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ABSTRACT
Objective: Mismatch Repair Deficiency (dMMR) / Microsatellite Instability (MSI) is a key
biomarker in colorectal cancer (CRC). Universal screening of CRC patients for dMMR/MSI
status is now recommended, but contributes to increased workload for pathologists and
delayed therapeutic decisions. Deep learning has the potential to ease dMMR/MSI testing in
clinical practice, yet no comprehensive validation of a clinically approved tool has been
conducted.

Design: We developed an MSI pre-screening tool, MSIntuit, that uses deep learning to
identify MSI status from H&E slides. For training, we used 859 slides from the TCGA
database. A blind validation was subsequently performed on an independent dataset of 600
consecutive CRC patients. Each slide was digitised using Phillips-UFS and Ventana-DP200
scanners. Thirty dMMR/MSI slides were used for calibration on each scanner. Prediction was
then performed on the remaining 570 patients following an automated quality check step.
The inter and intra-scanner reliability was studied to assess MSIntuit’s robustness.

Results: MSIntuit reached a sensitivity and specificity of 97% (95% CI: 93-100%) / 46%
(42-50%) on DP200 and of 95% (90-98%) / 47% (43-51%) on UFS scanner. MSIntuit
reached excellent agreement on the two scanners (Cohen’s κ: 0.82) and was repeatable
across multiple rescanning of the same slide (Fleiss’ κ: 0.82).

Conclusion: We performed a successful blind validation of the first clinically approved
AI-based tool for MSI detection from H&E slides. MSIntuit reaches sensitivity comparable to
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gold standard methods (92-95%) while ruling out almost half of the non-MSI population,
paving the way for its use in clinical practice.

INTRODUCTION
Microsatellite Instability (MSI) is a tumour genotype characterised by mismatch errors of
repetitive DNA sequences, called microsatellites, distributed along the genome. It is caused
by a deficiency in the DNA mismatch repair (MMR) system, the process whereby errors,
such as insertions and deletions, that occur during DNA replication are recognized and fixed.
MSI occurs due to MMR malfunction and is therefore a marker of mismatch repair deficiency
(dMMR). dMMR tumours result from defects in the major MMR genes, namely MLH1, MSH2,
MSH6 and PMS2. MSI is found in approximately 15% of the colorectal cancer (CRC)
population and plays a crucial role in clinical management of CRC, with major diagnostic,
prognostic and therapeutic implications. First, MSI is the hallmark of Lynch Syndrome (LS),
the most frequent form of hereditary predisposition to develop CRC. Second, dMMR/MSI is
associated with better prognosis in early-stage CRC and a lack of benefit from adjuvant
treatment with 5-fluorouracil in stage II disease. Third, dMMR/MSI tumours are sensitive to
immune checkpoint inhibitor treatments. In 2017, this genomic instability phenotype became
the first pan-cancer biomarker approved by the FDA, allowing the use of pembrolizumab for
patients with dMMR/MSI unresectable or metastatic solid tumours [1]. Given all the
implications of MSI in patient care, many medical organisations (such as NICE and NCCN
[2,3]) recommend universal screening for dMMR/MSI status of newly diagnosed CRC.

dMMR/MSI can be diagnosed with immunohistochemistry (MMR-IHC) to detect loss of MMR
proteins and/or by molecular tests such as polymerase chain reaction (MSI-PCR) to show
microsatellite alterations. Next Generation Sequencing (NGS) represents an alternative
molecular test to diagnose MSI. MMR-IHC and MSI-PCR testing are relatively inexpensive
and well-established methods to detect molecular alterations in developed countries, while
NGS is too expensive to be used in clinical routine. MMR-IHC testing requires excellent
tissue fixation, slide preparation time, an experienced pathologist and consumes tissue
material which can be in very limited supply for small tumours where multiple tests need to
be performed. It also lacks standardisation across labs and can be subject to inter-rater
(pathologist) variability. MSI-PCR testing requires specific infrastructure that may not be
available in every centre and has a longer turnaround time which can delay therapeutic
decisions. As the number of biomarkers has steadily increased over the last two decades [4],
MMR-IHC and MSI-PCR testing contribute to an ever-increasing workload for pathologists
and technicians. Given the global shortage of pathologists worldwide [5], leveraging AI could
ease the testing burden of MSI by reducing the workload of pathologists, shortening delay in
therapeutic decisions, decreasing costs and preserving material. In a 2019 study, we showed
that deep learning could accurately detect MSI from H&E slides in CRC [6]. Since then,
several studies have presented deep learning-based MSI classifiers from H&E slides in
CRC, confirming its potential to complement standard MSI screening methods [7–9].

Despite recent advances, several issues remain that prevent AI-based tools for MSI
prediction from being used in clinical practice, as pointed out by Kleppe [10]. Most existing
studies focus on the area under the ROC curve (AUROC) as their main performance metric.
Although useful to compare performance of several machine learning models, this metric can
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hide a severe lack of generalisation and is not relevant to clinical practice. Instead, we
propose to focus on sensitivity and specificity to evaluate diagnostic accuracy of MSIntuit™
CRC (MSIntuit), an AI enabled pre-screening solution that enables an early rule-out of
non-MSI patients using H&E slides from primary colorectal tumour by outputting two
categories (Undetermined/MSS-AI) (figure 1A). Importantly, an MSI pre-screening tool used
as a rule-out test must have a very high sensitivity. We therefore propose a method that
guarantees the sensitivity is maintained at new sites and on new cohorts.

