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Abstract 29 

After a first episode of major depressive disorder (MDD), there is substantial risk for a long-term 30 

remitting-relapsing course. Prevention and early interventions are thus critically important. Various 31 

studies have examined the feasibility of detecting at-risk individuals based on out-of-sample 32 

predictions about the future occurrence of depression. However, functional magnetic resonance 33 

imaging (MRI) has received very little attention for this purpose so far. 34 

Here, we explored the utility of generative models (i.e. different dynamic causal models, DCMs) as 35 

well as functional connectivity (FC) for predicting future episodes of depression in never-depressed 36 

adults, using a large dataset (N=906) of task-free ("resting state") fMRI data from the UK Biobank. 37 

Connectivity analyses were conducted using timeseries from pre-computed spatially independent 38 

components of different dimensionalities. Over a three year period, 50% of participants showed 39 

indications of at least one depressive episode, while the other 50% did not. Using nested cross-40 

validation for training and a held-out test set (80/20 split), we systematically examined the 41 

combination of 8 connectivity feature sets and 17 classifiers. We found that a generative embedding 42 

procedure based on combining regression DCM (rDCM) with a support vector machine (SVM) 43 

enabled the best predictions, both on the training set (0.63 accuracy, 0.66 area under the curve, 44 

AUC) and the test set (0.62 accuracy, 0.64 AUC; p<0.001). However, on the test set, rDCM was only 45 

slightly superior to predictions based on FC (0.59 accuracy, 0.61 AUC). Interpreting model 46 

predictions based on SHAP (SHapley Additive exPlanations) values suggested that the most 47 

predictive connections were widely distributed and not confined to specific networks. Overall, our 48 

analyses suggest (i) ways of improving future fMRI-based generative embedding approaches for the 49 

early detection of individuals at-risk for depression and that (ii) achieving accuracies of clinical utility 50 

may require combination of fMRI with other data modalities. 51 

 52 
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Introduction 54 

Major depressive disorder (MDD) causes tremendous personal suffering and, amongst all medical 55 

conditions, has one of the highest burden of disease globally (GBD 2019 Mental Disorders 56 

Collaborators, 2022; Vos et al., 2020). It has a profoundly negative impact on social and occupational 57 

functions (Adler et al., 2006; Kupferberg et al., 2016) and is associated with increased risk for other 58 

mental and somatic (e.g. cardiovascular) disorders . After the onset of a first episode of MDD, there 59 

is a substantial risk for a long-term remitting-relapsing course (Eaton et al., 2008), accompanied by 60 

prolonged trial-and-error treatment attempts (Correll et al., 2017; Steffen et al., 2020). Prevention 61 

and early interventions are thus crucial for reducing the burden of MDD, both at an individual and 62 

societal level (Cuijpers et al., 2012, 2021). The challenge is to detect at-risk individuals early so that 63 

preventive measures and interventions can be administered in a timely and targeted fashion. 64 

Detecting at-risk individuals requires prediction models that enable out-of-sample predictions about 65 

the future occurrence of (symptoms of) depression with clinically adequate accuracy. In the recent 66 

past, there have been numerous attempts to establish such models both in adolescents and adults, 67 

based on combinations of various data types, e.g. demographic,  socioeconomic, cognitive, and 68 

clinical variables as well as motor activity (Caldirola et al., 2022; Chikersal et al., 2021; Gu et al., 69 

2020; King et al., 2008; Librenza-Garcia et al., 2021; Lin et al., 2022; Na et al., 2020; Rocha et al., 70 

2021; Rosellini et al., 2020; Sampson et al., 2021; van Eeden et al., 2021; Voorhees et al., 2008; Xu et 71 

al., 2019). 72 

Neuroimaging has played a minor role in this endeavour so far. This may be partly due to difficulties 73 

of obtaining datasets that are longitudinal in nature and sufficiently large to allow for robust out-of-74 

sample predictions. Several longitudinal magnetic resonance imaging (MRI) studies of depressive 75 

symptoms do exist (e.g. Barch et al., 2019; Pagliaccio et al., 2014; Papmeyer et al., 2016; Shapero et 76 

al., 2019), but almost all have small to moderate sample sizes and employ within-sample association 77 

analyses. However, association is not prediction: prediction requires out-of-sample analyses, i.e. " ... 78 

testing of the model on data separate from those used to estimate the model’s parameters" 79 

(Poldrack et al., 2020). A recent exception is the study by Toenders et al. (2021) which predicted 80 

depression onset out-of-sample, based on structural MRI (and other) data from a large sample of 81 

544 adolescents. Concerning functional MRI (fMRI), however, we are aware of only one previous 82 

fMRI study (Hirshfeld-Becker et al., 2019) that has attempted out-of-sample predictions of future 83 

depressive episodes in hitherto depression-free individuals, albeit with a small sample (total N=33). 84 

The predictive value of fMRI for identifying individuals at risk for future depression is thus not well 85 

known. 86 
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One might wonder why fMRI should be considered at all for establishing predictor models of 87 

depressive episodes, given that fMRI data are more difficult to obtain and more costly than many 88 

other types of measurements? There are several reasons why fMRI – and particularly generative 89 

models for estimating connectivity – may have particular utility for clinical predictions. First, fMRI 90 

may afford high sensitivity since it assesses the functional status quo of neural circuits (Stephan et 91 

al., 2015), the biological level that is closest to psychiatric symptoms (Gordon, 2016). Second, clinical 92 

predictions are most valuable if they afford a mechanistic interpretation (Stephan et al., 2017); for 93 

example, this may guide the development of novel treatments. Analyses of functional interactions 94 

based on fMRI can potentially give insights into circuit mechanisms that increase risk for depression. 95 

Ideally, this requires generative models which offer an explanation how activity distributed 96 

throughout a circuit could have been generated (Stephan et al., 2015) and provide estimates of 97 

effective (directed) connectivity.  98 

An approach that blends generative modeling with prediction is "generative embedding" (GE) 99 

(Brodersen et al., 2011, 2014; Frässle et al., 2020; Stephan et al., 2017). GE uses parameter 100 

estimates of a system (circuit) of interest, obtained by inverting a generative model, as features for 101 

subsequent machine learning (ML). This often improves prediction accuracy since the parameter 102 

estimates of a generative model offer a low-dimensional, de-noised representation of neural 103 

dynamics. Furthermore, provided the generative model is biologically plausible, GE may reveal which 104 

biological processes or properties (e.g. specific connections in a neural circuit) are most relevant for 105 

successful clinical predictions. 106 

In this study, we used a large dataset (N=906) of task-free ("resting state") fMRI data from the UK 107 

