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Abstract  57 

Social disadvantage (SD) and psychological stressors (PS) trap some populations in 58 

poverty, resulting in health inequities. How these two factors become biologically 59 

embedded and the pathways leading to adverse health outcomes is unclear, especially 60 

in infants exposed to psychosocial adversity in utero and during early life. Variation in gut 61 

microbiome structure and functions, and systemic elevations in circulating cytokines 62 

levels as indices of inflammation, offer two possible causative pathways. Here, we 63 

interrogate the gut microbiome of mother-child dyads and maternal inflammatory markers, 64 

and compare high-SD/high-PS dyads to pairs with low-SD/Low-PS, and demonstrate that 65 

the GM of high-SD and high-PS mothers may already be compromised, resulting in the 66 

lowest observed inter-individual similarity in that group. The  strong predictors of maternal 67 

high-SD and high-PS based on mothers and children microbiomes were phylogenetically 68 

very distinct bacteria indicating different GM pathways associated with SD versus PS. 69 
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We identified sets of SD- and PS-discriminatory metabolic pathways in the mothers and 70 

in the children, however their predictive power was lower compared to the discriminatory 71 

bacterial species. Prediction accuracy was consistently greater for IL-6 than for the other 72 

inflammatory markers, supporting an association between systemic inflammation and 73 

psychosocial adversity. The gut microbiome of the infants can be used to predict 74 

the psychosocial adversity of mothers, and are embedded in the gut microbiota of 4-75 

month-old infants.  76 

 77 

INTRODUCTION 78 

Health inequities experienced by socially disadvantaged populations is an 79 

increasing and urgent societal issue [1, 2]. The psychosocial factors contributing to these 80 

disparities often begin early in life and include the prenatal environment which has 81 

profound effects on fetal and infant outcomes that can last a lifetime [3-5]. How social 82 

disadvatage (SD) and psychological stress (PS) becomes biologically embedded, and 83 

then leads to disparete health outcomes remains unclear.  84 

The gut microbiome (GM) is one candidate driver of adverse outcomes. Many SD-85 

related morbidities are associated with systemic chronic inflammation [6], and the GM, by 86 

shaping and modulating the immune system [7, 8], is associated with systemic 87 

inflammation and autoimmune disease, including many disorders associated with 88 

populations in which SD is widespread, and include diabetes [9], obesity [10], 89 

cardiovascular disease, and neurologic disorders [11]. 90 

The GM is itself shaped primarily by environment, with influences including 91 

environmental exposures of diet, antibiotics, exercise, stress and sleep deprivation [12]. 92 
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Many of these exposures have distinct characteristics for individuals living with economic 93 

and psychosocial hardships. Despite increasing awareness of an intersection between 94 

the GM and psychosocial inequities [13, 14], few human studies [15-17] have examined 95 

the impact on gut microbial community structure and function, particularly in the perinatal 96 

period. Studies in pregnant women have focused on either maternal psychological state 97 

[18-22] or socioeconomic status [23-25] but not both, have used 16S RNA analysis, which 98 

limits, taxanomic and metabolic pathway identification, and have not linked mother-infants 99 

samples to examine maternal transfer within this context. 100 

This study aims to fill these knowledge gaps. Using a prospective cohort 101 

assembled prenatally, we identify the distinct impact of exposure to SD and PS on GM 102 

structure and functions for mothers and their infants. We identify discriminatory taxa 103 

driving this association using whole metagenomic shotgun (WMS) sequencing, and 104 

attempt to relate systemic inflammation to the GM by examining maternal prenatal serum 105 

cytokines. Understanding the interaction of the gut microbiome with social determinants 106 

of health holds great promise for future preventions due to its potential alterability and 107 

plasticity over time. This is particularly true for the perinatal period, a critical 108 

developmental window in which perturbations in GM community structure and functions 109 

have long-lasting effects [26-28]. 110 

 111 

RESULTS AND DISCUSSION 112 

A subset of 121 mother–child dyads were drawn from the larger parent study, Early Life 113 

Adversity Biological Embedding and Risk for Developmental Precursors of Mental 114 

Disorders (eLABE), which enrolled mothers prenatally  and  followed their infants after 115 
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brith.  These 121 mothers were drawn from across the psychosocial spectrum and 116 

representative of the parent cohort with average ages of 29.8 (± 5.1 years) vs. 29.2 (± 5.3 117 

years), similar dietary Healthy Eating index profiles 59 (± 10.6%) vs 58 (± 9.9%), and 118 

gestational age at delivery 39.0 (± 1.1wks) vs. 38.3 (± 2 weeks). Mothers and their 119 

children were classified based on composite scores from two latent constructs, SD and 120 

PS [29]. The SD construct included 7 individual domains across income, neighborhood 121 

deprivation, insurance, and education. The PS construct included 9 individual domains 122 

across depression, stress, short term and lifetime, and racial discrimination (see Methods 123 

for details). To define an effect of SD from that of PS on the maternal and children 124 

microbiome, we examined the interrelationships among pre- and post-natal adversity and 125 

circulating cytokines as biomarkers of inflammation, with the GM. The mothers’ GM was 126 

profiled using third trimester stool samples before parturition (average -18.0 ± 16.9 ). Their 127 

children’s stools at were sampled 130.4 (± 13.1) days after birth. Circulating cytokines 128 

were analyzed in maternal blood samples obtained during the 3rd trimester of pregnancy. 129 

Participant characteristics are provided in Table 1 and Supplementary Table S1.  130 

 131 

Maternal SD and PS relation to maternal and child pre- and post-natal GM structure 132 

and function, based on high level taxonomic profiling 133 

We performed targeted metagenomic sequencing (see Methods) for 121 mother-child 134 

dyads (Figure 1). Among the 121 mother–child dyads (Figure 1A), the SD scores were 135 

positively correlated with PS scores (r = 0.394, P < 10-5; Figure 1B), corroborating the 136 

literature [30] and demonstrating the importance of differentiating effects from these two 137 

overlapping variables. Several variables, including race, breast milk feeding frequency, 138 
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healthy eating index and income-to-needs ratio, were significantly associated with high-139 

vs-low SD and PS scores, also expected because these variables were used as inputs to 140 

calculate these scores [29] (Table 1; Supplementary Table S1).   141 

Across all samples, 3,072 amplicon sequence variants (ASVs) representing 142 

unique 16S nucleotide sequences were detected. Relative abundance values per ASV 143 

per sample are provided for all 242 samples in Supplementary Table S2, and nucleotide 144 

sequences for each identified ASV are provided in Supplementary Table S3. In the 145 

mothers, SD and PS scores had an overall negative correlation with α-(within sample) 146 

diversity based on the bacterial taxonomic composition, although this correlation was not 147 

significant (Figure 2A),  consistent with previous reports of decreased α-diversity 148 

associated with lower Socioeconomic Status (SES) [15-17]. In contrast, among the 149 

children, α-diversity was positively correlated with SD (r = 0.581, P < 10-5) and PS scores 150 