To our knowledge, no studies evaluating performance of tools based on deep learning
models to predict MSI from histology slides have solved the issue of model generalisability in
such a way as to enable its use in clinical routine. In this study, we performed a blind clinical
validation of MSIntuit on a large external cohort of 600 consecutive CRC cases. We find that
used as a pre-screening tool, MSIntuit can rule out almost half of the non-MSI population to
ease MSI screening. Our tool includes an automatic slide quality check and addresses the
issue of defining an operating threshold with a calibration step, making it directly applicable
to clinical practice. We further studied MSIntuit's robustness to potential sources of variability
at new sites by 1) digitising the 600 same slides with two different scanners (inter-scanner
reliability), and 2) digitising 30 slides 8 times on the same scanner (intra-scanner reliability).
For a subset of 200 tumours, we also studied the impact of slide selection on MSIntuit
performance by collecting 1 to 4 additional slides from different blocks of the same tumour
(inter-block reliability). Taken together, these studies demonstrate the analytical robustness
of MSIntuit, and pave the way to its adoption in clinical routine.

MATERIALS & METHODS
Cohort description. Three cohorts were used in our study: a discovery cohort to train our
model, an independent development cohort to gain insights about the model performances
on an external dataset, and an independent validation cohort, blinded to patients’ MSI
statuses, to assess the performance of MSIntuit in a one-shot fashion. Inclusion criteria for
all cohorts were as follows: unequivocal diagnosis of CRC, available histological slides of
resected specimens from the primary tumour, available MSI status. The discovery cohort,
denoted TCGA here, is a multicentric cohort of 859 whole slide images (WSI) from 434
patients from the TCGA-COAD database diagnosed in 24 US centres [11]. 427
Formalin-Fixed Paraffin-Embedded (FFPE) and 432 snap frozen H&E-stained WSIs from
these patients were used to develop our model. MSI-PCR was used as a source of ground
truth for MSI labels. The PAIP cohort was used as a development set and comprised
colorectal tumour samples of n=47 patients, collected from three centres in South Korea [12].
The MSI status of these patients was determined using MSI-PCR assays. The validation
cohort used for the blind validation consisted of 600 anonymized FFPE H&E WSIs of 600
consecutive patients diagnosed at Medipath pathology laboratories (France) in 2017 and
2018. For each patient, one H&E slide was chosen following our guidelines (see Slide
selection paragraph below). All slides were digitised using two scanners, Philips UFS
(Philips, Amsterdam, The Netherlands) and Ventana DP200 (Roche Diagnostics GmbH,
Mannheim, Germany), leading to two sets of 600 WSIs referred to as MPATH-UFS and
MPATH-DP200. dMMR status was assessed using MMR-IHC for the four MMR proteins, and
confirmed by MSI-PCR for n=33 indeterminate cases (doubt in MMR-IHC interpretation or
suspicion of Lynch Syndrome). Clinicopathologic features of these three cohorts can be
found in online supplemental table 1.
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Performance metrics. This study is reported in accordance with the Standards for
Reporting of Diagnostic Accuracy Studies guidelines [13]. The clinical value of the models
was evaluated using sensitivity, specificity and negative predictive value (NPV) metrics. Raw
performance of the models was also evaluated using the area under the receiver operating
characteristic curve (AUROC). Confidence intervals were generated using bootstrapping with
1000 repetitions.

Inter and intra-scanner reliability analysis. The intraclass Correlation Coefficients (ICC)
was used to measure the agreement of the continuous predictions of the same slides
digitised with UFS and DP200 scanners. Specifically, we used a single-measurement (i.e.
same patient), absolute agreement, two-way mixed effects (fixed raters i.e. scanners across
all targets i.e. patients) model which corresponds to the ICC(A, 2) form [14]. The ICC value
indicates how much of the score variance can be explained by random effects (subjects) and
not fixed effects (scanners). Cohen's kappa statistic was used to assess the agreement
between MSIntuit’s predicted classes across the two scanners and the patients' MSI status.
Fleiss’ Kappa statistic was used to study the agreement of MSIntuit’s predicted classes for
the same slides digitised eight times and patient’s MSI status.

Automated quality check. Automated quality check (QC) consisted of two steps: detection
of large artefact regions and detection of tumour regions (figure 1B). For the first step,
artefact regions such as blurry areas were discarded via a UNet trained to detect tissue on
the slides. Details about this neural network can be found in online supplemental methods.
The tissue mask generated by the UNet was then briefly examined by a technician to identify
artefacts, potentially leading to a new digitization of the slide. For the second step, a tumour
detection model was applied to determine which tiles were tumoral and which tiles were not.
This model was a multilayer perceptron (MLP) with one hidden layer of 256 neurons with
ReLU activation, that was trained with MoCo features (online supplemental methods) of
642,122 tiles from 50 slides of TCGA-COAD, based on tumour annotations made by an
expert pathologist. A minimum number of 500 tumour tiles, which corresponds to
approximately 6 mm2, was set as the cut-off to pass QC, based on empirical evidence
obtained from the development cohorts (online supplemental figure 1)

Model description. Model used to predict MSI status from slide features was a variant of
Chowder [15]. Details about feature extraction are provided in the online supplemental
methods. First layer of Chowder was an MLP with 128 hidden neurons and sigmoid
activation that was applied to each tile’s features to output one score. The 10 top and bottom
scores were then concatenated and fed into a MLP with 128 and 64 hidden neurons and
sigmoid activations. The model was trained with binary cross entropy as loss, with weights
balanced with respect to the prevalence of dMMR/MSI in the discovery set.