Biobank (Miller et al., 2016) to explore the utility of fMRI-based connectivity measures for predicting 108 

future episodes of depression in never-depressed adults. Over a three year follow-up period, half of 109 

the selected participants (N=453) exhibited at least one indicator of depression, according to clinical 110 

records and/or self-report, while the other half remained free from depression. Both groups were 111 

carefully matched with regard to 7 potentially confounding variables (age, sex, handedness, tobacco, 112 

alcohol, illicit drugs, cannabis). 113 

We emphasise that the goal of this work was not to test whether predictions based on fMRI data are 114 

better or worse than predictions based on other data types, e.g. socioeconomic or clinical variables. 115 

Instead, because there are numerous options of utilising fMRI for predictive analyses, this initial 116 

study focused on fMRI only and assessed the relative performance of different connectivity 117 

approaches – including generative embedding based on different variants of dynamic causal 118 

modeling (DCM)13 as well as functional connectivity (FC) – for predicting future depressive episodes. 119 

Concretely, in our training set (N=724), we systematically combined different connectivity 120 
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approaches with different ML classifiers, using nested cross-validation, and tested how well they 121 

predicted the occurrence of at least one indicator of a depressive episode over a follow-up period of 122 

three years. We then used the best-performing combination to make the same prediction in a held-123 

out test set (N=182) that was completely independent from the training data. Notably, predicting 124 

the occurrence of indicators of depressive episodes represents a more challenging scenario than 125 

predicting a full clinical diagnosis of MDD. Our study can thus be seen as a "stress test" whether 126 

fMRI-based assessments of connectivity, and generative models in particular, are likely to be useful 127 

at all for early detection of at-risk individuals.   128 
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Materials and Methods 129 

The following sections describe the dataset and methodology used in this study. Briefly, the data 130 

consist of task-free fMRI measurements (i.e. unconstrained cognition or "resting state") and 131 

questionnaire data from the UK Biobank (www.ukbiobank.ac.uk). Based on entries in UK Biobank, 132 

we selected participants that had good quality fMRI recordings and consistent questionnaire 133 

information that allowed us to assign them to one of two groups: a group that initially had no signs 134 

of depressive symptoms but exhibited indicators of depressive episodes (e.g. questionnaire data, 135 

prescription of antidepressants) within three years after the fMRI session (D+ group), or a control 136 

group that did not show any such indicators during the same period (D- group).  137 

We used different connectivity metrics (different variants of DCM as well as functional connectivity, 138 

FC) in combination with different ML classifiers for prediction of future indicators of depressive 139 

episodes. DCM and FC analyses were applied to time series of rs-fMRI networks (with 6, 21, or 55 140 

nodes) defined by independent components analysis (ICA) of the preprocessed "resting-state" fMRI 141 

(rs-fMRI) data and provided by UK Biobank. Posterior parameter estimates (DCM) and Pearson 142 

correlation coefficients (FC), respectively, served as input features to various discriminative 143 

classifiers. The classifiers were trained using nested cross-validation to avoid overfitting and to 144 

provide the best possible estimate of generalizability. Finally, the best models were chosen, and a 145 

prediction was made on held-out (and completely independent) test data.  146 

It is worth noting that our analysis was pre-specified in an ex ante analysis plan, prior to performing 147 

any of the analyses. The analysis plan was time-stamped by uploading it to the Git repository of the 148 

Translational Neuromodeling Unit (TNU); it is available at https://gitlab.ethz.ch/tnu/analysis-149 

plans/galioullineetal_ukbb_pred_depr. Furthermore, code reviews were performed by three of the 150 

co-authors (SF, SH and JH) who were not involved in the data analysis, both before the beginning of 151 

the analysis of the training data, and once again before running models on the test data. The code 152 

can be found at https://gitlab.ethz.ch/tnu/code/galioullineetal_ukbb_pred_depr. 153 

 154 

Dataset: groups with/without depressive episodes 155 

The process of data extraction from the UK Biobank is summarised by Figure 1. To avoid confusion, it 156 

is worth explaining that participants of the neuroimaging branch of UK Biobank (which started in 157 

2014) underwent two fMRI scans, approx. three years apart, each of which involved both task fMRI 158 

and rs-fMRI data. In this study, we only used the rs-fMRI data acquired during the first scan. 159 

Overall, selected individuals were required to have rs-fMRI data of good quality (as indicated by UK 160 

Biobank quality control) and no indication of any previous or current depressive episodes at the time 161 
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of their first fMRI scan. From the subset of participants that fulfilled these criteria, we aimed to 162 

select two groups, one of which continued to indicate no signs of depressive episodes (D- group) 163 

three years after their first scan, and one that showed at least one indicator for at least one 164 

depressive episode over this three-year period (D+ group).  165 

Concretely, we first identified participants who had both task (UKB field 20249-2.0) and "resting-166 

state" (UKB field 20227-2.0) fMRI scans in NIFTI format, ensuring quality controlled images already 167 

preprocessed by UK Biobank (Alfaro-Almagro et al., 2018), resulting in 35,485 participants. In order 168 

to define the D- group, we chose the subset of participants who responded “no” to the 169 

questionnaire item “Looking back over your life, have you ever had a time when you were feeling 170 

depressed or down for at least a whole week?” (UKB field 4598-2.0) when they were first scanned 171 

(2014+). This resulted in 15,739 participants. We further shrunk this set by selecting those 172 

individuals who continued to show no evidence of depression in following years (2014 to 2019) and 173 

again replied, at the second fMRI session in 2019+, “no" to the previous question (UKB field 4598-174 

3.0). This resulted in 1,085 potential D- participants who could be searched for matching criteria 175 

once the D+ group had been determined. 176 

Concerning the D+ group, we also selected individuals from the set of 15 739 participants who had 177 

preprocessed imaging data and who – during their first imaging questionnaire (2014+) – indicated 178 

never having been depressed. Since the UK Biobank does not include information about the absence 179 

or presence of a clinical diagnosis of depression for all participants, we used multiple sources of 180 

information to identify indicators of depression. Specifically, we searched selected UK Biobank data 181 

fields which plausibly indicated the occurrence of at least one depressive episode in the years after 182 

the first fMRI scan. The following list summarizes the data fields  in UKB and number of hits. 183 

• Medical records in UKB:  184 

o First Clinically Recorded Depressive Episode [UKB 130894] (5 hits) 185 

o Clinical Depression-Related Encounter [UKB 41270] (31 hits) 186 

o Prescription of Antidepressants [UKB 20003] (6 hits) 187 

o Depression Diagnosis Report in UKB Assessment [UKB 20002] (12 hits) 188 

• Self-report data in UKB: 189 

o Depressed for at Least a Week Report [UKB 4598-2.0] (203 hits) 190 

o Depression Diagnosis Report in Mental Health Questionnaire [UKB 20544] (90 hits) 191 

o High Score (Coleman et al., 2020) on CIDI in Mental Health Questionnaire [UKB 192 