(r = 0.350, P = 8.3x10-5) (Figure 2B). This observation may be partly explained by the 151 

lower frequency of breast feeding in the high-SD mothers (Figure 2B), as it is reported 152 

that breast-fed infants had lower GM α-diversity compared to formula-fed infants at three 153 

months of age, but the GM diversity increased by six months [31].  154 

An examination of the similarity between mother and child GM (β-diversity) 155 

measured by the Bray-Curtis statistics, showed that mother–child dyads with low-SD 156 

scores had significantly less similarity (P < 10-5, Figure 2C). This may be partially due 157 

differences in α-diversity, where formula-fed/high-SD infants have GM that are more 158 

similar to their mother's GM because of greater overall α-diversity. Bray-Curtis 159 

dissimilarity-based clustering identified significant associations between SD scores and 160 

PS scores in the microbiome profiles in the children, but not in the mothers (Figures 2D-161 
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2G). We identified four major GM clusters in the mothers, but none significantly differ in 162 

SD or PS (Figures 2D and 2E). We also identified four major sample clusters in children, 163 

with cluster 4 having significantly greater SD scores than the other three clusters (ANOVA 164 

P < 10-5), and also higher PS scores than clusters 1 and 3 (ANOVA P = 3.1x10-4) (Figures 165 

2F and 2G). These results suggest that high-SD and high-PS scores are significantly 166 

associated with a distinct overall GM profile in the children, but not in the mothers.  167 

We next compared Bray-Curtis similarity between each sample dyad, within and 168 

between high and low SD and PS groups (Figure 3). High-SD mothers had significantly 169 

more variable microbiome profiles than those of low-SD mothers, who presumably had 170 

more consistent healthy microbiome profiles. This effect was even stronger for the PS 171 

comparison, with low-PS mothers having the most similar GM to each other than in any 172 

of the other comparisons, and the high-PS mothers having as similar between-sample 173 

diversity as the low-SD mothers (Figure 3A). High-SD children had the most similar 174 

microbiome profiles (Figure 3B), which may relate to their increased α-diversity (Figure 175 

2B). Low-SD children also have some overall similarity in their GM profiles, but the low-176 

SD and high-SD children GMs have little similarity (consistent with clustering results in 177 

Figure 2F). The same is true for PS in the children, except the within-group similarity for 178 

low-PS and high-PS were not significantly different. Overall, these results suggest that 179 

high-SD and high-PS mothers have divergent, variable microbiomes compared to low-SD 180 

and low-PS mothers, who share some commonality in overall GM profiles. Taken 181 

together, these results suggest that high-SD and high-PS mother already have 182 

compromised GM resulting in low observed inter-individual similarity compared to the low-183 

SD and low-PS group, which has a more similar and healthier mature GM. 184 
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 185 

Species-level gut microbiome profiles and metabolic pathway reconstructions of 186 

89 mother–child dyads 187 

We performed WMS sequencing on a subset of stools from 89 of the 121 mother–child 188 

dyads, selected based on the distribution of SD and PS scores (Figure 1C) (greater and 189 

less than the average value + 0.5 and – 0.5 standard deviations). The profiles of the 178 190 

GMs (89 mothers and their 89 children), were generated from an average of 6Gb reads 191 

per sample, characterized using the Unified Human Gastrointestinal Genome (UHGG) 192 

[32]. Relative abundance values per species per sample were calculated using 193 

normalized depths [33] for downstream analysis. A total of 2,219 bacterial genomes were 194 

detected across all samples (Figure 4A). Genome taxonomic annotations and relative 195 

genome abundance values per sample are provided for all 178 samples (Supplementary 196 

Table S2). Twelve genomes were detected frequently across all mothers and all children 197 

samples (≥ 40% of both), including five Bifidobacterium genus members (B. infantis, B. 198 

breve, B. bifidum, B. catenulatum and B. adolescentis), with Bifidobacterium infantis being 199 

the most frequently detected genome across all samples (69.7% of mothers and 89.9% 200 

of children). These 12 also included two Bacteroides species (B. dorei and B. 201 

xylanisolvens), two Faecalicatena species (F. gnavus and F. unclassified), Flavonifractor 202 

plautii and Eggerthella lenta (Figure 4B). Four of these species were also identified as 203 

“core mother-infant shared species” in a previous WGS study [34], however the limited 204 

overlap may be in part a result of using different genome reference databases (identifying 205 

clade-specific marker genes from MetaPhlAn2 [34, 35] vs mapping to the Unified Human 206 

Gastrointestinal Genome (UHGG) [32]) in these 2 studies. 207 
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We next reconstructed the metabolic pathways to compare the functional potential 208 

of the GM communities (based on the relative abundance of metabolic pathways [36] in 209 

read counts per million, CPM) using HUMAnN3 [37-39]. A total of 468 pathways were 210 

detected across all samples, 438 of which were detected in at least 3 mother or 3 children 211 

GMs (Figure 4C). Relevant pathway annotations and relative pathway abundance values 212 

per sample are provided for all 178 samples (Supplementary Table S2). In contrast to 213 

the genomes with relatively sparse identification across samples, almost half (46.3%) of 214 

all detected pathways were identified in ≥ 90% of samples in both the mothers and the 215 

children (top right of the plot, Figure 4D), including 130 pathways (27.8%) detected in all 216 

178 samples. Despite the taxonomic differences between the GM of mothers and children 217 

(31.71% shared genomes; Figure 4A), the core set of microbial functions is conserved 218 

across the groups with 87.2% of the pathways being encoded by both mothers and 219 

children’s GMs (Figure 4C). This greater similarity between mothers and children in their 220 

microbial metabolic pathways compared to their microbial taxonomic profiles has been 221 

observed previously, and may be attributed to “core” microbial community functions 222 

essential for all species, despite the distinct populations of species adapted to different 223 

diets at different stages of life [34]. 224 

 225 

Bacterial species discriminating between mothers SD and PS  226 

To dissociate the impact of the highly inter-related SD from PS on the maternal GM, and 227 

to identify discriminatory bacterial taxa that are strong predictors of mother’s SD and PS 228 

scores, we analyzed taxonomic and pathway GM profiles using two statistical 229 

approaches. First, we used supervised Random Forest (RF; [40]) machine-learning was 230 
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used with a two-round approach [41] to (i) quantify the ability to predict SD and PS 231 

classification based on the mothers’ and the childrens’ microbiome profiles (Figure 5), 232 

and (ii) identify the specific genomes and pathways that most strongly differentiate 233 

between the high and low SD and PS scores (Figures 6 and 7; see Methods). Second, 234 

we used linear discriminant analysis effect size (LEfSe; [42]) to test differential genome 235 

and pathway abundance testing, to assign P values and “effect size” values for 236 

significance, as additional validation of RF results. Differential abundance statistics for all 237 

genomes and all comparisons are provided in Supplementary Table S4. 238 

We identified a set of SD and PS-discriminatory bacteria (Figure 6) whose relative 239 

abundances can classify mothers into low- or high-SD 80.5% of the time (P = 1.4x10-6 240 

compared to random assignment; FDR-corrected binomial distribution test; AUC = 0.862, 241 

P = 7.1x10-8, Wilcoxon rank sum test), and as low- or high-PS 79.4% of the time (P 242 

=1.5x10-6; AUC = 0.778, P = 8.2x10-7; Figure 5). The best predictors of SD (Figure 6A) 243 

and PS (Figure 6B) scores in the mothers were identified according to mean decrease 244 

of accuracy (MDA) scores (see Methods) for each genome across the low-SD group and 245 

the high-SD groups. The microbiome signature of low-SD and low-PS samples consisted 246 

of bacterial species present in high abundance in most of the samples, but which were 247 

detected with zero or very low abundance in the high-SD or high-PS samples (Figure 6).  248 