Tool’s consistency across slides from different blocks of the same tumour. For a
subset of 200 patients out of the 600 patients of MPATH-DP200 dataset, 1 to 4 other tumour
slides coming from different blocks of the same patient were digitised, resulting in a total of
398 additional slides. We characterise the tumour morphology of these slides (figures 4A,
4C) using a ResNet18 model trained on NCT-CRC-HE-100K dataset [16] from the
TIAToolbox library [16,17]. This classifier takes as input a tile of 112 × 112 μm and outputs a
probability for each of the following classes : adipose (ADI), debris (DEB), lymphocytes
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(LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM),
cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM). We then
assessed the variations in MSIntuit predictions according to the slide chosen to be
processed by the tool. Using the tissue type classifier described above, we also determined
how each tissue type category impacted MSIntuit prediction, and which kind of slide was
preferable to be selected for MSIntuit processing. McNemar’s test was used to assess the
significance of performance difference by selecting in each tumour, the slide with highest and
lowest amount of each tissue category.

Patient and public involvement. Patients were not involved in this study.

RESULTS

Quality check and calibration as preliminary steps for a clinical-ready
AI-based tool.
An automated quality check (QC) was first performed on MPATH-DP200 and MPATH-UFS
cohorts to set aside slides that did not meet the tool requirements. This step allowed us to
automatically detect slides that were not properly scanned and contained large blurry
regions, which could impact the final prediction score. Interestingly, these blurry slides were
not noticed by the pathologists because it was only visible at a high magnification level
(online supplemental figure 2). The QC was able to identify these slides quickly, without the
need for manual examination. As a result, 3% of MPATH-DP200 slides and 2% of
MPATH-UFS slides were rescanned. Second step of QC allowed to detect slides with too
little tumour tissue (<5mm2): 5% and 2% of the slides were discarded on MPATH-DP200 and
MPATH-UFS cohorts, respectively.

As a result of this preprocessing, we obtained n=541 (dMMR/MSI: 87) and n=558
(dMMR/MSI: 90) slides for MPATH-DP200 and MPATH-UFS cohorts respectively.

Additionally, to address the issue of variations in data acquisition protocols such as stainers
and scanners that may impact deep learning model prediction distributions, we used a
calibration strategy to ensure a sensitivity between 93% and 97% was obtained for the blind
validation (figure 1B). For both MPATH-DP200 and MPATH-UFS, 30 slides from the same
dMMR/MSI patients were used to define the operating threshold leading to 1/30
misclassification (meaning, 1 slide was classified as MSS-AI, and 29 were classified as
Undetermined). The number of slides used in this calibration step was chosen after a
sensitivity analysis on several internal datasets showed that 30 slides were sufficient to
ensure a high likelihood that the sensitivity of MSIntuit on the remaining samples was at least
93%. This process led us to choose a threshold of 0.20045 on the MPATH-UFS dataset and
0.20202 on the MPATH-DP200 dataset. The similarity of the two thresholds suggests that the
variations between UFS and DP200 scanners did not meaningfully impact MSIntuit
predictions, despite the model having been trained on data collected using another scanner
(Aperio).
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MSIntuit performance was boosted using self-supervised learning,
allowing it to rule out almost half of the MSS population with high
sensitivity.
During model development, we found that using a feature extractor pre-trained with
self-supervised learning on millions of histology tiles yielded a performance improvement.
We compared this approach against a method widely used in medical imaging which
consists of using a feature extractor trained on the ImageNet dataset, a dataset which does
not contain any histology images. Our method largely outperformed the ImageNet one with
AUROCs of 0.97, 0.88, 0.86 versus 0.92 and 0.78, 0.77 for ImageNet on PAIP,
MPATH-DP200 and MPATH-UFS cohorts, respectively (online supplemental figure 3A,
supplemental table 2). Including frozen slides in the training set and applying our model to
the whole-slide (not just the tumour content) also yielded small performance improvements
(online supplemental tables 3, 4).

Following QC and calibration, predictions of MSI status were generated from the histology
slides and resulted in a sensitivity of 97% (95% CI: 93-100%), a specificity of 46% (42-50%)
and an NPV of 99% (97-100%) on the MPATH-DP200 cohort, and a sensitivity of 95%
(90-98%), a specificity of 47% (43-51%) and an NPV of 98% (96-99%) on the MPATH-UFS
cohort (figures 2A, 2B). On both cohorts, MSIntuit was therefore able to correctly identify the
majority of dMMR/MSI patients while ruling out almost half of the pMMR/MSS population and
enriching the remaining population to screen in dMMR/MSI patients by +63%. This shows
the robustness of our calibration approach and that our model generalises well on an
independent cohort and across two different scanners not used during training.

MSIntuit reached excellent agreement on two scanners, and is
repeatable across multiple rescanning of the same slide.
Several studies have shown that different scanners induce variations on the digital images
generated, which can hamper the development of computational pathology (CP) tools
[18,19]. Given that various scanner models are used across medical centres, it is crucial that
CP tools can handle these data acquisition variabilities. Results presented in the previous
section show that MSIntuit generalises well to scanners not used during model training. To
further study this potential issue, we assessed the impact of digitization variations on
MSIntuit by comparing the results obtained on MPATH-DP200 and MPATH-UFS cohorts,
which were composed of the exact same slides digitised with these two different scanners.
We first compared the results obtained on the exact same set of slides across the two
scanners, and found out that model performance was extremely close: AUROCs of 0.87
(95% CI: 0.84-0.90) and 0.87 (0.84-0.91) were obtained on DP200 and UFS scanners
respectively (figure 3A). Additionally, correlation of predictions across the two scanners was
very strong with a Pearson’s R of 0.98 (p<0.001, figure 3B). Interestingly, the correlation was
substantially lower using an ImageNet pre-trained feature extractor (R=0.82, online
supplementary figure 3B). Since Pearson's correlation is a good measure of linear correlation
but not of absolute agreement, we also computed the intra-class correlation coefficient (ICC):
inter-scanner reliability was excellent with an ICC of 0.99 (95% CI: 0.99-0.99). We also
measured the agreement of the categories outputted by MSIntuit on the two scanners: an
almost perfect agreement was observed with a Cohen’s Kappa of 0.82. As MSIntuit also
outputs one score per tile (representing the likelihood of the tile belonging to a dMMR/MSI
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slide), we also assessed the model's robustness to the scanner at this finer level (figure 3D).
272,527 tiles of 20 slides sampled randomly (dMMR/MSI: 10, non-dMMR/MSI: 10) were
used and a score was generated for each of them on the two scanners. A very strong
correlation was observed with a Pearson’s R of 0.92 (p<0.001, figure 3E). Finally, we
assessed the intra-scanner reliability of our tool by looking at the process of digitization: 30
slides were digitised 8 times on the UFS scanner. Agreement of the tool across the different
digitizations was almost perfect with a Fleiss’ Kappa of 0.82 (figure 3C).

