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Abstract 

We aimed at evaluating deep learning algorithms for detecting wheezes and crackles developed 

based on sound files from 4033 adults in two samples of sound files not used in the algorithm 

development. In sample A, ground truth was established by experienced raters in 615 files from the 

Tromsø population study.  Sample B contained 120 sound files from a previous interobserver study 

with ground truth determined by four experts.  The algorithms’ probability scores for wheezes and 

crackles were evaluated against the ground truth by calculating Area Under Curve (AUC). Agreements 

between the algorithm and the human annotations were also assessed by Kappa statistics. In sample 

A the AUC was 0.88 (95% CI 0.84 – 0.92) for wheezes and 0.88 (95% CI 0.84 – 0.92) for crackles. The 

kappa agreement between dichotomized labelling and the ground truth was 0.63 (95% CI 0.56 – 

0.71) for wheezes and 0.68 (95% CI 0.60 – 0.75) for crackles. The corresponding kappa agreements 

between the human raters were 0.47. In sample B, an AUC of 0.99 (95% CI 0.98 – 1.0) was reached 

for wheezes and 0.95 (95% CI 0.89 – 1.0) for crackles with corresponding kappas of 0.78 (95% CI 0.58 

– 0.99) and 0.75 (95% CI 0.59 – 0.92).  The corresponding mean kappas between the ground truth 

and 24 observers were 0.68 and 0.55. The algorithm agreed substantially with ground truth, and with 

higher kappa agreements than observed between human annotators. 
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1. Introduction   

The abnormal lung sounds, wheezes and crackles, are present with increased frequency in patients 

with chronic obstructive pulmonary disease [1, 2], heart failure [3] pneumonia [4], and pulmonary 

fibrosis [5], and are regarded to be useful in the diagnosis of these diseases. Their identification 

during chest auscultation with a traditional stethoscope is hampered by subjectivity and 

interobserver variation [6, 7]  This problem has been met by letting computers classify sounds 

recorded by electronic stethoscopes [8]. In recent years machine learning based algorithms for 

detecting adventitious lung sound, mainly wheezes and crackles,  have been developed and 

evaluated[9-12], and discussions on opportunities and pitfalls are going on [12, 13]. There has also 

been attempts to go one step further and use lung sounds for direct diagnosing lung diseases [14-

18]. In this study we stick to the identification of specific adventitious lung sounds and evaluate a 

state-of-the-art deep learning algorithm for detecting wheezes and crackles developed from 

recordings in a general population. We have evaluated the algorithm against human ratings of 

wheezes and crackles in sound files not been involved in the development of the algorithm. 

2. Methods  

2.1 The lung sound recordings 

Two samples of lung sound recordings were used. The first sample, sample A, was based on 12090 

sound files from 2015 participants of the 7
th

 Tromsø Study, previously not annotated by humans and 

not used in the development of the algorithm. The 7
th

 Tromsø Study was a population-based health 

survey performed between May 2015 and October 2016. Main features of the methodology and 

study design have previously been described [19, 20]. All Tromsø residents 40 years and older (n=32 

591) were invited to participate and a random sample was selected for a second visit where lung 

sound recording was included. Lung sounds from 6048 participants were recorded at six locations of 

the chest (Fig 1), 15 seconds at each site, with a Sennheiser microphone inserted in the tube of a 

Littmann Classic II stethoscope. No preprocessing or filtering was done. Of the 12090 files not 

previously annotated, 615 were selected for this study. 

 

Figure 1.  The six recording sites used 
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In sample B, the same stethoscope was used and lung sounds were recorded among volunteers aged 

40 years or more, most of them patients at a rehabilitation center. Lung sounds from six chest 

locations recorded in 20 of the volunteers were used, 120 in total. The sound files had originally a 

duration of 10 -15 seconds but had been shortened to avoid sections with noise. These recordings 

were first used in an interobserver study, in which four lung sound researchers, 20 medical doctors 

and four medical students took part [21].  

2.2 Algorithm development  

The algorithm was developed using deep learning based on 24198 lung sound recordings from 4033 

participants of the 7
th

 Tromsø study.  These files did not overlap with the samples A and B described 

above. 

The ground truth  

Presence of wheezes and crackles during inspiration and expiration had been determined through a 

rigorous classification process[19]. At first, two observers (clinicians) independently classified the 

recordings blinded for other information about the participants. When the observers disagreed, they 

discussed the actual recordings with a third observer. The recordings judged to contain certain or 

likely crackles or wheezes, were evaluated in a second round, where experienced lung sound 

researchers were among the observers. Based on the observers’ annotations, a final decision was 

made on whether wheezes or crackles were present or not [19], which we used as “ground truth”. 