Low-SD mothers are identified by increased abundance of many Firmicutes A 249 

genomes (Figure 6A). Lawsonibacter asaccharolyticus, a recently-identified butyrate-250 

producing species [43, 44], was the strongest predictor of low-SD scores in the mothers 251 

(MDA = 10.2%, LEfSe effect size = 2.7, P = 3.7x10-6). GM-derived butyrate has a wide 252 

range of beneficial effects on health including regulating fluid transport, reducing 253 
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inflammation, reinforcing the epithelial defense barrier, and modulating intestinal motility 254 

via mechanisms that include potent regulation of gene expression [45], but L. 255 

asaccharolyticus has not been previously and independently associated with these 256 

beneficial effects. Streptococcus thermophilus was also among the top 5 predictors (MDA 257 

= 5.0%, LEfSe effect size = 3.2, P = 1.7x10-4) and is used to produce yogurts and 258 

cheeses, has properties beneficial to health including the prevention of chronic gastritis 259 

and diarrhea, and immunomodulatory properties with possible benefits in inflammation 260 

[46]. S. thermophilus was also among the predictors of low-PS, and this species was 261 

detected with zero or low abundance in high-PS and high-SD individuals.  262 

The predictors of high-SD and high-PS were phylogenetically quite distinct, 263 

enriched for Actinobacteria and Firmicutes C, vs. mainly Firmicutes A, respectively. 264 

Genomes from four Bifidobacterium species (B. catenulatum, B. bifidum, B. breve and B. 265 

infantis) are among the six most strongly associated with high-SD, and B. catenulatum is 266 

associated with high-PS as well. It is recognized that Bifidobacteria in the human gut vary 267 

with age, and while quantitively some are particularly important in infant GM its presence 268 

with aging is stable but abundance changes over time. In general high abundance of 269 

Bifidobacteria is related to gut homeostasis and health maintenance and protection, in 270 

part by producing a number of potentially health promoting metabolites including short 271 

chain fatty acids, conjugated linoleic acid and bacteriocins, and Bifidobacteria is 272 

postulated to improve health [47].  However, qualitative and quantitative (increasing 273 

abundance) in Bifidobacteria are associated with inflammatory disorders such as 274 

diverticulitis, inflammatory bowel disease, and colorectal cancer [48]. Additionally, a 275 

recent review of GM variations associated with major depressive disorder (MDD) 276 
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identified Bifidobacterium as one of three genera most consistently associated with MDD 277 

across studies [49]. While the specific functional role of these high-SD associated 278 

Bifidobacteria species is unclear, there is a striking increase in overall Bifidobacterial 279 

abundance in the high-SD mothers (Supplementary Figure S1). 280 

Bacteroides A mediterraneensis was most strongly associated with low-PS in 281 

mothers (MDA = 10.9%, effect size = 2.5, P = 1.5x10-4; Figure 6B). In mice, stress 282 

exposure reduces abundance of Bacteroides in the GM [50], and in humans, Bacteroides 283 

is one of five genera associated with healthy status vs. MDD patients [51], the but this is 284 

the first report of Bacteroides A mediterraneensis specifically being associated with PS in 285 

a human cohort. The same human MDD study [51] also identified Faecalibacterium and 286 

Prevotella as being negatively associated with MDD, and in this study Faecalibacterium 287 

sp. and Prevotella sp001275135 were the 5th and 7th strongest predictors to low-PS 288 

(respectively). 289 

Three species of Blautia sp. were among the top four most strong predictors of 290 

high-PS in the mothers, and none of these four species were associated with SD, 291 

suggesting a specific link with psychological stressors. In human studies, Blautia was one 292 

of ten genera associated with MDD [51], and Blautia and Eggerthella (represented in the 293 

high-PS mothers by E. lenta) were significantly correlated with PSS scores [52]. The latter  294 

study also identified Blautia and Bifidobacteria (represented in the high-PS mothers by B. 295 

catenulatum) as being significantly associated with MDD [52]. However, we wish to note 296 

that the overall abundance of Blautia in the microbiome remained fairly consistent across 297 

the mothers (Supplementary Figure S2), and only the species identified in Figure 6B 298 

predict PS.  299 
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 300 

Bacterial species in the infant GM discriminating prenatal maternal SD and PS 301 

A set of SD and PS-discriminatory bacterial genomes correctly classify children into low- 302 

or high-SD in 84.6% of comparisons (P = 6.7x10-9 compared to random assignment; FDR-303 

corrected binomial distribution test; AUC = 0.920, P = 7.0x10-10, , Wilcoxon rank sum test), 304 

and as low- or high-PS in 82.1% of comparisons (P =7.7x10-8; AUC = 0.889, P = 9.8x10-305 

8) Figure 5). The top predictors of SD score (Figure 7A) and PS score (Figure 7B) in the 306 

children were identified according to MDA scores.  307 

Among the predictors that are most important for classification to high-SD in 308 

children and with the largest effect size are Enterobacter nimipressuralis, nearly absent 309 

in low-SD children (detected in only one sample), and Klebsiella pneumoniae, both 310 

proinflammatory lipopolysaccharide expressing Proteobacteria [53]. The strongest 311 

predictor of children with low-SD was B. infantis, a species frequently used as a probiotic 312 

to diminish inflammation and associated with breastfeeding [54]. B. infantis represented 313 

an average of 28.3% of the GM of the low-SD infants, but only 5.2% of the GM in the 314 

high-SD infants (MDA = 10.14%, LEfSe effect size = 5.1, P = 0.0083; Supplementary 315 

Figure S1). The top taxa based on the comparison of the SD scores in the mothers were 316 

not proinflammatory and belonged to genomes from four Bifidobacterium species 317 

previously associated with several putatively beneficial metabolites [47]. 318 

There was an overlap of the predictors for low-SD and low-PS, including Veillonella 319 

parvula A, and several Collinsella spp. Veillonella is a signature taxa of the 4-month 320 

microbiome, and with Collinsella have been found in breast-fed microbiome indicating 321 

reduced concentration of oxygen, increased production and utilization of lactic acid which 322 
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is specific for milk dominated diet [55]. The high-SD and high-PS-discriminating bacteria 323 

were enriched for a broad range of evolutionarily distinct Firmicutes species (Figure 7). 324 

The best high-PS predictors included F.  gnavus reported as pathobiont associated with 325 

inflammatory bowel disease [56] and Sutterella sp. Sutterella species are prevalent 326 

commensals in the human GM with mild-proinflammatory properties [57].  327 

 328 

Metabolic pathways associated with SD and PS in mothers and children 329 

The relative genomic abundance data from the WMS dataset has more features and more 330 

taxonomic specificity than metabolic pathway abundance data, because pathways are 331 

much more conserved across samples (Figure 4). Genomic data therefore enables better 332 

estimation of overall GM associations with SD and PS scores (Figure 5). Nevertheless, 333 

the same statistical approaches (see Methods; RF and LEfSe) were used to identify sets 334 

of SD- and PS-discriminatory metabolic pathways in the mothers and in the children 335 