MSIntuit results were consistent across slides obtained from different
regions of the tumour.
Since several slides are usually available for each patient that may highlight different aspects
of the tumour, some criterias are needed to ensure that the slide processed by the tool is
representative of the tumour. Guidelines are detailed in the online supplemental material. We
showed in the previous section that good performance was obtained with these guidelines.
We further explored the consistency of our tool with respect to the region of the tumour
processed by digitising additional slides from 1 to 4 other blocks for a subset of 200 out of
the 600 tumours of MPATH-DP200 cohort. Average difference of predictions for different
slides of the same tumours was low for both MSS and MSI patients with a root mean square
error of 0.04 and 0.07, respectively (figure 4B), indicating that the MSIntuit prediction score is
consistent between tumour blocks.

For the same set of 200 tumours, we assessed model performance when picking the slide
with the highest vs lowest amount of each tissue type, where the amount of tissue of a given
type was determined using a ResNet18 model (see section Impact of tumour heterogeneity
analysis in Materials and Methods). We found that picking the slide with the lowest amount of
mucus and largest amount of tumour resulted in a significantly better specificity (+15 points,
p<0.001 and +10 points respectively, p<0.05, figure 4C). Other categories were not
significantly associated with a better sensitivity or specificity.

MSIntuit provides interpretable results for pathologists
Four pathologists (T.G., A.A., S.C., J.R.) reviewed the 400 tiles most predictive of MSI
(n=200) and non-MSI (n=200) statuses, blinded to their scores. For each tile, the
pathologists were asked to annotate the presence of the following histology criteria: normal,
fibrosis, inflammation, muscle/vessels, tumour, necrosis, mucus (online supplemental figure
5). Majority voting was used to settle disagreements between pathologists and annotations
of a 5th pathologist (D.E.) were used for cases where two pathologists disagreed with the
two others. We found that the majority of tiles predictive of both MSI and non-MSI contained
tumour cells, with MSI: 70%, non-MSI: 60%). Tiles predictive of MSI were associated with
inflammation (MSI: 50%, non-MSI: 13%, p<0.001) and mucus (MSI: 28%, non-MSI: 6%,
p<0.001). Tiles predictive of non-MSI were associated with normal glands (MSI: 4%,
non-MSI: 26%, p<0.001). These observations are in line with the histological patterns
previously described as associated with MSI tumours [20], as well as the interpretability
analyses of deep learning models predicting MSI [7,8,21].

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.17.22282460doi: medRxiv preprint 

https://paperpile.com/c/3X7Jxp/FXu3W
https://paperpile.com/c/3X7Jxp/zs5Yv+ge2tN+MllYn
https://doi.org/10.1101/2022.11.17.22282460
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION
With recent CE-IVD approval, MSIntuit is the first AI-based tool that can be used in clinical
practice in the EU for MSI pre-screening from an H&E slide of CRC. In this study, we
performed a blind validation of this tool, highlighting its value for clinical use. By easily ruling
out almost half of the non-MSI population, MSIntuit lightens the workload associated with
MMR/MSI testing and enriches the remaining population that need to undergo confirmation
screening with MSI patients. This new approach could optimise costs and organisation of
MSI testing in pathology labs, especially for countries applying universal MSI screening. The
pre-screening approach may also be an opportunity for developing countries where
MMR-IHC and MSI-PCR techniques are not accessible or not done systematically due to the
costs to screen more patients.

We showed that MSIntuit can serve as a pre-screening tool to rule out almost half of the
non-MSI population while correctly classifying more than 95% of dMMR/MSI patients,
demonstrating high sensitivity comparable to gold standard methods (92-95%). The blind
validation cohort comprised 600 consecutive cases diagnosed in 9 pathology labs in
2017/2018, diminishing the risk of selection bias. Moreover, MSI-PCR was used to confirm
doubtful cases for which MMR-IHC analysis was ambiguous to ensure the accuracy of
dMMR/MSI labels. It is also important to note that all analyses were pre-specified and that
the validation was performed in a one-shot fashion to avoid the risk of overfitting. The model
was validated on two different scanners that were not used during training. Altogether, we
believe this demonstrates the strength of our validation, as well as the robustness of
MSIntuit.

A key technical strength of our approach relies on the use of self-supervised learning to
extract features from the histology images. Using this method, we were able to train a feature
extractor tailored for histology on 4 million CRC histology images without the need for any
labels. As already pointed out by previous studies [22–24], we observed that such feature
extractor was more robust to scanner variations and largely outperformed a feature extractor
pretrained on ImageNet dataset for MSI prediction task, an approach still widely used in
medical imaging.

