96) 1.2 (0.9 – 1.2) 0.4 (0.3 – 0.6) 
0.034 95 (92 – 97) 11 (10 – 13) 12 (11 – 13) 95 (92 – 97) 1.1 (1.0 – 1.1) 0.4 (0.3 – 0.6) 

*The ‘optimal’ threshold according to Youden’s J statistic. Data are presented for the single dataset used for 
model selection. Numbers in brackets represent the 95% confidence intervals. LR+ = positive likelihood ratio; 
LR- = negative likelihood ratio; PPV = positive predictive value; NPV = negative predictive value; sens = 
sensitivity; spec = specificity. 
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Figure 1. Flow diagram summarising participant inclusion and exclusion. Participants could 
fulfil multiple inclusion and/or exclusion criteria, therefore, the sum of participants excluded 
based on each criterion exceeds 949. 
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Figure 2. Receiver operating characteristic curve for the optimal model in each of the 40 
imputed datasets. Pooled area under the curve (AUC) = 0.736 (95% confidence interval 0.701 
– 0.772). 
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Figure 3. Boxplot (panel A) and density plot (panel B) of predicted probabilities of early-
onset sepsis by observed outcome for the optimal model in the single dataset used for model 
selection. 
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