(defined here using MetaCyc, a curated database of experimentally elucidated metabolic 336 

pathways from all domains of life [36]). Differential abundance statistics for all pathways 337 

and all comparisons are provided in Supplementary Table S5. 338 

Based on metabolic pathway profiles, machine learning correctly classifies 339 

mothers as high- and low-SD in 71.8% of comparisons (P = 8.5x10-4) and as high- and 340 

low-PS in 69.1% of comparisons (P = 0.0023). The top predictive pathways for both 341 

comparisons are shown in Table 2. The pathways with greatest association with high-SD 342 

in mothers include three related to carbohydrate degradation (sucrose degradation IV,  343 

glycogen degradation I, starch degradation III), which might relate to the accompanying 344 

abundance of Bifidobacterium species, which are rich in carbohydrate metabolism 345 
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pathways [58]. The “myo-, chiro- and scyllo-inositol degradation” pathway (PWY-7237) 346 

was most strongly associated with high-PS in mothers (MDA = 5.95, P = 2.1x10-3). Myo-347 

inositol and chiro-inositol degradation by the gut microbiome contributes to inositol 348 

deficiency [59], which includes metabolic disorders involved with insulin function [59] and 349 

MDD when myo-inositol is deficient in the prefrontal cortex [60].  350 

Children are classified correctly as high- and low-SD in 85.9% of comparisons (P 351 

= 1.3x10-9) and as high- and low-PS in 72.1% of comparisons (P = 4.1x10-4) based on 352 

pathway abundance profiles. The top predictive pathways for both of these comparisons 353 

are shown in Table 3. Synthesis of L-glutamate and L-glutamine (PWY-5505) was the 354 

pathway most strongly associated with high-SD in the children (MDA = 7.9%, P = 7.9x10-355 

7), and has been previously associated with obesity and visceral fat accumulation [61]. 356 

Here, L-glutamine biosynthesis was also associated with high-SD in both mothers and 357 

children. In supplementation studies of the gut microbiome, glutamine reduces the ratio 358 

of Firmicutes to Bacteroidetes and bacterial overgrowth or bacterial translocation, and 359 

increases the density of secretory immunoglobulin A (IgA) and IgA+ cells in the intestinal 360 

lumen [62]. 361 

 362 

Bacterial species discrimination between SD and PS groups based on maternal 363 

circulating cytokines  364 

The relationship between inflammation and the GM is examined through maternal 365 

systemic cytokines IL-6, IL-8, IL-10 and TNF alpha, measured across trimesters. In 366 

mothers, prediction accuracy of the GM was greatest for third trimester cytokine samples, 367 

consistent with timing of maternal stool samples. Prediction accuracy was consistently 368 
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greater for IL-6 than for the other inflammatory markers (Table 4). Discriminatory bacterial 369 

genomes demonstrate the most consistent and greatest predictive accuracy for IL-6, 370 

which in preclinical models is centrally important in altering fetal brain development in 371 

maternal immune activation models, where placental inflammatory signals are relayed to 372 

the fetal brain [63-65]. We identified a set of discriminatory taxa from maternal third 373 

trimester stools, whose relative abundance successfully classify mothers into low- or high-374 

IL-6 75.6% of comparisons (P = 2.2x10-4; Supplementary Figure S3) vs. random 375 

assignment (FDR-corrected binomial distribution test), and in 72.1% of comparisons of 376 

metabolic pathways (P = 2.2x10-4). In this case, high prenatal IL-6 concentrations are 377 

associated with the lower abundance of anti-inflammatory Bacteroides species, as 378 

evidenced by the RF and LEfSe significance (effect size 2.3, P = 0.017 for Bacteroides A 379 

and effect size 2.9, P = 0.02 for Bacteroides faecis), as reported in other inflammatory 380 

states [47, 66]. These data illustrate the importance of community balance, including 381 

presence and absence, on target outcomes, and the importance in the ability to identify 382 

these at species/strain levels. Interestingly, we also identified discriminatory taxa in the 383 

infant 4-month GM profile (Figure 8). Of all inflammatory marker comparisons, microbial 384 

genomes in children had the best overall accuracy for maternal third trimester IL-6 385 

concentrations (high/low) based on relative abundance (77.8% accuracy, P = 6.0x10-5) 386 

and metabolic pathways (75.6%, P = 6.9x10-4). However, maternal IL-6 concentration 387 

was not significantly correlated with SD or PS in this subsample (Supplementary Figure 388 

S4), although higher SD is associated with higher maternal IL-6 in the full sample set. 389 

Thus, the relationship of the maternal GM to IL-6 is driven by taxa distinct from those 390 

identified in composite SD or PS values, but still have proinflammatory characteristics.  391 
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 392 

CONCLUSIONS  393 

Our prospectively assembled cohort of mother-infant dyads, enabled us to quantify for 394 

the first time the impact of exposure to both, SD and PS on GM structure and function for 395 

mothers and their infants. Mothers and infants classified as “high’ (case) or “low” (control) 396 

SD/PS, show distinct discriminatory taxonomic, metabolic and inflammatory features that 397 

accurately 'predict' maternal prenatal SD and PS status over 80% of the time, with SD 398 

having greater predictive accuracy than PS. Mothers with high-SD/high-PS have highly 399 

variable microbiomes compared to low-SD/low PS mothers, reflecting greater 400 

permutations from environmental influences. The distinct nature of the taxonomic and 401 

functional GM predictors for SD compared to PS, indicate different underlying 402 

mechanisms driving the relationship.  403 

 The human GM modulates inflammatory cytokine production [8, 67]  and has been 404 

linked to chronic inflammatory disorders [6]. We identified a significant relationship 405 

between the maternal prenatal and infant GM, and prenatal circulating cytokine 406 

concentrations in mothers. Prediction accuracy is highest and most consistent for IL-6 407 

suggesting a contributing role to subtle chronic inflammation, although the discriminating 408 

taxa are distinct from SD.  Elevated IL-6 concentrations have been linked to specific GM 409 

profiles in disease states among adults [68, 69] and recently to neuropathology when 410 

elevated during pregnancy in animal models [64, 65].  411 

    Our findings should be viewed within the strengths and limitations of the study. 412 

The finding are associations, and do not necessarily imply causality. Identification of 413 

strain level taxa and metabolic pathways through WMG, however, form the basis for 414 
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testing mechanistic causation in preclinical models. Use of mother- infant dyads allowed 415 

interrogation of SD and PS between mother and infant GM, and examination of 416 

genomes and metabolic pathways. The population we studied is from a circumscribed 417 

region but contains a broad range of socio-economic backgrounds. We did not examine 418 

the role of race, because of the collinearity of race and SD, with no additional 419 

contribution of race in the model beyond that found with SD alone.   420 

            While longitudinal studies are needed to determine the stability of these GM 421 

signatures from early life to early childhood in children, the results identify unique features 422 

of the maternal and infant GMs and host response. Such findings should be pursued to 423 

better understand the effect of socioeconomic status and mental health determinants on 424 