A key objective of this study was to ensure that the MSIntuit tool could be deployed in clinical
practice. To examine the impact of using different scanners at different sites, we digitised
600 slides with two different scanners. We found out that MSIntuit was robust to these
variations and reached almost perfect agreement on the two scanners (Cohen’s kappa :
0.82), while its performance was extremely similar with a sensitivity and specificity of 97% /
46% and 96% / 47% on DP200 and UFS scanners respectively. In a recent study, Kleppe
highlighted the fact that in the presence of domain shift, sensitivity of a deep learning model
could be severely altered. In another study, Echle et al. proposed to use thresholds defined
using only training cohorts but the results were mixed, yielding specificities between 15 and
34% [21]. As a mitigation strategy, we developed a calibration approach to ensure that the
sensitivity of the MSIntuit tool would be maintained across each new site. We found that this
could be accomplished using 30 MSI slides to determine an operating threshold.

Our study has several limitations. MSIntuit was developed and validated solely on slides
from surgical specimens. With the recent promising results of NICHE-2 trial [25], neoadjuvant
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immunotherapy may become the standard of care for CRC patients with dMMR/MSI tumours
in the following years. If these results are confirmed, diagnosis of MSI will in the future be
predominantly performed on biopsies, while MSIntuit has not been validated on biopsies yet.
Echle et al. showed that a model trained to identify MSI on resection specimens transferred
well on a cohort of biopsies, which suggests that MSIntuit could also work on biopsies [21].
Further validation on biopsy specimens must be carried out to confirm this hypothesis.
Moreover, our tool calibration requires 30 dMMR/MSI slides, which can be difficult to obtain
in small centres. Calibration is routinely used for many medical devices, such as MRI, but
ideally an AI model should be entirely agnostic to variability in data acquisition across
centres.

With the increasing number of biomarkers which should be tested in clinical practice, the
need for tools which can ease biomarker testing is greater than ever. With the recent
achievements of AI for digital pathology, our tool represents the first step towards the
development of AI-based solutions that could identify a panel of actionable biomarkers from
a single H&E slide used in clinical routine.

FIGURES

Figure 1. Clinical workflow and blind validation methodology.
A) Clinical workflow of MSI screening with MSIntuit. Using a routine H&E slide of CRC,
MSIntuit outputs if the patient is likely to be MSI (Undetermined) and should receive a
confirmatory test (MMR-IHC and/or MSI-PCR), or not (MSS-AI). By ruling out a significant
fraction of non-MSI patients, the workload of pathologists is reduced and the MSI screening
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is fastened. B) H&E slides of 600 consecutive resected CRC specimens were collected and
digitised on two scanners, Phillips UFS and Ventana DP200, resulting in two sets of slides:
MPATH-UFS and MPATH-DP200 (step 1). For each cohort, the same pipeline was then
applied: an automated quality check discarded slides that did not match criteria (large blurry
regions, too few tumour). Slides with large blurry regions were rescanned (step 2). Next, 30
dMMR/MSI WSIs were selected randomly and used to define an appropriate threshold (step
3). Finally, MSIntuit prediction was performed on the remaining slides using the threshold
defined in the aforementioned step to classify patients into two categories: MSS-AI and
Undetermined (step 4).

Figure 2. Performance and Model Interpretability.
Confusion matrices of MSIntuit performance on A) MPATH-DP200 cohort, B) MPATH-UFS
cohort, C) Top: MSIntuit prediction heatmaps showing MSI score for each 112 x 112 μm tile
on representative non-MSI (left) and MSI (right) cases. Bottom: Corresponding most
predictive regions of non-MSI (left) and MSI regions (right). Regions predictive of MSI
displayed poor differentiation, tumour infiltrating lymphocytes while regions predictive of
non-MSI were well differentiated tumour glands.
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Figure 3. Robustness to scanner variations
A) ROC curves of MSIntuit performance on MPATH-DP200 and MPATH-UFS cohorts. To
compare performance on the exact same set of patients, we kept the subset of patients that
passed QC on the two sets of slides (n=541), and obtained an AUROC of 0.87 on both
scanner, B) Correlation of the predictions on the same slides on the UFS/DP200 scanners
resulting in a Pearson’s correlation of 0.98 (p<0.001), C) Prediction distribution for 30 slides,
where each slide was digitised 8 times with the UFS scanner. Fleiss’ Kappa of 0.82 was
obtained, showing an almost perfect agreement of the tool between the different digitization
of the same slide, D) Heatmaps showing MSI score for each 112 x 112 μm tile for one
representative slide digitised with two scanners, E) Correlation of tile MSI scores on DP200
and UFS scanner. MSIntuit outputs a score for each tile, hence we also analysed the
concordance of tile scores for a subset of 20 slides digitised with the two scanners
(n=272,527 tiles). A Pearson’s correlation of 0.92 was obtained (p<0.001). The colormap
representing the spatial density of points indicates that most tile scores were close to the
diagonal, showing that tile scores were highly concordant.
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Figure 4. Impact of slide selection on MSIntuit.
A) Impact of tumour heterogeneity on MSIntuit prediction on a representative pMMR/MSS
case. Left: 3 slides picked from different blocks of the same tumour. The number on the
bottom right corner of each slide corresponds to the tool’s prediction for the given slide.
Middle: segmentation maps using a model trained to categorise tissue into one of the 8
following categories: adipose (ADI), debris (DEB), lymphocytes (LYM), mucus (MUC),
smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR),
colorectal adenocarcinoma epithelium (TUM). Right: number of tiles belonging to each
category. The slide with the largest amount of tumour was the closest to 0; as this patient is
MSS, this slide gave the best prediction. B) MSIntuit’s predictions variability due to using
different slides available for the same patient, for 200 patients with 1 to 4 additional slides of
the tumour available. Root mean squared errors (RMSE) of slide prediction and the average
of the corresponding patient’ slides were computed and resulted in an average RMSE of
0.04 and 0.07 for MSS and MSI patients respectively, C) Difference of sensitivity/specificity
when picking slide with the highest and lowest amount of each tissue type was computed for
the 200 tumours with multiple slides. Picking the slide with the lowest amount of mucus and
largest amount of tumour resulted in a significantly better specificity (+15 points, p<0.001 and
+10 points respectively, p<0.05). Other categories were not significantly associated with a
better sensitivity or specificity. P-values < 0.05 were considered statistically significant.
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SUPPLEMENTAL