20446] (165 hits) 193 

o High Score (sum > 4) on Patient Health Questionnaire 3-subset [UKB 2050, 2060, 194 

2080] (6 hits) 195 
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Overall, this resulted in 518 potential D+ participants. Since for any given participant a previous 196 

depressive episode could be reflected by multiple hits, we took the union of the above 8 sets of hits. 197 

This resulted in a total of 464 participants in the D+ group.  198 

Having completed the initial definition of D+ and D- groups, we searched for data entries showing 199 

inconsistent or logically incompatible responses from participants (e.g. participants stating “never 200 

depressed for at least a week” but with a clinical report of depression). This process led to the 201 

removal of 9 participants in total, resulting in 455 participants in the D+ group and 1,076 participants 202 

in the D- group.  203 

 204 

Figure 1: Flow diagram representing the dataset selection process. D- represents subjects who indicated no signs of 205 
depression, whereas D+ represents subjects who showed at least one indicator of depression. 206 

Matching of participants and definition of training/test sets 207 

To minimize any effects of potentially confounding variables, we matched participants with respect 208 

to multiple criteria. Specifically, for each D+ participant we tried to find a matching D- participant 209 

according to the following seven criteria (where a tolerance range was only allowed for age, as 210 

indicated): 211 
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• Sex (UKB field 31) 212 

• Age ± 5 years (UKB field 34) 213 

• Handedness (UKB field 1707) 214 

• Tobacco smoking frequency (UKB field 1249) 215 

• Alcohol consumption frequency (UKB field 1558) 216 

• Ongoing addiction or dependence on illicit or recreational drugs (UKB field 20457) 217 

• Historical cannabis consumption (UKB field 20453) 218 

All but 57 D+ participants could be matched exactly. Out of these, 55 could be matched almost 219 

exactly, with at most one criterion deviating. Two D+ participants could not be matched and were 220 

excluded from further analyses. This provided us with a dataset of 906 participants in total: 453 D+ 221 

participants and 453 matched D- participants. 222 

Finally, we performed an 80/20 split to partition the data into training and test sets. Both datasets 223 

were strictly separated from each other during data analysis to prevent any leakage of information 224 

that could affect the prediction results. We also addressed an unlikely, but theoretically possible, 225 

information leakage stemming from UK Biobank itself: the templates of major functional networks in 226 

the brain (Miller et al., 2016) which are offered by UK Biobank and which our study used for data 227 

extraction had been created using rs-fMRI data from the first 4,181 individuals in UKB. We resolved 228 

this potential problem by ensuring that all participants from this set that were also part of our 229 

extracted data were assigned to the training set. This resulted in patient/control training sets with 230 

362 individuals each and test sets with 91 individuals (Figure 1).  231 

FMRI Data Analysis 232 

Wherever possible we used data that is directly available on UK Biobank and did not require 233 

additional processing. The rs-fMRI data are of 6 minute duration (490 images, TR=0.735s), with a 234 

spatial resolution of 2.4mm isotropic, and were acquired with 8x multislice acceleration (Alfaro-235 

Almagro et al., 2018). We used the data after the standard preprocessing pipeline executed by UK 236 

Biobank. The processing steps performed at UK Biobank included realignment, EPI distortion 237 

correction, and high-pass temporal filtering (with a 50s cut-off). The rs-fMRI data were further 238 

processed using single-subject spatial ICA decomposition using MELODIC in FSL (Jenkinson et al., 239 

2012). The resulting independent components (ICs) were classified as signal vs. noise, and a cleaned 240 

version of the data was provided. UK Biobank then fed these data into a dual regression (Nickerson 241 

et al., 2017) based on a set of group-level templates of "resting-state" networks (based on data from 242 

4'181 subjects) at dimensionalities of either 25 or 100. For subsequent analyses, 21/25 and 55/100 243 
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ICs were kept, as the others were found in previous work to be “...clearly identifiable as artefactual 244 

(i.e., not neuronally driven)” (Alfaro-Almagro et al., 2018).  245 

ICs of resting-state data can be thought of as distinct functional networks (Smith et al., 2009), and 246 

interactions between these networks can be investigated by applying functional and effective 247 

connectivity methods to IC timeseries (for previous examples, see Goulden et al., 2014; Hyett et al., 248 

2015; Motlaghian et al., 2022). In this work, we selected three sets of networks, which differed in 249 

the number of ICs included. Since we were interested in major functional networks implicated in 250 

depression (Brakowski et al., 2017; Kaiser et al., 2015), our first IC selection targeted the default 251 

mode network (DMN), central executive network (CEN), salience network (SN), and the dorsal 252 

attention network (DAN). The DMN and DAN are mapped (Miller et al., 2016) to IC indices 1 and 3, 253 

respectively, while the left/right SN and left/right CEN are mapped (Gratton et al., 2018; Shen et al., 254 

2018) to IC indices 6, 5 and 13, 21, respectively. Furthermore, we considered IC sets of size 21 and 55 255 

components (as provided by UK Biobank) in order to explore the impact of increasing the number of 256 

networks/ICs on prediction performance. The 55 components can be interrogated interactively via a 257 

web-based visualisation tool provided by UK Biobank: 258 

https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html  259 

 260 

Generative Embedding 261 

Having completed the selection of timeseries, our analysis proceeded to generative embedding (GE). 262 

GE requires two choices: (i) a generative model, and (ii) a ML method that uses posterior estimates 263 

from the generative model as features.  264 

Concerning the choice of generative models, our analysis considered three different variants of DCM 265 

that are suitable for task-free fMRI data: stochastic DCM (Li et al., 2011), spectral DCM (Friston et al., 266 

2014), and regression DCM (Frässle, Harrison, et al., 2021). For all models and all IC sets, we 267 

assumed a fully connected network. As a reference, we also obtained functional connectivity 268 

estimates, based on Pearson correlation coefficients.  269 

To invert stochastic DCMs, we used the spm_dcm_estimate function in SPM12, with a DCM struct as 270 

input which had its Y.y set to the 6 timeseries, a set to a 6x6 matrix of ones (fully connected network 271 

of endogenous connections), and Y.dt set to 0.735 (interscan interval). This resulted in a 6x6 matrix 272 

of effective connectivity estimates, giving us 36 features for subsequent ML. Due to its high 273 

computational complexity, it was not possible to run stochastic DCM with 21 and 55 IC timeseries. 274 
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For spectral DCM, we used the SPM12 function spm_dcm_fmri_csd with the same exact DCM struct 275 

as for stochastic DCM as input. The performance was notably faster than for stochastic DCM, but 276 

given that it still took a few hours to run on the Euler high-performance computing cluster of ETH 277 