GM health and stability.  More critically, information on causal pathways triggered or 425 

sustained by the GM that affect child health and development could lead to new 426 

biomarkers and interventions.  The potential malleability of the GM leaves room for 427 

optimism that unfavorable neurodevelopment outcomes might not be inevitable in 428 

children with living with high SD and PS values.   429 

 430 

METHODS  431 

Study Design and Cohort 432 

The study population Consists of  121 mother-child dyads drawn from a larger parent 433 

study of 399 dyads, Early Life Adversity Biological Embedding and Risk for 434 

Developmental Precursors of Mental Disorders (eLABE; details provided in [29]). The 435 

eLABE study used a prospective observational design to examine the impact of pre- and 436 

post-natal psychological and social factors on infant neurodevelopment. Preganant 437 
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women (N=395) and their offspring were recruited from the March of Dimes Prematurity 438 

Research Center at Washington University in St. Louis between 2017-2020, with delivery 439 

of singleton births at the Barnes Jewish Hospital in St. Louis [70]. This sub-cohort was 440 

chosen from the extremes of maternal social disadvantage and psychosocial stress, 441 

among women with relatively healthy offspring, who donated third trimester stools. 442 

Exclusions included multiple gestation, congenital malformations and infections, 443 

premature birth (< 37 weeks gestational age), maternal alcohol or drug use during 444 

pregnancy (excluding tobacco, marijuana, and maternal enteral steroid use). Race and 445 

ethnicity were based on maternal self reporting extracted from the medical record. 446 

Options included American Indian/Alaskan Native, Asian, Black or African American, 447 

Native Hawaiian/Pacific Islander, White, unknown, or other (free text) for race, and the 448 

following options for ethnicity: Hispanic/Latina, non-Hispanic/Latina, or unknown/not 449 

applicable for ethnicity. All procedures were approved by the Human Research Protection 450 

Office, informed consent was obtained from the mother for each dyad.  The study was 451 

performed in accordance with Strengthening the Reporting of Observational Studies in 452 

Epidemiology (STROBE) guidelines [71]. 453 

 454 

Maternal measures 455 

At each trimester of pregnancy, measures of maternal depression, experiences of stress, 456 

as well as demographic information including insurance, education, address, and 457 

household composition were obtained from participants or extracted from the medical 458 

record by trained staff. Components of the two latent constructs, maternal social 459 
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disadvantage and maternal psychosocial stress are previously described [29]. Briefly, the 460 

components of each latent variable included: 461 

 462 

Maternal Social Disadvantage: Insurance status obtained was verified at the third 463 

trimseter from the medical record and maternal self reporting, Income to Needs ratio in 464 

each trimseter based on family income and houshold size (1.0 being the poverty line for 465 

the U.S.) was self reported, highest maternal educational level was self reported, the 466 

national Area Deprivation Index is a national multidimensional geotracking method based 467 

on census block data, providing percentile rankings of neighborhood disadvantage status 468 

[72], and maternal nutrition over the past year was categorized using the validated 469 

Healthy Eating Index (using National Cancer Institute. The Healthy Eating Index – 470 

Population Ratio Method. Updated December 14, 2021; [73]) obtained using the 471 

Diet History Questionnaire (DHQII). 472 

Maternal Psychosocial Stress: In each trimester mothers completed the Edinburgh 473 

Postnatal Depression Scale (EPDS) [74], Perceived Stress scale (PSS) [75] at each 474 

trimester, averaged over trimesters a one-time lifetime STRAIN survey [76], a 475 

comprehensive measure of lifetime stressful and traumatic life events. Experiences of 476 

discrimination based on race were assessed using the Everyday Discrimination Scale 477 

[77]. 478 

Maternal medical risks: were defined by the Maternal Medical Risk score in pregnancy, a 479 

validated measure of maternal co-morbidities weighted by severity in pregnancy, and 480 

maternal pre-pregnancy Body Mass Index was extracted from the medical record.  481 

 482 
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Infant measures 483 

Gestational age was determined by the best obstetric estimate using last menstrual 484 

period or earliest ultrasound dating. Birthweight and route of delivery were extracted from 485 

the electronic medical record delivery note. Breastfeeding data was collected by parental 486 

reporting at the time of home stool sample collection and based on the Center for Disease 487 

Control Infant Feeding Practices II study food frequency checklist data [78, 79].  488 

 489 

Biological specimen collection and processing  490 

Maternal blood samples for serum were collected from venous draws during routine clinic 491 

visits across each trimester, processed within 12 hours of collection, and stored at -80°C 492 

in 1 mL aliquots (details in [70]). Stools from mothers and infants were collected from 493 

home and processed as previously described [79]. Briefly maternal samples were 494 

collected during the third trimester, and infant stools were retrieved directly from the 495 

diaper and scooped into barcoded tubes. Stool samples were placed in insulated 496 

packaging (VWR) with U-tex gel packs (Fischer Scientific) and placed in home freezers. 497 

A community-based courier system available 24 hours per day was used to retrieve 498 

samples within 90 minutes. Weekend or overnight samples were taken to the courier 499 

office freezers (-20°C) and then delivered to the laboratory freezer (-80oC) during working 500 

hours; weekday stools were couriered directly to the laboratory. Previous testing showed 501 

no quality difference between temperatures used in delivery methods [80]. DNA was 502 

extracted from stool using the Qiagen (Hilden, Germany) QIAamp Power Fecal Pro DNA 503 

Mini Kit (50) and the automated QIAcube platform (Qiagen) as previously described [79, 504 

81]. 505 
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 506 

Targeted GM profiling using V4-16S rRNA sequencing, data processing and 507 

analyses 508 

DNA extracted from stool was sequenced on an Illumina MiSeq, producing 2x250bp 509 

paired-end reads spanning the V4 hypervariable region, for 242 samples (121 samples 510 

from mothers and 121 from their matched children).  Data were imported into QIIME2 511 

[82], using standard methods and the developer’s docker container (qiime2/core:2018.8). 512 

V4 region amplicons were assembled and denoised using the Qiime2 method 'DADA2 513 

denoise-paired'. Processed V4 amplicons were grouped into amplicon sequence variants 514 

(ASVs) with 100% sequence similarity. ASVs were classified using a pre-trained classifier 515 

based on SILVA (release 132) [83], a comprehensive database that provides accurate 516 

annotations [84]. ASV counts per sample were exported as biom files from a qiime2 517 

artifact and converted into a human readable tsv file using “biom convert”. Read counts 518 

per sample were rarefied to 11,929 reads per sample (the lowest count among the 242 519 

samples) using the “rrarefy” command in the R package “vegan” (version 2.5-7, 520 

https://CRAN.R-project.org/package=vegan), and normalized read counts were 521 

calculated per sample by dividing the number of reads associated with each ASV by the 522 

total number of reads assigned across ASVs. Taxonomic identifications used are directly 523 

provided by SILVA [83]. Raw 16S rRNA can be downloaded from public database 524 

(submission in progress). 525 

 526 

Whole Metagenome Shotgun (WMS) sequencing and GM profiling 527 
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Whole Metagenome Shotgun (WMS) datasets for 178 samples (89 samples from mothers 528 

and 89 from their respective children) were generated on the Illumina NovaSeq S4. For 529 

each sample ~ 6Gbp was generated. The reads for all 178 samples were cleaned of 530 

barcodes, adapters and low-quality ends using Trimmomatic [85] (version 0.36). The 531 