Supplemental methods

Preprocessing of whole-slide images. A preprocessing pipeline was needed to reduce
dimensionality and clean the data before training any model. The first step of our pipeline
consisted of detecting the tissue on the WSI: a U-Net neural network [26] was used to
segment part of the image that contains relevant matter, and discard artefacts such as blur,
pen marker etc., as well as the background. This U-Net network was previously trained on
460 H&E and MMR-IHC slides from an internal dataset where tissue was manually
annotated, and validated on 115 slides with a Dice score of 0.96. This network was applied
on images of size 2048 x 2048 μm (512 x 512 px, at a resolution of 4 MPP) extracted from
the WSI. The second step consisted of splitting the slide into smaller images, called “tiles”, of
112 × 112 μm (224 × 224 px, at a resolution of 0.5 MPP). At least 50% of the tile must have
been detected as foreground by the U-Net model to be kept. For training, a maximum of
8,000 tiles were extracted from each slide while all tiles were extracted for inference. The
final step consisted of extracting features from each tile : 2,048 relevant features were
extracted using a wide Resnet50 network [27] (the bottleneck number of channels is twice
larger in every block) trained in a self-supervised fashion with MoCo v2 [28]. This network
was trained on 4 million tiles from the TCGA-COAD dataset, with massive data augmentation
(random cropping, random flips, colour jitter, random grayscale, gaussian blur), and without
using any labels. Feature extractor weights were frozen both for inference and training.

Slide selection. Guidelines regarding slide selection defined to guide pathologists for the
use of MSIntuit in clinical practice were to follow the maximum number of the following
criteria: the slide with the largest surface of tumour tissue, the slide with the most invasive
tumour, the slide with the least necrosis, the slide must not contain preparation artefacts
(staining artefacts, folds on the fabric cut, residual air or water bubbles, traces of marker,
damaged coverslips, scanning artefacts).

Bland-Altman plot to assess inter-scanner reliability. The Bland-Altman plot was also
used (online supplemental figure 4) to assess the agreement between DP200 and UFS
prediction scores, and the 95% limits of agreement (LoA) were calculated as mean±1.96
standard deviation (SD) of the difference (DP200 Score - UFS score). A p-value < 0.05 was
considered statistically significant.

Interpretation of ICC and Cohen’s Kappa values. An ICC below 0.5 indicates poor
reliability, an ICC between 0.5 and 0.75 indicates moderate reliability, an ICC between 0.75
and 0.9 indicates good reliability, and an ICC above 0.9 indicates excellent reliability [29]. A
Cohen’s kappa under 0.2 indicates slight agreement, 0.21 to 0.40 indicates fair agreement,
0.41–0.60 indicates moderate agreement, 0.61–0.80 indicates substantial agreement, and
0.81 to 1.0 indicates almost perfect agreement [30].
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Slide registration. WSIs of the samples obtained with the DP200 and UFS scanners were
not perfectly aligned because of each scanner’s principles of operations (orientation of the
objective, automatic cropping of empty regions, etc). To compare tile individual scores across
the two scanners (figure 2E), we therefore used an image registration process to make sure
the local regions of one slide match the local regions of its counterpart digitised with the
other scanner. This registration process was done using the Elastix and Transformix
softwares [31,32]. Non-rigid registration parameters were first computed on sub-sampled
WSIs (8μm per pixel), optimising the Mattes Advanced Mutual Information on ten
consecutive levels of resolution. Those parameters were finally applied to the high resolution
UFS WSI in order to obtain aligned WSIs at identical resolutions.

Supplementary figures
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Supplemental figure 1. Impact of amount of tumour on the model.
To assess the minimum amount of tumour on the slide needed to ensure MSIntuit yields
good performance, we looked at how the number of tumour tiles impact the results obtained
on TCGA and PAIP cohorts before performing the blind-validation. A) For a number x being
10, 50, 500, 5000, 10000, we randomly selected an area of x tumour tiles for each slide and
performed the prediction on it. Slides with less than x tumour tiles were discarded. Number of
slides that contain at least x tumour tiles are displayed next to each point. X-axis is in log
scale, B) Example of tumour areas selected, for different numbers of tumour tiles (bottom
right corner of each image).