Zurich and that the scaling of the computational complexity is supra-linear in the number of ICs (i.e., 278 

number of nodes in the DCM), we estimated that it would still take weeks or even months to run the 279 

entire analysis (i.e., inversion of the DCMs for all subjects) for 21 or 55 IC timeseries. Hence, just like 280 

in the stochastic DCM case, we restricted the spectral DCM analysis to 6 IC timeseries. 281 

Concerning rDCM, its high computational efficiency enabled us to analyse networks consisting of 282 

more components (6, 21, and 55 ICs), resulting in 36, 441, and 3025 features, respectively. We used 283 

the rDCM code in TAPAS 4.0 (Frässle, Aponte, et al., 2021), with Y.y set to the respective time series, 284 

and Y.dt set to 0.735. 285 

Finally, FC matrices were computed using the corrcoef function in MATLAB. Since these matrices are 286 

symmetric along the diagonal, and the diagonal is always 1, we took the upper triangle of these 287 

matrices to be our features, resulting in 15, 210, and 1485 features for the respective IC sets. It is 288 

important to note that FC does not capture any information about the directionality of connections, 289 

as opposed to the effective connectivity measures from the DCM variants described above. 290 

 291 

Classification 292 

From the previous generative modeling, we had eight feature sets in place – functional connectivity 293 

for each IC set (6, 21, 55), stochastic and spectral DCM for 6 ICs each, and three rDCM feature sets 294 

for 6, 21 and 55 ICs. These feature sets were subsequently used as input to discriminative classifiers. 295 

Initially, we restricted all analyses to the training set data, and only touched the test data once we 296 

had selected a feature set / classifier combination that performed best. Regardless of the specific 297 

classifier chosen, the steps taken to arrive at reported metrics are the same. 298 

Classifier training was performed using nested cross-validation (CV). Nested CV provides robustness 299 

against overfitting by optimizing hyperparameters in an inner CV loop while averaging the 300 

performance against other partitions of the data in an outer CV loop (Cawley & Talbot, 2010; Stone, 301 

1974). In our case, we used 10 folds in the outer loop, and 5 folds in the inner loop. At the beginning 302 

of each iteration of the outer loop (before training with hyperparameter optimization), the 303 

confounds (sex, age, handedness, smoking, alcohol, illicit drugs, cannabis) were linearly regressed 304 

out using scikit-learn's LinearRegression module. Then the data were normalized using the 305 

StandardScaler module and then the classifier was finally fit with the GridSearchCV module. This 306 
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procedure yielded a set of performance measures for each feature/classifier combination (see 307 

Results).  308 

After evaluation of the feature/classifier pairs on the training data, there are several possibilities 309 

how models fitted on the training data could be applied to the test data. First, we evaluated whether 310 

the feature set/classifier combination that had performed best on the training set generalised to the 311 

test set. Second, we performed a post hoc analysis in which we examined each feature set together 312 

with the classifier that had been optimal for this specific feature set on the training data.  313 

In addition to evaluating classifiers based on their performance metrics, we also ran permutation 314 

tests to check for statistical significance of the classification results. These tests were run both on 315 

our training and test set. To generate an empirical null distribution for a given feature/classifier pair, 316 

we randomly permuted the labels while considering subject pairs between the D- and D+ groups, 317 

originating from the matching of confounds. This is done by identifying a pair and flipping their labels 318 

with 0.5 probability. For the resulting permuted labels, the classifier is trained again by re-running 319 

the entire nested CV procedure, yielding performance metrics under random conditions. This 320 

process is repeated many times (n = 1,000 in our case) to construct the empirical null distribution of 321 

performance metrics. We then compute the rank of the true performance metrics (obtained from 322 

the prediction without shuffling the labels) by calculating how many instances of the null distribution 323 

performed better. Dividing the rank by the number of permutations yields the p-value which we 324 

report. 325 

A separate question concerned the choice of hyperparameters for the test set. While there are 326 

multiple options how hyperparameters for prediction on the test set could be chosen, we decided to 327 

use all data from the training set for optimising hyperparameters: we ran a non-nested 5-fold CV on 328 

the entire training set, picked the best-performing hyperparameters, and used those to predict on 329 

the test set. Other aspects relevant for classification on the test set, such as permutation testing, 330 

and regression of confounds were identical to the training set. Please see Figure 2 for a summary of 331 

the Materials and Methods described above. 332 

Finally, we ran an interpretability analysis on our best-performing feature set/classifier combination 333 

(rDCM estimates based on 55 ICs and an SVM with a sigmoid kernel). This analysis based on SHAP 334 

(SHapley Additive exPlanations) (Lundberg & Lee, 2017), a generalisation of Shapley values from 335 

game theory (Shapley, 1953). For each feature, SHAP assigns an importance or attribution value that 336 

describes how much that feature contributes to the overall prediction. We used the shap software 337 

(https://github.com/slundberg/shap) to create a KernelExplainer that took as arguments: 338 

- a sigmoid SVM classifier trained on rDCM with 55 ICs, 339 
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- a low-dimensional representation of the training data using shap.kmeans with five clusters 340 

(for computational tractability; see shap documentation) 341 

Then, we computed the SHAP values using the explainer’s shap_values function which takes the test 342 

data as an argument. This gives us a SHAP value for each feature for each subject, which we process 343 

(mean of SHAP value magnitude across subjects) to obtain the average impact of each feature on 344 

model output magnitude. 345 

 346 

Figure 2: Illustration of the generative embedding pipeline utilized in the present study for predicting indicators of future 347 
depressive episodes. The pipeline comprises: Definition of the longitudinal dataset (top, left), identification of data features 348 
from the resting-state fMRI (rs-fMRI) data (top, middle), feature extraction, representing effective connectivity (dynamic 349 
causal modeling, DCM) or functional connectivity (FC) estimates amongst independent components (IC) or resting state 350 
networks (RSN) derived from the rs-fMRI data (top, right), nested cross-validation on the training set (bottom, right), 351 
generalization to the test set (bottom, middle), and feature relevance analysis based on SHAP values (bottom, left). Parts of 352 
the figure contain material from shutterstock.com (with permission). 353 

Choice and Implementation of Classifiers 354 

A total of 17 classifiers were evaluated (please see Table 1 in the Results section), including six 355 

support vector machine (SVM) variants and three neural network (NN) variants. As described in the 356 

following, for most classifiers, we chose hyperparameters to optimize within the inner nested CV 357 

loop. For two classifiers (Gaussian naive Bayes and quadratic discriminant analysis) where 358 

hyperparameter tuning is less common, we kept scikit-learn’s default parameters.  359 