BMTagger program (installed using conda, July 30th, 2020) was used to identify human 532 

contaminant reads using the human reference genome (GRCh38.98 [86]). Reads 533 

identified as human were removed to produce final paired-end fastq per each of the 178 534 

samples. Raw WMS read data can be downloaded from public database (submission in 535 

progress). 536 

 The 178 WMS samples were mapped against the Unified Human Gastrointestinal 537 

Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut 538 

prokaryotes, each theoretically representing an individual bacterial or archaeal species 539 

(95% average nucleotide identity [32]) using bowtie2 [39] (v2.3.5.1). The profile module 540 

of the inStrain [33] program was then run to generate sequencing breadth and depth of 541 

coverage statistics for every genome, in addition to nucleotide diversity measures per 542 

genome per sample. The depth of coverage values were normalized within every sample 543 

by dividing each genome’s depth by the sum of the depths across all genomes. 544 

The 178 WMS samples were also used as input for HUMAnN [37] (version 3), 545 

which was ran from the biobakery/humann docker container (latest version as of October 546 

2020) using the Chocophlan nucleotide database and Uniref90 [87] protein database. 547 

HUMAnN3 runs the MetaPhlAn [38] program as an intermediate step to assign organism-548 

specific functional profiling, and we used the developer-provided Metaphlan3 [38] bowtie2 549 

[39] database for this intermediate step. The HUMAnN3 pipeline was used to generate 550 
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MetaCyc [36] pathway abundance per sample. The “humann_renorm_table” script 551 

(included in the HUMAnN3 distribution) was used to convert Reads Per Kilobase (RPK) 552 

values in the MetaCyc abundance table to a normalized value, Copies Per Million (CPM), 553 

which can be compared across samples. 554 

 555 

Statistical analysis 556 

 Significant differences between Low and High SD and PS sample sets based on 557 

metadata classifications (Table 1, Supplementary Table S1) were calculated using two-558 

tailed T-tests with unequal variance for continuous variables and using Fischer exact tests 559 

for categorical data. Correction for multiple testing was not performed across tests, 560 

because significant differences indicate potential bias in the data. Significant differences 561 

in components of SD and PS were expected since samples were chosen from the 562 

extremes of phenotype for SD and PS to improve detection of GM differences between 563 

groups [29]. 564 

 For the 16S/ASV sample analysis, Shannon index diversity values were calculated 565 

for each sample using the normalized read counts across all taxa using the “diversity” 566 

function in the “vegan” library in R, and Bray-Curtis distance diversity values were 567 

calculated using the “vegdist” function [88]. Correlation R2 values and Pearson r values 568 

were calculated using MS Excel, and the significance of the correlation was tested using 569 

the two-tailed t statistic with degrees of freedom N -1. ASV-based sample clustering was 570 

performed using the relative abundance profiles of all ASVs across all samples as input 571 

for Bray-Curtis dissimilarity-based clustering (complete linkage) using the “hclust” 572 

function in R, with additional metadata visualized using MS Excel. Significant differences 573 
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in SD and PS between clusters were identified using ANOVA with a Post Hoc Tukey HSD 574 

test. 575 

 For the WMG sequence analysis, samples were divided into “high” and “low” SD 576 

and PS based on the distribution of these values across the sample set. Samples above 577 

the average value + 0.5 standard deviations were considered “high” and samples below 578 

the average value – 0.5 standard deviations were considered “low” (35 “low-SD”, 43 “high-579 

SD, 36 “low-Psych” and 32 “high-Psych”; Figure 1C). The same approach was used to 580 

separate samples into “high” and “low” sample sets based on inflammatory marker data 581 

(IL-6, IL-8, IL-10 and TNFα).  582 

To identify bacterial taxa that strongly predict mothers’ SD and PS scores, we 583 

analyzed taxonomic and pathway GM profiles using two approaches. First, a supervised 584 

machine-learning approach (Random Forest [40]) that identifies non-linear relationships 585 

from high dimensional and dependent data [40] and two-round approach using only the 586 

best 25 predictors (as previously described for gut microbiome associations with mental 587 

health measures [41]) was used to (i) quantify the ability to predict metadata classification 588 

based on the microbiome profiles, indicative of the overall association between the 589 

microbiome and the composite scores, and (ii) for each comparison, identify the specific 590 

genomes and pathways that most strongly differentiate between the high and low SD and 591 

PS scores. The generalization error of the model was evaluated by out of bag (OOB) 592 

error. The association of the metadata with the microbiome was quantified using the RF 593 

classification accuracy, and the significance of the accuracy was measured using FDR-594 

corrected binomial distribution tests. RF model accuracy was also examined using 595 

receiver operating characteristic (ROC) curves, quantified using the area under the curve 596 
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(AUC). Significance values for the ROC curves were assigned by Mann-Whitney U 597 

statistics [89], using the “roc.area” function in the R library “ROCR”. 598 

Second, linear discriminant analysis effect size (LEfSe [42]), the most frequently 599 

used statistical tool to determine significant differences in microbiome member 600 

abundance [90], was used for differential genome abundance testing (default settings at 601 

an adjusted P ≤ 0.05 for significance) for the non-parametric factorial Kruskal-Wallis (KW) 602 

sum-rank test, and requiring a linear discriminant analysis (LDA) “effect size” of at least 603 

2 in order to identify differentially abundant taxa). The same approach was used for the 604 

pathway analysis, but the “effect size” test cutoff applied was reduced to a value of 1 605 

instead of 2, since the effect size is designed for the more sparse nature of metagenomic 606 

abundance data [42]. However, the same MDA and KW cutoffs were applied for pathway 607 

analysis. 608 

 609 

Figure legends 610 

Figure 1: Overview of cohorts. (A) Portrayal of the 16S rRNA and WMS sample sets. (B) 611 

Social Disadvantage (SD) scores are positively correlated with Psychological Stressor 612 

(PS) scores (across the 121 sample pairs). (C) The 89 WMS samples are divided into 613 

“low-SD”, “high-SD”, “low-PS” and “high-PS” groups based on the distribution of values 614 

(samples within 1 standard deviation of the average value for each variable are excluded).  615 

 616 

Figure 2: GM sample diversity and composition comparisons with Social Disadvantage 617 

(SD) and Psychological Stressors (PS) scores. (A) SD scores and PD scores do not 618 

significantly correlate with GM α-diversity (Shannon diversity index) in the 121 stool 619 
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samples from mothers. (B) α-diversity in the children is positively correlated with SD (P < 620 

10-5) and PS (P = 8.3x10-5) scores. Relative proportions of human milk feeding are also 621 

shown, to provide additional context for potential sources of differential diversity. (C) β-622 

diversity, measured by Bray-Curtis dissimilarity between the GM of each mother-child 623 

dyad, is positively correlated with SD (P < 10-5) and PS (P = 1.9x10-3) scores. (D) 624 

Hierarchical clustering (based on Bray-Curtis dissimilarity across all ASVs, complete 625 

linkage) identifies four major GM profile-based clusters in the mother. (E) No significant 626 

differences in SD or PS scores were identified between the four clusters based on 627 

maternal GM profiles (one-way ANOVA). (F) Hierarchical clustering identifies four major 628 

GM clusters in the children. (G) Among the GM clusters in children, cluster 4 has greater 629 

SD (one-way ANOVA P < 3.4x10-5) and PS (3.1x10-4) scores. Tukey post-hoc tests were 630 

used to identify significant differences between each cluster, *P ≤ 0.05, **** P ≤ 10-4, *****, 631 