Supplemental figure 2. Quality Check.
A) Left: slide with a blurry strip due to a digitization issue, not noticeable at low resolution,
right : slide with a tissue fold. B) Matter detection heatmaps of the UNet neural network
integrated in MSIntuit’s preprocessing and QC procedures. Blurry regions (left) and tissue
fold (right) are not detected as matter. C), D) Zoomed-in images of blurry and tissue fold
regions. E) Slide with abundant tumour tissue that passed QC (left), slide with too few
tumour tissue (<500 tumour tiles) that did not pass QC. F) Corresponding tumour heatmaps
obtained with a tumour classifier part of MSIntuit’s QC procedure. G), H), Zoomed-in images
of tumour (left) and (normal) regions of left and right slide, respectively.
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Supplemental figure 3. Comparison of Self-Supervised Learning and
ImageNet-pretrained approaches.
A) ROC curves of our tool’s method which uses a feature extractor trained with MoCo v2 on
millions of colorectal cancer images (MSIntuit) and a method which uses a feature extractor
trained on ImageNet dataset in a supervised fashion (ImageNet), on TCGA, PAIP,
MPATH-DP200 and MPATH-UFS cohorts. Apart from the feature extraction part, the same
pipeline was used for the two methods (QC, calibration, downstream model etc ..). B)
Correlation of the predictions on the same slides on the UFS/DP200 scanners for ImageNet
and MSIntuit methods resulted in a Pearson’s correlation of 0.82 (p<0.001) and 0.98
(p<0.001) for ImageNet and MSIntuit methods, respectively.
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Supplemental figure 4. Bland-Altman plot for inter-scanner reliability.
A Bland-Altman plot to analyse the agreement of MSIntuit predictions on UFS and DP200
scanners by looking at the mean inter-scanner difference of prediction scores. A relatively
low prediction score variability was observed with an overall mean inter-scanner score
difference of 0.01 (where the MSIntuit score can vary between 0 and 1) with a limit of
agreement 95% confidence interval ranging from -0.06 to 0.09.

Supplemental figure 5. Interpretability analysis
Proportion of histology patterns associated with non-MSI and MSI according to MSIntuit.
Four pathologists reviewed the 400 tiles most predictive of MSI (n=200) and non-MSI
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(n=200) statuses, blinded to their scores. Majority of tiles predictive of both MSI and non-MSI
contained tumour cells, with MSI: 70%, non-MSI: 60%). Tiles predictive of MSI were
associated with inflammation (MSI: 50%, non-MSI: 13%, p<0.001) and mucus (MSI: 28%,
non-MSI: 6%, p<0.001). Tiles predictive of non-MSI were associated with normal glands
(MSI: 4%, non-MSI: 26%, p<0.001).

Supplemental figure 6. Model’s interpretability on TCGA & PAIP cohorts.
Heatmaps of the tool with corresponding most predictive tiles of a representative dMMR/MSI
case (top) and a pMMR/MSS case (bottom) of A) TCGA cohort, B) PAIP cohort.

Supplemental tables

Supplemental table 1: Cohorts description.

TCGA PAIP Medipath
(MPATH-DP200/MPATH-UFS)

Number of patients 434 47 600

Region United States South Korea France

H&E FFPE slides, n 427 47 600

H&E Frozen slides, n 432 - -
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MSI patients, n (%) 78 (18%) 12 (26%) 123 (21%)

dMMR/MSI diagnosis MSI-PCR MSI-PCR MMR-IHC 4-plex, followed by
MSI-PCR for indeterminate

cases

Scanner Aperio Aperio AT2 Ventana DP200 & Phillips
Ultra Fast Intellisite

Age at diagnosis, IQR 68 (58-77) - 74 (64-82)

Grade 1, n (%) - - 219 (39%)

Grade 2, n (%) - - 296 (53%)

Grade 3, n (%) - - 46 (8%)

Stage I, n (%) 70 (17%) - 46 (8%)

Stage II, n (%) 157 (39%) - 91 (15%)

Stage III, n (%) 117 (29%) - 281 (47%)

Stage IV, n (%) 60 (15%) - 162 (27%)

Supplemental table 2: Performance comparison using SSL pre-trained and ImageNet
pre-trained feature extractors.
We compared the results of two methods : the first one being the one of MSIntuit which uses
a feature extractor trained with MoCo v2 on millions of colorectal cancer images, while the
second one uses a feature extractor trained on ImageNet dataset in a supervised fashion.
Apart from the feature extraction, the same pipeline was used for the two methods (QC,
calibration, downstream model etc ..). Results obtained on TCGA (cross-validation), PAIP
and MPATH-DP200 cohorts are reported.

Cohort Metric ImageNet
3rd block

ImageNet
Last block

MoCo v2
(MSIntuit)

TCGA AUROC 0.80 +- 0.05 0.81 +- 0.04 0.93 +- 0.03

PAIP AUROC 0.92 [0.84-0.97] 0.88 [0.73-0.98] 0.97 [0.90-0.99]

MPATH-
DP200

AUROC 0.78 [0.74-0.83] 0.77 [0.72-0.82] 0.88 [0.84-0.91]

Sensitivity 0.94 [0.90-0.98] 0.92 [0.87-0.96] 0.97 [0.93-0.99]

Specificity 0.31 [0.27-0.34] 0.31 [0.28-0.35] 0.46 [0.42-0.5]

MPATH-
UFS

AUROC 0.77 [0.72-0.82] 0.72 [0.67-0.77] 0.86 [0.83-0.90]

Sensitivity 0.92 [0.87-0.97] 0.85 [0.78-0.91] 0.95 [0.90-0.98]
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Specificity 0.28 [0.24-0.31] 0.36 [0.33-0.4] 0.47 [0.43-0.51]

Supplemental table 3: Training the model on FFPE slides only versus FFPE and
frozen slides of TCGA-COAD.
Both FFPE and snap-frozen slides are available for most patients of the TCGA-COAD
dataset, the dataset we used for training. Although MSIntuit is intended to be used on FFPE
slides, we found that using frozen slides in addition to FFPE ones during Chowder training
slightly improved performance when validating the tool on FFPE samples, likely because the
Chowder model gained robustness with this augmentation strategy all the while doubling our
sample size. In the table below, we compared the performance of two models : one model
trained using only FFPE slides, and another model which uses both FFPE and frozen slides
for training (MSIntuit). In the table below, we display the results obtained when validating on
FFPE slides of TCGA-COAD (cross-validation), PAIP and MPATH-DP200 datasets (external
validation).