When listening to and classifying the lung sounds, the observers watched spectrograms of the 

recordings generated by Adobe Audition©.  

The algorithm 

An architecture based on inception V3 was selected to build the deep learning algorithm[22]. The 

raw audio data was converted to mel spectrograms, thus turning the audio classification task into an 

image classification task.  

For a single raw audio signal three such spectrograms were extracted, each using different size of the 

Fourier transform window. Subsequently, the three spectrograms were stacked together forming an 

RGB format-like image that was used as an input to the machine learning models. The last layer of 

the architecture is a sigmoid activation function that predicts each class with a probability of 

between 0 and 1.  As this is partially a multi-label classification task, a sample can be both wheeze 

and crackle at the same time (although it cannot be wheeze and bad quality at the same time), we 

use binary cross-entropy as the loss function for the model. 

The models were trained in the 5-fold cross validation procedure. In each fold a model was trained 

on the fold-specific training set and evaluated on the fold-specific validation set. For each fold, the 

model that obtained the highest ROC AUC (calculated on the fold-specific validation dataset) was 

selected as the result model. After selecting the best model in each fold, the next step was the 

selection of thresholds for each label. Thresholds are used for deciding whether the probability for a 

given label is high enough, so that the given label should be assigned (encoded). Distinct sets of 

thresholds are selected for each of 5 models and the selection of thresholds is performed with the 

use of the fold-specific validation set (the selection is performed in such a way as to maximize label-

specific F1-score). The result model from each of the folds was used to form an ensemble of 5 

models which together yielded the final label by the means of majority voting. 

The development of the algorithm started at the Department of Computer Science at UIT the Arctic 

University of Norway. Based on funds from the Norwegian Research Council, a start-up company, 
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Medsensio AS, was established, where the algorithm has been further developed. We evaluate the 

most recent version. 

2.3 Evaluating the algorithm in sample A 

Selection of study sample 

To reduce the annotation workload, we selected 615 files from the 12090 sound files in sample A.  To 

get a selection with close to equal numbers of files with normal sounds, wheezes, and crackles, we 

applied another algorithm to classify the recordings. It was a single model developed on the same 

subset from the Tromsø study that was used for the development of the ensemble of models 

evaluated in this paper, with sparser input features.  To further reduce possible bias in the evaluation 

results favoring the algorithmic solution that could arise by this method of selecting a subset, the 

following procedure was followed. Firstly, prediction with the use of the algorithm was performed 

for all 12090 files. For each class (normal, wheeze, crackle) assigned by the algorithm, 200 files were 

selected in such a way, that – conditional on the given label being assigned – a quarter of files came 

from the 1
st
 quartile, a quarter from the 2

nd
 etc. and the division into quartiles for a given label was 

performed based on values of the scores (probabilities) for a given label assigned by the deep 

learning model. Additionally, 17 files classified as bad quality were incorporated into selection. 

Within the selection 2 files were predicted by the algorithm to have both wheeze and crackles 

present, hence the total of 615 files was selected.  

Establishing “ground truth” in the study samples 

The 615 sound files were annotated independently by two medical doctors who were experienced 

raters (HM and JCAS). The raters watched spectrograms of the recordings and were blinded for 

clinical information. Sound files on which the two raters disagreed were annotated again by both of 

them together and consensus was reached, which was used as ground truth.  

In Sample B the ratings of the 120 sound files done by the four lung sound researchers were used 

when establishing ground truth. These raters had watched spectrograms of the recordings and were 

blinded for clinical information. The criteria for presence of wheezes and crackles were fulfilled when 

at least three out of the four expert raters had annotated their presence.  

2.4 Statistical analysis 

The ability of the algorithm to detect wheezes and crackles was assessed by calculating area under 

the curve (AUC) through Receiver operating characteristics (ROC) curve analysis and by calculating 

Kappa-agreement with ground truth. Sensitivity (also called “recall”), specificity, and positive 

predictive value (PPV, also called “precision”) for detecting wheezes and crackles were also 

calculated). For comparing the algorithm with human annotations, we also calculated the kappa-

agreement between the two annotators in sample A, and between each of 24 raters and the ground 

truth in sample B. We chose to use this many statistical methods to make the results more easily 

comparable with other studies. SPSS statistical software was used in most of the analyses.  The 95% 

confidence intervals (CI) of sensitivities, specificities, and PPVs were obtained by use of MedCalc® 

statistical software, the 95% CI of kappa-agreements were calculated by use of Vassarstats®.  F1-

scores were calculated based on the confusion matrices as F1-score =  
��

���
�

�
�������

  , where TP, FP, 

and FN denote the numbers of true positives, false positives and false negatives, respectively. 
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Table 1.  2x2 tables showing sensitivity and specificity positive predictive value (PPV) of the algorithm 

for detecting wheezes and crackles (ground truth) in lung sound recordings in to separate samples, A 

(n=616) and B (n=120).  