P ≤ 10-5. 632 

 633 

Figure 3: Comparisons of β-diversity between sample sets based on high-vs-low SD and 634 

PS, quantified by Bray-Curtis similarity between sample pairs, and FDR-corrected two-635 

tailed T-tests with unequal variance used to test significance (A) Comparisons of within- 636 

and between-group β-diversity of the GM for mothers with high-SD, low-SD, high-PS and 637 

low-PS. (B) Comparisons of within- and between-group GM β-diversity in children with 638 

high-SD, low-SD, high-PS and low-PS. 639 

 640 

Figure 4: Genome and pathway detection in the 89 mother and 89 child WMS samples. 641 

(A) The total number of bacterial genomes and genomes with species-level taxonomic 642 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.22282482doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.17.22282482


 29 

annotation detected in at least 3 maternal samples and/or at least 3 child samples. (B) 643 

For each of the 2,219 bacterial genomes detected in any sample, the proportion of mother 644 

and child samples that were detected in the dataset. (C) The total number of metabolic 645 

pathways detected in the GM from at least 3 mother and at least 3 child stools. (D) For 646 

each the 468 metabolic pathways detected in any sample, the proportion of mother and 647 

child samples with detection in the dataset. 648 

 649 

Figure 5: The Random Forest (RF) classification accuracy (low-SD vs high-SD and low-650 

PS vs high-PS, out-of-bag error) based on relative UHGG genome abundance in the 651 

mothers and children. (A) Overall classification accuracy, with P values indicating 652 

significance based on FDR-corrected binomial distribution tests (compared to random 653 

sample assignment). (B) For each of the four classification tests, receiver operating 654 

characteristic (ROC) curves are shown based on RF models, with the area under the 655 

curve (AUC) scores and associated Wilcoxon rank sum test results for each ROC curve 656 

indicated.  657 

 658 

Figure 6: WMS genome differential abundance in the mothers, based on comparisons of 659 

high-vs-low SD scores and high-vs-low Psych scores. (A) Based on WMS genome 660 

profiles, RF can successfully classify mothers as having low and high SD 80.5% of the 661 

time (P = 1.4x10-6 compared to random assignment; FDR-corrected binomial distribution 662 

test). Taxonomy and relative abundance per sample for the genomes with the highest 663 

predictive value in the top-25 RF model are shown (ranked by mean decrease in accuracy 664 

of the RF model; MDA). Also displayed are -Log of the Kruskal-Wallis test P values from 665 
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LEfSe (no value shown if the effect size was <2) and the overall abundance of the taxa 666 

when present. (B) Based on WMS genome profiles, Random Forest (RF) can 667 

successfully classify mothers into high and low Psych groups 79.4% of the time (P = 668 

1.5x10-6). *Associated with low-SD in the children, **associated with high Psych in the 669 

children.  670 

 671 

Figure 7: WMS genome differential abundance in the children, based on comparisons of 672 

high-vs-low Social Disadvantage (SD) scores and high-vs-low Psychological Stressors 673 

(PS) scores. (A) Based on WMS genome profiles, Random Forest (RF) can successfully 674 

classify children as low- and high-SD 84.6% of the time (P = 6.7x10-9 compared to random 675 

assignment; FDR-corrected binomial distribution test). Taxonomy and relative abundance 676 

per sample for the genomes with the highest predictive value in the top-25 RF model are 677 

shown (ranked by mean decrease in accuracy of the RF model; MDA). Also displayed 678 

are -Log of the Kruskal-Wallis test P values from LEfSe (no value shown if the effect size 679 

was <2) and the overall abundance of the taxa when present. (B) Based on WMS genome 680 

profiles, RF can successfully classify children into high and low-PS groups 82.1% of the 681 

time (P = 7.7x10-8). *Associated with high-SD in the mothers, **associated with low Psych 682 

in the mothers, ***also associated with high-PS in the mothers.  683 

 684 

Figure 8: MGS genome differential abundance in children, based on comparisons of high-685 

vs-low IL-6 abundance. Based on MGS genome profiles, Random Forest (RF) can 686 

successfully classify children into high and low IL-6 abundance 77.8% of the time (P = 687 

6.0x10-5) compared to random assignment; FDR-corrected binomial distribution test). 688 
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Taxonomy and relative abundance per sample for the genomes with the highest 689 

predictive value in the top-25 RF model are shown (ranked by mean decrease in accuracy 690 

of the RF model; MDA). Also displayed are -Log of the Kruskal-Wallis test P values from 691 

LEfSe (no value shown if the effect size was <2) and the overall abundance of the taxa 692 

when present. 693 

 694 

695 
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Table 1. Patients characteristics at study entry for each of the primary comparisons of 696 

interest. "Low" and "High" Disadvantage and Psych scores are separated according to 697 

the distribution of the metadata, as shown in Figure 1. Complete characteristics of all 698 

samples organized per individual sample is available in Supplementary Table S2.  699 

 700 

Low High Low High
121 89 35 43 36 32

Min 18.8 19.3 25.7 19.3 21.5 19.3
Max 41.3 41.3 41.3 38.7 41.3 41.0

Average ± Std. dev. 29.8 ± 5.1 30.4 ± 5.2 33.2 ± 4.4 28.5 ± 5.2 32.0 ± 4.8 28.4 ± 5.4
P value (T-test)

African American 52.1% 53.9% 2.9% 93.0% 36.1% 75.0%
Caucasian 44.6% 42.7% 91.4% 7.0% 61.1% 21.9%

Other 3.3% 3.4% 5.7% 0.0% 2.8% 3.1%
P value (Fisher test)

Min 0.4 0.4 3.0 0.4 0.4 0.5
Max 12.0 12.0 12.0 3.0 12.0 11.8

Average ± Std. dev. 3.4 ± 3.2 3.6 ± 3.5 7.5 ± 2.6 0.9 ± 0.4 5.0 ± 3.9 2.0 ± 2.2
P value (T-test)

Min -2.2 -2.2 -2.2 0.4 -2.2 -2.2
Max 1.3 1.3 -0.8 1.3 1.3 1.3

Average ± Std. dev. -0.24 ± 1.01 -0.23 ± 1.1 -1.48 ± 0.39 0.78 ± 0.26 -0.71 ± 1.11 0.31 ± 0.81
P value (T-test)

Min -1.7 -1.7 -1.7 -1.4 -1.7 0.34
Max 2.4 2.4 1.3 2.4 -0.73 2.4

Average ± Std. dev. -0.21 ± 0.86 -0.21 ± 0.98 -0.70 ± 0.75 0.12 ± 0.91 -1.13 ± 0.25 0.92 ± 0.51
P value (T-test)

Min 0 0 13.7 0 13.0 8.5
Max 29.7 29.7 27.5 28.0 21.0 29.7

Average ± Std. dev. 18.9 ± 4.5 18.6 ± 5.0 18.7 ± 2.7 18.2 ± 6.3 17.3 ± 1.9 22.4 ± 4.3
P value (T-test)

Min 2200 2200 2760 2200 2300 2200
Max 4665 4627 4370 4627 4370 4270

Average ± Std. dev. 3319 ± 538 3283 ± 556 3538 ± 459 3077 ± 548 3379 ± 555 3042 ± 494
P value (T-test)