A first classifier was logistic regression. Following the default parameters of the scikit-learn version, 360 

we also used L2 regularization, used lbfgs as our solver, and iterated at maximum 100 times. In the 361 

inner CV loop, we optimized for the regularization parameter C (0.01, 0.1, 1, 10, 100), which is the 362 

inverse of regularization strength (smaller values enforce stronger regularization). 363 
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For the SVMs, we made use of Platt scaling (Platt, 1999) to get probabilistic outputs for use in an 364 

AUROC (area under the receiver-operating characteristic curve) metric. We attempted classification 365 

with all types of kernels that scikit-learn has to offer, which include linear, radial basis function (RBF), 366 

sigmoid, and polynomial kernels with order 3, 4, and 5. We again treated the regularization 367 

parameter C (0.01, 0.1, 1) as a hyperparameter and additionally tuned gamma (1, 0.1, 0.01, 0.001) —368 

the kernel coefficient for the RBF, sigmoid, and polynomial kernels. 369 

We included three neural network variants (1, 2, and 3 hidden layers) which treat their layer sizes as 370 

hyperparameters. All other parameters are scikit-learn defaults (version 0.23.2), which means that – 371 

unlike logistic regression – the activation function used is actually ReLU (Rectified Linear Unit; Nair & 372 

Hinton, 2010). 373 

Neural Network Hyperparameters 374 

• 1 hidden layer sizes: 100, 150, 300, 500 375 

• 2 hidden layers sizes: (100, 50), (150, 20), (300, 100), (500, 250) 376 

• 3 hidden layers sizes: (100, 50, 5), (150, 20, 10), (500, 250, 50) 377 

Ensemble methods combine multiple base models to (hopefully) produce better results than each 378 

individual model would have on its own. One such algorithm we used is AdaBoost (Freund & 379 

Schapire, 1997). We employed the scikit-learn default base classifier (decision tree) treating the 380 

number of estimators (30, 50, 70) as a hyperparameter. For a baseline comparison, we also 381 

attempted classification with a single decision tree with default scikit-learn parameters. Another 382 

ensemble method used in our classification is gradient boosting (Friedman, 2001) with 50, 100, 150 383 

estimators as hyperparameters. Finally, we also tried random forest (Breiman, 2001), with options to 384 

tune 100, 500, 1000 estimators. For random forest, we additionally treated the maximum tree depth 385 

(10, 30, 60) as a hyperparameter. 386 

We also explored prediction with three supervised learning algorithms that do not fall under the 387 

previous categories. Namely, Gaussian naive Bayes (Zhang, 2004), quadratic discriminant analysis 388 

(Cover, 1965) – both of which use scikit-learn default parameters – and k-nearest neighbors (Cover & 389 

Hart, 1967) where we treated the number of neighbors (3, 5, 7, 9) and leaf size (20, 30, 40) as 390 

hyperparameters. 391 

We used a variety of metrics to evaluate classifier performance in order to ensure a holistic view and 392 

to avoid potential pitfalls (such as overemphasizing the importance of one metric). We report recall 393 

(sensitivity), precision (positive predictive value), F1 score, accuracy, and AUROC (area under the 394 

receiver-operating characteristic curve). 395 

 396 
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Deviations from the original analysis plan 397 

Our analyses were pre-specified and are described in a time-stamped analysis plan 398 

(https://gitlab.ethz.ch/tnu/analysis-plans/galioullineetal_ukbb_pred_depr). We subsequently 399 

extended this analysis plan in three ways: 400 

1. We extended the coverage of networks and, in addition to the 6 networks (represented by 401 

IC timeseries), also considered sets of networks consisting of 21 and 55 ICs, as provided by 402 

UK Biobank. 403 

2. We extended the connectivity methods by considering functional connectivity (Pearson 404 

correlation coefficients) in addition to variants of DCM as generative models. 405 

3. In addition to SVMs, we decided to test a larger set of classifiers in order to avoid that our 406 

results may depend on the particular choice of classifier. 407 

4. We included an analysis of feature importance on the test set using SHAP values. 408 

The decision to extend the analyses in this manner took place before any prediction analyses of the 409 

training or test data were conducted. 410 

 411 

  412 
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Results 413 

We first present the performance of the cross-validated classifiers for the training dataset and then 414 

proceed with the most promising feature/classifier combinations to the test dataset. Note: since our 415 

dataset is balanced, accuracy as a metric implies balanced accuracy. 416 

Training set 417 

Table 1 provides an overview of prediction performance on the training set in the nested cross-418 

validation setting. Altogether, 17 different classifiers were evaluated (including four SVM variants 419 

and three neural network variants). We report AUROC of all the features run with each classifier 420 

(Table 1) and we also report all metrics for the five best feature/classifier combinations (Table 2). 421 

 422 

Table 1: Summary table of AUROC for each feature/classifier combination as determined by nested cross-validation on the 423 

training set. Bold represents the best result across classifiers for a given feature set, orange shading represents the best 424 

result across feature sets for a given classifier, and a star denotes a statistically significant result (p ≤ 0.05). Ada: AdaBoost, 425 

DTC: Decision Tree Classifier, GBC: Gradient Boosting Classifier, GNB: Gaussian Naïve Bayes, kNN: k-Nearest Neighbors, 426 

SVM (lin): Support Vector Machine with linear kernel, LR: Logistic Regression, NN (n): Neural Network with n layers, SVM 427 

(n): Support Vector Machine with polynomial kernel order n, QDA: Quadratic Discriminant Analysis, SVM (rbf): Support 428 

Vector Machine with radial basis function kernel, RF: Random Forest, SVM (sig): Support Vector Machine with sigmoid 429 

kernel. 430 
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 431 

Table 2: Summary of all metrics on the top five feature set/classifier combination as determined by nested cross-validation 432 

on the training set. Bold indicates the best model for the given metric. 433 

Having run all feature set/classifier pairs on the training data using nested cross-validation, we found 434 

that a sigmoid SVM paired with an rDCM taking 55 ICs – referred to subsequently as rDCM(55) – as 435 

input performed best (Tables 1, 2). In terms of performance, applying a sigmoid SVM to rDCM 436 

connectivity estimates based on 55 ICs resulted in an AUROC of 0.66 (Figure 3A). The other 437 

performance metrics for this combination were: precision=0.64, recall=0.60, F1 score=0.62, 438 

accuracy=0.63 (Table 2).  439 

 440 

Figure 3: ROC curve for sigmoid SVM paired with rDCM(55) on the training set run with nested cross validation. 441 

 In general, connectivity estimates by rDCM enabled better predictions, regardless of classifier (see 442 