         

Sample A         

         

Wheezes     Crackles    

 Ground truth    Ground truth  

 Yes No    Yes No  

Algorithm 

               Yes 

 

 

  96 

 

  56 

 

152 

 Algorithm 

               Yes 

 

 

  85 

 

  20 

 

105 

 

               No 

 

 

  22 

 

441 

 

463 

  

               No 

 

 

  41 

 

469 

 

510 

 118 497 615   126 489 615 

         

Sensitivity: 81% (95% CI 73% - 88%), 

Specificity: 89% (95% CI 86% - 91%) 

PPV: 63% (95% CI 57% - 69%) 

F1-score: 71% 

 Sensitivity: 67% (95% CI 59% - 76%), 

Specificity: 96% (95% CI 94% - 97%) 

PPV: 81% (73% - 87%) 

F1-score: 74% 

         

         

Sample B         

         

Wheezes     Crackles    

 Ground truth    Ground truth  

 Yes No    Yes No  

Algorithm 

               Yes 

 

 

   8 

 

  4 

 

12 

 Algorithm 

               Yes 

 

 

  15 

 

  4 

 

150 

 

               No 

 

 

   0 

 

108 

 

108 

  

               No 

 

 

    4 

 

 97 

 

446 

    8 112 120     19 101 120 

         

Sensitivity: 100% (95% CI 63% - 100%), 

Specificity: 96% (95% CI 91% - 99%) 

PPV: 67% (95% CI 43% - 84%) 

F1-score 80% 

 Sensitivity: 79% (95% CI 54% - 94%), 

Specificity: 96% (95% CI 90% - 99%) 

PPV: 79% (95% CI 58% - 91%) 

F1-score 79% 
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3. Results 

3.1 Evaluation in Sample A 

Among the 12090 sound files in sample A, the algorithm identified wheezes in 1060 (8.8%) and 

crackles in 592 (4.9%) Within the 615 selected files the ensemble of models being evaluated 

considered only 252 as containing any abnormality, 152 files with wheezes and 105 files with 

crackles. Among the 17 files selected due to bad quality, 16 were also found to be of too bad quality 

to be annotated by the human raters, no lung sound was heard in 13, while four were too noisy to be 

annotated.  

 

Table 2.  Kappa-agreement with 95% confidence interval between algorithm and human annotations 

in sample A (596 recordings from Tromsø 7) 

 Kappa (95% CI) 

Wheezes   

Algorithm versus rater A 0.576 (0.501 – 0.650) 

Algorithm versus rater B 0.524 (0.443 – 0.606) 

Algorithm versus ground truth (annotator consensus) 0.631 (0.558 – 0.705) 

Annotator A versus Annotator B 

 

0.465 (0.383 – 0.547) 

Crackles   

Algorithm versus rater A 0.609 (0.530 – 0.689) 

Algorithm versus rater B 0.602 (0.519 – 0.685) 

Algorithm versus ground truth (annotator consensus) 0.676 (0.600 – 0.751) 

Rater A versus rater B 0.469 (0.382 – 0.555) 

 

Compared to the ground truth, the algorithms’ prediction scores for wheezes and crackles had an 

AUC of 0.88 (95% CI 0.84 – 0.92) for wheezes and 0.88 (95% CI 0.84 – 0.92) for crackles (Fig. 2). When 

the scores were dichotomized, the algorithm detected wheezes with a sensitivity of 81% and a 

specificity of 89% and crackles with a sensitivity of 67% and a specificity of 97% (Table 1). The kappa 

agreement between the algorithm and the ground truth was 0.631 (95% CI 0.558 – 0.705) for 

wheezes and 0.68 (95% CI 0.60 – 0.75 for crackles, which was better agreement than with each of the 

annotators (Table 2). For comparison, the corresponding kappa agreements between the two 

annotators were 0.47 and 0.47.  
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Figure 2.   ROC-curves showing the predictive value of the algorithms’ wheeze and crackle scores for 

ground truth wheezes (n=118) and crackles (n=126) in sample A (615 lung sound recordings) 

 

                   AUC: 0.878 (95% CI 0.838 – 0.919)                                         AUC: 0.880 (95% CI 0.839 – 0.921) 