Cohort Metric FFPE Only FFPE & Frozen
(MSIntuit)

TCGA-COAD AUROC 0.91 +- 0.02 0.93 +- 0.03

PAIP AUROC 0.97 [0.91-1.00] 0.97 [0.91-1.00]

MPATH-DP200

AUROC 0.87 [0.83-0.90] 0.88 [0.84-0.91]

Sensitivity 0.93 [0.88-0.97] 0.97 [0.93-0.99]

Specificity 0.57 [0.53-0.60] 0.46 [0.42-0.5]

MPATH-UFS

AUROC 0.86 [0.82-0.89] 0.86 [0.83-0.90]

Sensitivity 0.95 [0.90-0.98] 0.95 [0.90-0.98]

Specificity 0.42 [0.38-0.46] 0.47 [0.43-0.51]

Supplemental table 4: Training/Testing on tumour regions only.
Even though known MSI-related features are found only within tumour regions, we found that
applying our model on the whole slide yielded slightly better results. In the table below, we
compare the performance of two models : one model trained and validated using only tumour
regions of the slide, and MSIntuit which keeps the whole slide for training and validation.
tumour regions were defined using a tumour detection model (see section Quality Checks of
Material and Methods).
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Cohort Metric Tumour Only Whole slide
(MSIntuit)

TCGA-COAD AUROC 0.90 +- 0.03 0.93 +- 0.03

PAIP AUROC 0.94 [0.85-0.99] 0.97 [0.90-0.99]

MPATH-DP200

AUROC 0.87 [0.84-0.90] 0.88 [0.84-0.91]

Sensitivity 0.95 [0.90-0.98] 0.97 [0.93-0.99]

Specificity 0.44 [0.40-0.47] 0.46 [0.42-0.5]

Supplemental table 5: Performance of MSIntuit repeating threshold decision
procedure.
Since the calibration step involves selecting some slides to define an appropriate operating
threshold, we analysed how the selection of these slides may impact the model performance.
To this end, we repeated the calibration step 1000 times (selecting each time a different set
of slides to calibrate the tool, and assessing the performance of the model on the remaining
patients).Metrics obtained with this experiment are reported in the table below.

MPATH-DP200 MPATH-UFS

AUROC 0.88 [0.87-0.89] 0.86 [0.85-0.88]

Sensitivity 0.94 [0.83-1.0] 0.94 [0.84-1.0]

Specificity 0.52 [0.16-0.80] 0.47 [0.14-0.72]

Supplemental table 6: Performance of MSIntuit inside histological grade subgroups.
We looked at the tool’s performance on subgroups of MPATH-DP200 and MPATH-UFS
cohorts with histological grade 1, 2 or 3.

Population n (#MSI) MPATH-DP200 MPATH-UFS

AUROC Grade 1 200 (18) 0.88 [0.79-0.95] 0.88 [0.78-0.96]

Grade 2 272 (41) 0.87 [0.82-0.92] 0.85 [0.79-0.90]

Grade 3 34 (16) 0.72 [0.58-0.85] 0.72 [0.56-0.85]

Sensitivity Grade 1 200 (18) 0.95 [0.85-1.0] 0.90 [0.75-1.0]

Grade 2 272 (41) 0.95 [0.89-1.0] 0.93 [0.86-1.0]

Grade 3 34 (16) 1.0 [1.0-1.0] 1.0 [1.0-1.0]
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Specificity Grade 1 200 (18) 0.54 [0.48-0.60] 0.53 [0.47-0.59]

Grade 2 272 (41) 0.43 [0.37-0.49] 0.47 [0.42-0.52]

Grade 3 34 (16) 0.21 [0.06-0.39] 0.22 [0.06-0.39]

Supplemental table 7: Performance of MSIntuit removing patients with rare protein
loss.
We define rare protein loss as one of the following protein losses : loss of MLH1 without loss
of PMS2, loss of MSH2 without loss of MSH6, loss of MLH1 and loss of MSH2[33]. In the
table below, we report the performance of MSIntuit in the population of patients that did not
have a rare protein loss. Numbers in brackets represent 95% confidence intervals, generated
using bootstrap with 1,000 repeats. Numbers in parentheses represent metrics obtained on
the whole population.

MPATH-DP200 MPATH-UFS

AUROC 0.89 [0.86-0.92]

(0.88 [0.84-0.91])

0.87 [0.84-0.90]

(0.86 [0.824-0.90])

Sensitivity 0.99 [0.96-1.0]

(0.97 [0.93-0.99])

0.97 [0.93-0.99]

(0.95 [0.90-0.98])

Specificity 0.46 [0.41-0.49]

(0.46 [0.42-0.5])

0.47 [0.43-0.51]

(0.47 [0.43-0.51])

Supplemental table 8: Intraclass Correlation Coefficient (ICC).
F: value of the F-test, df: degrees of freedom. We analysed inter-scanner reliability by
computing the ICC scores. An F-test is performed in order to confirm or not the presence of
bias during ICC computation. It is computed as the ratio of the mean square error between
measurements over the total mean squared error. The degrees of freedom are an indication
of the total number of subjects used in the analysis. As suggested by Liljequist et al.[14], an
F-value considerably smaller than the total sample size indicates that biases are weak.

MMR Status ICC CI 95% ICC F df1 df2 p-value

dMMR / MSI 0.98 [0.97, 0.99] 51.287 85 85 <0.001

pMMR /
MSS

0.99 [0.99, 0.99] 91.096 453 453 <0.001

Both 0.99 [0.99, 0.99] 110.852 539 539 <0.001
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