Table 1, orange shading): for 15 out of the 17 classifiers tested, one of the rDCM feature sets 443 
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resulted in the best AUROC (in 11/15 cases, the best feature set was rDCM(55)). Furthermore, SVMs 444 

tended to perform better than other classifiers, with SVM variants having highest accuracy for 6 out 445 

of 8 connectivity feature sets. In particular, the sigmoid SVM was the best-performing classifier for 3 446 

feature sets, more than any other classifier.  447 

Based on these results, we chose rDCM(55) with sigmoid SVM to move forward to the test set. The 448 

test data had not been touched up until this point to prevent any leakage of information and ensure 449 

a thorough verification of the generalizability of our prediction model. 450 

 451 

Test set 452 

The prediction of the best-performing approach on the training set generalized to the test data: the 453 

application of a sigmoid SVM to connectivity estimates by rDCM (55 ICs) from the test set showed an 454 

AUROC of 0.64 (Figure 4A). This prediction performance was significantly above chance: Figure 4B 455 

shows that the achieved accuracy of 62% is well outside the null distribution generated by 456 

predictions on randomly permuted labels (p<0.001). 457 

 458 

Figure 4: (A) ROC curve of rDCM (55 ICs) with sigmoid SVM run on test data. (B) Permutation test (n=1,000) run on test data 459 

with accuracy as the metric. 460 

To get a better understanding of the generalization performance we conducted a post-hoc analysis 461 

on other well-performing feature/classifier pairs (Table 3) from the nested cross-validation and 462 

assessed their performance on the test data. We defined “well-performing” as the best classifier in 463 

general, but for feature sets where another classifier performed better, we selected the latter 464 

instead. From the 13 classifiers tested post-hoc, only three other pairs had above-chance 465 

performance on the test set, namely rDCM (21 ICs) with sigmoid SVM (58% accuracy, p=0.019), 466 

functional connectivity (6 ICs) with sigmoid SVM (59% accuracy, p=0.007), and functional 467 
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connectivity (21 ICs) with Gaussian Naïve Bayes (59% accuracy, p-value=0.012). All of these 468 

performed worse with at least a 3% drop in accuracy, leaving the rDCM (55 ICs) with sigmoid SVM as 469 

the best-performing model overall on the test data.  470 

 471 

Table 3: Summary of all metrics on the top five feature/classifier combinations on the test set. 472 

 473 

Finally, we computed the SHAP values (Figure 5) for our best-performing model, the sigmoid SVM 474 

classifier paired with rDCM(55). This assesses the contribution of each connection to the prediction 475 

performance. Since rDCM provides estimates of effective (directed) connectivity, we have two SHAP 476 

value estimates for each IC, one for the outgoing connection, and one for the incoming connection. 477 

We visualized the top 100 SHAP values as a circular plot, where each IC is shown twice, and the 478 

bottom half represents the associated values for the outgoing connections. The width of each 479 

displayed connection reflects the magnitude of the SHAP value, and the width of the coloured IC 480 

label on the circle represents the cumulative SHAP value for outgoing or incoming connections of 481 

that node. Figure 5 shows that connections with the top 100 SHAP values were not confined to a few 482 

networks but included almost all ICs, with very few exceptions. Put simply, during the "resting" state 483 

of unconstrained cognition the participants were in, the most predictive connections were found all 484 

over the brain. 485 

Furthermore, we examined the entire distribution of SHAP values, which is shown as a histogram in 486 

Figure 6. This demonstrates that all connections contribute to the model's prediction, albeit most of 487 

them to a small degree. The distribution shows considerable spread and a long tail, where the 488 

contribution of the most important connection (from IC 34 to IC 24; compare Figure 5) is two orders 489 

of magnitude larger than connections at the mode of the histogram. 490 
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 491 

Figure 5: Top 100 Shapley values for sigmoid SVM paired with rDCM(55) on the test data. Bottom half are outgoing 492 

connections from each of the 55 ICs, and top half are incoming connections.  493 

 494 
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 495 

Figure 6: Shapley value distribution for sigmoid SVM paired with rDCM(55) on the test data. Values to the right of the 496 

dashed red line are in the top 100. 497 

Discussion 498 

MDD is a syndrome with heterogenous disease trajectories (Merikangas et al., 1994) and variable 499 

treatment responses (Rush et al., 2006). Given the importance for clinical management, predicting 500 

future clinical outcomes of individual MDD patients has become an important topic in computational 501 

psychiatry. In particular, various fMRI studies have examined the feasibility of predicting treatment 502 

response (e.g. Harris et al., 2022; Hopman et al., 2021; Ju et al., 2020; Osuch et al., 2018; Queirazza 503 

et al., 2019), relapse (e.g. Berwian et al., 2020; Lawrence et al., 2022), or disease trajectories (e.g. 504 

Frässle et al., 2020; Schmaal et al., 2015) in individuals with MDD.  505 

By contrast, there have been hardly any attempts to use fMRI to address another challenge of 506 

similar importance: the early detection of individuals who are at risk of experiencing a future 507 

episode of depression. Given the high frequency of a prolonged remitting-relapsing disease course 508 

after a first episode of MDD (Eaton et al., 2008), identifying at-risk individuals is crucial for enabling 509 

the targeted deployment of preventive measures and early interventions. So far, to our knowledge, 510 

there has only been a single study that used fMRI for detecting individuals at-risk for future 511 

depression (Hirshfeld-Becker et al., 2019). This previous study used rs-fMRI and functional 512 

connectivity measures in a small sample of individuals with familial risk for MDD (N=33 for 513 

prediction).  514 

The study presented in this paper is novel in several ways. It is the first study using generative 515 

models of fMRI data as a basis for predicting future depressive episodes, using three different 516 
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variants of DCM, in comparison to simpler functional connectivity measures. It uses a large balanced 517 

sample size (N=906), carefully matches groups with presence and absence of depressive symptoms, 518 

examines the combination of 8 connectivity feature sets with 17 classifiers in a training set, and 519 

evaluates the generalisability of the best predictions using a held-out test set. 520 

The results from the training set (Table 1) indicated that the combination of the rDCM(55) feature 521 

set (i.e. rDCM-based connectivity estimates between 55 networks or ICs) and a SVM (with a sigmoid 522 

kernel) performed best, showing an AUROC of 0.66 and an accuracy of 63%. This result was 523 

significantly above chance, as indicated by permutation testing (p=0.001, Figure 3B). Moreover, 524 

across classifiers, rDCM demonstrated higher predictive value than other connectivity methods (see 525 

Table 1): for 15 out of the 17 classifiers tested, one of the rDCM feature sets resulted in the best 526 