 

3.2 Evaluation in Sample B 

Among the 120 files in sample B, the algorithms’ prediction scores had an AUC of 0.991 (95% CI 0.976 

– 1.0) for wheezes and 0.949 (95% CI 0.885 – 1.0) for crackles. Dichotomized, the algorithm detected 

wheezes with a sensitivity of 100 % and specificity of 96% and crackles with a sensitivity of 79% and 

specificity of 96% (Table 1), The kappa agreement between the algorithm and the ground truth was 

0.783 (95% CI 0.578 – 0.987) for wheezes and 0.749 (95% CI 0.585 – 0.915) for crackles.  The kappa 

agreements between the ground truth and the 24 observers varied between 0.130 and 1.000 for 

wheezes with a mean of 0.674 and between 0.211 and 0.820 for crackles with a mean of 0.548 (Fig 

3).  

4. Discussion 

The algorithm showed agreements with the ground truth that surpassed the agreements between 

human annotators rating the same files.  Accordingly, lung sound classification done by a computer 

seems to be more reliable than when done by an average physician. The lung sound files in Sample A 

were recorded by the same method as the data set that trained the algorithm. The recordings in 

sample B were done with the same electronic stethoscope, but in a different setting. It was still not 

surprising that the best agreement was found in sample B, since those files were specially selected to 

be of good quality.  
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Figure 3.   Kappa-agreements between 24 human raters and the ground truth on the 

presence of wheezes and crackles in sample B (120 lung sound recordings).    
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Comparison with previous studies    

We found Kappa agreements in the range 0.6 to 0.8 which is regarded to be substantial [23].  Studies 

of agreement between human annotators often show lower values. McCollum and coworkers found 

kappa-agreements of 0.45 for wheezes and 0.41 for crackles [24]. Melbye and coworkers found 

kappa-agreements between experienced observers to be 0.59 for wheezes and 0.62 for crackles[6]. 

Ferreira-Cardoso and coworkers found a kappa-agreement on any abnormal sound in good-quality 

recordings of 0.66 [25]. Three pediatric pulmonologists identified wheezes with a kappa of 0.76 in 55 

good-quality recordings from six patients [26]. In a clinical study of 115 hospitalized patients, similar 

kappa-agreements as in our study was found for wheezes and fine crackles, but lower values for 

rhonchi and coarse crackles [27].    

A few comparable studies have evaluated algorithms for detection of wheezes and crackles. Kim and 

coworkers found higher concordance between algorithms and the reference classification, but the 

evaluated was done in sound files which had also been used for the development of the algorithms 

[9]. Grzywalski and coworkers found that the algorithm (neural network) detected wheezes and 

crackles in children with sensitivities ranging from 56% to 88% and with specificities from 79% to 88% 

[10]. Compared to our results, these values were generally somewhat lower, but the subdivision of 

wheezes into wheezes and rhonchi and crackles into fine and coarse may have contributed to lower 

concordance [6].  Anyhow, the algorithm obtained higher sensitivity than pediatricians, and similar 

specificity. Kevat and coworkers found a concordance between the algorithm and the expert 

classification, also in recordings from children, to be in a similar range as in our study. The sensitivity 

and specificity for detecting wheezes were 76% - 90% and 95% - 97%, respectively, and for crackles 

60%-86% and 96%-99%. They concluded that the algorithm was promising and with at least similar 

diagnostic accuracy to that of many clinicians [11].  

Strengths and limitations 

Some strengths are related to the development of the algorithm, others to how the evaluation has 

been carried out. The development of the algorithm was based on a large number of recordings, 

24090 in total, and rigorous human classifications without access to clinical information. We could 

evaluate the algorithm in two samples of lung sound recording, one principally identical to the 

sample that trained the algorithm and one from a different setting. However, the same stethoscope 

was used for both samples. This might limit the validity of the algorithm when it comes to recordings 

with different devices. The algorithm we evaluated only tell whether wheezes and crackles are 

present or not and give no detailed information on quality and timing of the adventitious sounds, 

which could increase the algorithms’ diagnostic usefulness [12]. The algorithm would probably have 

performed worse if the evaluation sets had been recorded in more noisy settings [13]. 

5. Conclusion 

The algorithm evaluated in this study agreed substantially with the ground truth on the presence of 

wheezes and crackles in lung sound recordings. The algorithm reached higher kappa agreements 

than what was observed between human raters. However, we cannot be sure that similar good 

results can be obtained in different settings or when other recording devices are used. These results 

may enable novel use of lung sounds in clinical and research applications.  
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