Min 37 37 37 37 37 37
Max 41 41 41 41 41 41

Average ± Std. dev. 39.0  ± 1.1 39.0 ± 1.1 39.5 ± 0.95 38.6 ± 1.03 39.1 ± 1.1 38.7 ± 1.1
P value (T-test)

Female 43.8% 40.4% 42.9% 39.5% 41.7% 46.9%
Male 56.2% 59.6% 57.1% 60.5% 58.3% 53.1%

P value (Fisher test)
NSVD 65.3% 64.0% 60.0% 67.4% 69.4% 59.4%
VAVD 6.6% 4.5% 5.7% 4.7% 2.8% 9.4%

Cesarean section 28.1% 31.5% 34.3% 27.9% 27.8% 31.3%
P value (Fisher test)

≥50% 47.9% 46.1% 71.4% 23.3% 58.3% 31.3%
<50% 52.1% 53.9% 28.6% 76.7% 41.7% 68.8%

P value (Fisher test)
*NSVD Normal spontaneous vaginal delivery, VAVD vacuum assisted vaginal delivery

Maternal

Children
Child gender

0.82 0.81

Route of 
delivery*

0.62 0.79
Breast milk 

feeding 
frequency 2.9x10-5 0.031

Birthweight
(g)

1.3x10-4 0.010

Gestational age 
(weeks)

2.3E-04 0.23

Psychological 
Stress Score

3.8x10-5 ≤ 10-5

Perceived 
Stress Scale 

(PSS)
0.63 ≤ 10-5

Income:Needs 
ratio

≤ 10-5 1.8x10-4

Social 
Disadvantage 

Score
≤ 10-5 4.9x10-5

Mother delivery 
age

(years)
3.5x10-5 4.5x10-3

Race

≤ 10-5 1.3x10-3

Comparison 
type

Statistic All 16S 
samples

MGS samples

All
Disadvantage score Psych

# Sample pairs (Mother and Child)
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Table 2. Metabolic pathways differential abundance in the mothers, based on 701 

comparisons of high-vs-low SD scores and high-vs-low PS scores. Machine learning 702 

algorithm can classify mothers as low and high SD 71.8% of the time (P = 8.6x10-4 703 

compared to random assignment; FDR-corrected binomial distribution test). Average 704 

abundance and association (high or low) are shown for the pathways predictive value in 705 

the top-25 RF model (ranked by mean decrease in accuracy of the RF model; MDA), and 706 

with LEfSe effect size ≥ 1. The -log of the Kruskal-Wallis test P values from LEfSe is also 707 

shown. 708 

 709 

710 
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Table 3. Metabolic pathways differential abundance in the children, based on 711 

comparisons of high-vs-low SD scores and high-vs-low Machine learning algorithm can 712 

correctly classify children as low and high mother SD 71.8% of the time (P = 8.6x10-4 713 

compared to random assignment; FDR-corrected binomial distribution test). Average 714 

abundance and association (high or low) are shown for the pathways predictive value in 715 

the top-25 RF model (ranked by mean decrease in accuracy of the RF model; MDA), and 716 

with LEfSe effect size ≥ 1. The -log of the Kruskal-Wallis test P values from LEfSe is also 717 

shown. 718 

 719 

 720 

721 
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Table 4. Random forest (RF) machine learning predictive accuracy for high-vs-low 722 

inflammatory markers based on GM taxonomic and pathway profiles. Prediction accuracy 723 

was consistently greater for IL-6 than for the other inflammatory markers. Bolded values 724 

correspond to comparisons for which P < 0.005 (after FDR correction).  725 

    Prediction accuracy 
 FDR-adjusted P value for prediction 

accuracy       
    IL-6 IL-8 IL-10 TNFα   IL-6 IL-8 IL-10 TNFα 

Mothers 
Genomes 75.6% 64.0% 70.6% 74.1%   6.9E-04 0.039 2.8E-03 2.8E-03 

Pathways 72.1% 62.0% 68.6% 61.8%   6.9E-04 0.067 5.6E-03 0.18 

Children 
Genomes 77.8% 76.0% 74.5% 75.0%   6.9E-04 6.9E-04 6.9E-04 2.8E-03 

Pathways 75.6% 66.0% 66.7% 56.4%   1.8E-03 0.02 0.01 0.45 
 726 

727 
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Table 5. MetaCyc pathways differential abundance in the mothers and children, based 728 

on comparisons of high-vs-low IL-6 abundance. Based on MGS HUMAnN3 MetaCyc 729 

pathway abundance, RF can successfully classify mothers as low and high IL-6 73.3% of 730 

the time (P = 6.9x10-4 compared to random assignment; FDR-corrected binomial 731 

distribution test). Average abundance and association (high or low) are shown for the 732 

pathways predictive value in the top-25 RF model (ranked by mean decrease in accuracy 733 

of the RF model; MDA), and with LEfSe effect size ≥ 1. The -log of the Kruskal-Wallis test 734 

P values from LEfSe is also shown. 735 

 736 

737 
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Supplementary Figures 761 

Supplementary Figure S1: The relative abundance of Bifidobacterium species identified 762 

in all mothers and children in the high-SD vs low-SD comparisons.  763 

 764 

Supplementary Figure S2: The relative abundance of Blautia species identified in all 765 

mothers and children in the high-SD vs low-SD comparisons.  766 

 767 

Supplementary Figure S3: Based on WMS genome profiles, RF can successfully 768 

classify mothers as low and high IL-6 abundance 75.6% of the time (P = 2.2x10-4 769 

compared to random assignment; FDR-corrected binomial distribution test). Taxonomy 770 

and relative abundance per sample for the genomes with the greatest predictive value in 771 

the top-25 RF model are shown (ranked by mean decrease in accuracy of the RF model; 772 

MDA). Also displayed are -Log of the Kruskal-Wallis test P values from LEfSe (no value 773 

shown if the effect size was <2) and the overall abundance of the taxa when present. 774 

 775 

Supplementary Figure S4: Comparison of Social Disadvantage scores and 776 

Psychological Stressors scores to maternal third trimester inflammatory marker serum 777 

concentrations. Only IL-8 and PS scores correlated significantly.  778 

 779 

Supplementary Tables  780 

Supplementary Table S1: Complete patient characteristics at study entry for each of the 781 

primary comparisons of interest. "Low" and "High" Disadvantage and Psych scores are 782 

separated according to the distribution of the metadata, as shown in Figure 1.  783 
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Supplementary Table S2: Database of sample data, including metadata, indications of 784 

sample groups for each comparison, relative 16S ASV abundance, relative MGS genome 785 

abundance and relative MGS pathway abundance values. 786 

Supplementary Table S3: Full ASV sequences for each unique ASV identifier from Table 787 

S2.  788 

Supplementary Table S4: Differential abundance statistics for each UHGG genome in 789 

each comparison. 790 

Supplementary Table S5: Differential abundance statistics for each MetaCyc pathway 791 

in each comparison. 792 
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Figure 1. 1163 
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Figure 2: 1165 
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Figure 3 1169 
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Figure 4 1172 
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Figure 5. 1175 
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Figure 7. 1180 
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Figure 8. 1183 
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Supplementary Figure S1 1186 
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Supplementary Figure S2 1191 
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Supplementary Figure S3 1202 
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Supplementary Figure S4 1206 
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