AUROC; in 11/15 cases, the best feature set was rDCM(55). Examining the results along the other 527 

dimension of our investigation, i.e. across all connectivity feature sets, SVMs performed better than 528 

other classifiers: for 6 out of 8 connectivity feature sets, one of the SVM variants had the highest 529 

accuracy. In particular, a SVM with a sigmoid kernel performed best for 3 feature sets, surpassing 530 

any other classifier. 531 

Evaluating the best combination (i.e. rDCM(55) + SVM with sigmoid kernel) on the test set confirmed 532 

the generalisability of the predictions, resulting in an AUROC of 0.64 and an accuracy of 62%. This 533 

was significantly above chance (p=0.001), as confirmed by permutation testing (Figure 4B). In a post-534 

hoc analysis, we also evaluated the predictive value of all other connectivity feature sets on the test 535 

set; notably, for each feature set, we used the classifier that had performed best on the training set. 536 

These analyses showed that three other combinations of connectivity features/classifiers (rDCM(21) 537 

+ sigmoid SVM, FC(6) + sigmoid SVM, and FC(21) + Gaussian Naïve Bayes) also achieved significant 538 

results, although with slightly lower accuracy (58-59%).  539 

In short, our results thus demonstrate that a GE procedure – based on applying rDCM to rs-fMRI 540 

timeseries from a large number of ICs (55) – enabled the best predictions about the occurrence of 541 

future depressive episodes within a 3-year period. Having said this, the superiority of GE over a 542 

simpler prediction procedure based on FC estimates was not large, amounting to 3% higher accuracy 543 

and 0.03 higher AUROC compared to the combination of FC(6) + sigmoid SVM. A binomial test 544 

indicated that this difference in accuracy was not significant (p=0.315). 545 

The lack of a decisive advantage of generative embedding in this rs-fMRI study contrasts with 546 

previous task-based fMRI studies in which GE based on DCM was clearly superior to predictions 547 

based on FC estimates (e.g. Brodersen et al., 2011, 2014; Frässle et al., 2018, 2020). For example, 548 

DCM estimates of effective connectivity during a face perception task allowed for substantially more 549 
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accurate predictions of MDD disease trajectories than FC estimates: balanced accuracies for 550 

predicting a chronic course vs. remission were 79% for DCM and 50% for FC, a difference that was 551 

highly significant (Frässle et al. 2020). 552 

In order to understand the limited advantage of GE over FC-based prediction in this study, it is useful 553 

to first consider the general reasons why one would, in general, expect GE to show superior 554 

performance. In brief:  555 

(i) GE exploits the fact that a generative model partitions data into signal and noise. Using 556 

model parameter estimates (as a low-dimensional representation of signal) as features 557 

for subsequent ML ensures that only meaningful information underpins training of 558 

classifiers. This makes it less likely that predictions are informed by noise and do not 559 

generalise. By contrast, measures of functional connectivity, such as correlation 560 

coefficients, reflect both signal and noise. As highlighted by Friston (2011), functional 561 

connectivity estimates based on correlations are highly susceptible to changes in the 562 

signal-to-noise ratio of data. 563 

(ii) A generative model like DCM distinguishes different mechanisms how measured signal 564 

in a system of interest is caused, e.g. connections between system nodes or external 565 

inputs. This allows predictions to be differentially informed by distinct system 566 

mechanisms. By contrast, FC cannot distinguish whether co-varying signal in two brain 567 

regions is caused by shared input or by connections between the regions. 568 

(iii) DCM provides directed connectivity estimates, allowing one to obtain separate weights 569 

for reciprocal connections between regions. By contrast, FC can only provide undirected 570 

estimates of connection strengths. 571 

(iv) From a classical test theory perspective, test-retest reliability of connection strength 572 

estimates would be considered an important prerequisite for predictive validity. 573 

Concerning rs-FC, test-retest reliability has been examined in numerous studies; a recent 574 

meta-analysis reported that, on average, individual connection estimates have limited 575 

test-retest reliability (Noble et al., 2019). A direct comparison between FC and rDCM-576 

based estimates of connectivity on identical data (rs-fMRI and multiple tasks) 577 

demonstrated that rDCM performed more favourably in this regard (see Figure 3 in 578 

Frässle & Stephan, 2022). 579 

Considering these general factors, one possibility why we only found a limited advantage of GE over 580 

FC-based predictions in this study relates to (i) above: in the present study, connectivity was 581 

estimated from timeseries that resulted from ICA decomposition and subsequent (manual) removal 582 

of components that were identified as noise (Alfaro-Almagro et al., 2018). This approach may have 583 
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diminished the difference between GE and FC-based prediction with regard to denoising. For 584 

comparison, in previous comparisons of GE and FC-based predictions (e.g. Brodersen et al., 2011, 585 

2014; Frässle et al., 2018, 2020), timeseries were obtained by computing the first principal 586 

component from regional BOLD measurements, which does not involve a specific distinction 587 

between signal and noise. Another possible explanation derives from (ii): application of rDCM to rs-588 

fMRI data essentially means that the model "switches off" external inputs (Frässle, Harrison, et al., 589 

2021). This reduces the superiority in representational richness of GE.  590 

In summary, this suggests that, in the current setting of IC-based rs-fMRI timeseries, only factors (iii) 591 

and (iv) – but not factors (i) and (ii) – could potentially contribute to higher performance of GE. In 592 

order to obtain an impression of the potential impact of factor (iii) – the ability of DCM to obtain 593 

separate weights for reciprocal connections between network nodes – we visually explored the 594 

asymmetries of node-level SHAP values for incoming versus outgoing connections. For each of the 595 

55 network nodes (ICs), Fig. 7 plots SHAP values summed across all incoming (afferent) and outgoing 596 

(efferent) connections, respectively. Visually, it is apparent that for many of the network nodes, the 597 

explanatory contributions of incoming versus outgoing connections differ considerably (up to 59%). 598 

A more fine-grained plot of connection-specific SHAP values is provided by Fig. 8.  599 

These plots also illustrate a disadvantage of the analysis approach we have chosen in the current 600 

study. Specifically, using ICs as network nodes diminish the advantage GE usually enjoys in terms of 601 

rendering predictions neurophysiologically interpretable. For example, as shown by Figures 5 and 8, 602 

the connection with the largest SHAP value is the connection from IC 34 to IC 24. Both of these 603 

components include a set of fronto-parietal areas: IC 34 includes bilateral frontal regions that appear 604 

to match the location of the frontal eye fields as well as more anterior parts of the superior parietal 605 

cortex. By contrast, IC 24 contains more posterior bilateral parietal areas, including large parts of 606 

bilateral intraparietal sulcus, as well as parts of right middle frontal gyrus and right middle/inferior 607 

temporal gyrus. Given this complex anatomical configuration, the biological interpretation of a 608 

(directed) functional coupling between IC 34 and IC 24 is not as straightforward as a functional 609 

coupling between specific frontal and/or parietal areas. While the FC between these components 610 

does not enable any easier interpretations, this example illustrates that the usual interpretive 611 

advantage of GE tends to be lost when using IC components as nodes of networks. 612 

 613 

 614 
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 615 

Figure 7: SHAP values summed across the incoming (afferent) and outgoing (efferent) connections of each IC. Percentages 616 
indicate the % difference in SHAP values for afferent and efferent connections. The plot concerns predictions based on 617 
rDCM(55) estimates and SVM with a sigmoid kernel.  618 

 619 

 620 
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Figure 8: Matrix of connections between all ICs, showing the connections' colour-coded SHAP values (test data) for 621 
predictions based on rDCM(55) estimates and sigmoid SVM. ICs are ordered according to summed SHAP values.   622 

 623 

Three further aspects of the results deserve discussion. First, it may initially seem surprising that 624 

SVM turned out to be the most successful classifier in our comparison, surpassing potentially more 625 

powerful methods like neural networks. However, this result is compatible with several recent 626 

reports that, for neuroimaging data, kernel-based methods like SVMs (and, in some cases, even 627 

simpler linear models) perform equivalently to neural networks for sample sizes up to 10,000 (Cole 628 

et al., 2017; He et al., 2020; Schulz et al., 2020).  629 

Second, in our post-hoc analysis of connectivity features/classifier combinations on the test set, 630 

three of four significant predictions used the same classifier, an SVM with a sigmoid kernel. 631 

Strikingly, FC achieved a significant 59% predictive accuracy using only 6 ICs, whereas the more 632 

accurate prediction by rDCM (62%) used 55 ICs, respectively. The resulting difference in the number 633 

of features is substantial (15 for FC versus 3025 for rDCM), and it is not immediately clear why 634 

predictions based on functional vs. effective connectivity differed greatly in the preferred 635 

dimensionality of the feature set. One speculative explanation – which would be consistent with the 636 

findings in Figures 7 and 8 – is that differences in the strengths of reciprocal between-network 637 

connections provide subtle but meaningful information that is distributed over many connections 638 

(compare factor (iii) above). This type of information would only be reflected by rDCM, but not by 639 

FC-based, connectivity estimates. More generally, it is not clear why FC(6) performed so well on the 640 

test data at all. The nested CV on the training data did not indicate that this feature set might be 641 

particularly predictive (maximum accuracy of FC-based predictions with any classifier was 54%, none 642 

of them significant). The finding of a higher accuracy (59%) on the test set our post-hoc analysis was 643 

surprising. It might be a chance result due to the variance inherent in CV procedures (Varoquaux, 644 

2018) but otherwise lacks a compelling explanation.  645 

Third, contrary to our expectations, predictions based on stochastic and spectral DCM did not 646 

generalise to the test set. One possible reason for the lack of successful generalisation is that the 647 

higher complexity of the model formulation (e.g. the flexible hemodynamic component and the 648 

more sophisticated noise model) could make parameter estimation less reliable, e.g. due to greater 649 

abundance of local extrema in the objective function, which would be expected to harm 650 

generalisability. This possibility is supported by a recent investigation of parameter recovery of 651 

spectral DCM and rDCM which found more accurate parameter recovery for the latter (Frässle et al. 652 

2021). Perhaps even more importantly, however, we could only run spectral and stochastic DCM for 653 

6 ICs on our cluster; for larger feature sets, their compute time (within the context of our entire 654 
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analysis pipeline) became prohibitively long. However, considering the success of rDCM based on 55 655 

ICs, it is plausible that spectral and stochastic DCM may have performed better if we had been able 656 

to run them with larger IC sets (21 and 55).  657 

How does the prediction performance achieved in this study compare to previous results in the 658 

literature? The only previous fMRI study on predicting future depression (Hirshfeld-Becker et al., 659 

2019) used FC estimates based on rs-fMRI data from six regions, achieving 92% accuracy. However, 660 

this study recruited never-depressed children with familial risk for MDD, as opposed to never-661 

depressed participants from the general population as in our study. Additionally, given the more 662 

specific focus of the previous study, only 33 participants were available for classification (25 at-risk 663 

children, eight controls); this small sample size did not allow for verification in a held-out dataset. 664 

Another useful (although not fMRI-based) comparison study utilized structural MRI together with 665 

clinical data, questionnaires, and environmental variables (Toenders et al. 2021). The study used a 666 

large training set (N=407 adolescents) and an independent test set (N=137), achieving an AUROC 667 

between 0.68-0.72. 668 

It is also instructive to consider the results from non-imaging studies that used demographic, 669 

socioeconomic, and clinical variables for predicting the future onset of depression. When 670 

considering those studies that had large sample sizes (i.e. N>500) and tested for generalisability in an 671 

independent test set, the reported AUROC values in the literature range between 0.71-0.87 672 

(Caldirola et al., 2022; King et al., 2008; Librenza-Garcia et al., 2021; Na et al., 2020; Xu et al., 2019). 673 

It is noteworthy, however, that these studies mostly used imbalanced datasets where the number of 674 

negative cases (no future depressive episode) far outnumber the positive cases. For example, in the 675 

two studies with the highest prediction performance – i.e., AUROC of 0.87 (Na et al., 2020) and 0.85 676 

(Caldirola et al., 2022) – individuals with future depressive episodes amounted to approx. only 8% 677 

and 7% of the respective samples. Even when techniques such as oversampling are used (as in Na et 678 

al., 2020; but not always the case in other studies), such imbalance can lead to overly optimistic 679 

estimates of prediction performance. 680 

Our study has strengths and limitations. Its strengths include an ex ante analysis plan 681 

(https://gitlab.ethz.ch/tnu/analysis-plans/galioullineetal_ukbb_pred_depr) and a large (N>900) and 682 

balanced sample in which groups were carefully matched for 7 potentially confounding variables 683 

(age, sex, handedness, tobacco smoking frequency, alcohol consumption frequency, ongoing 684 

addictions to illicit drugs, and historical cannabis consumption). This degree of matching is unusually 685 

comprehensive (for comparison, in clinical trials and observational studies, it is rarely possible to 686 

match for more than two variables) and only made possible by the large resource of the UK Biobank. 687 
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Furthermore, we conducted a comprehensive comparison of 8 different connectivity measures and 688 

17 classifiers, ensuring that training and test data were strictly separated throughout all analyses. 689 

Concerning weaknesses, our study has a retrospective design which allows for less robust 690 

conclusions than from a prospective study. Furthermore, one potential weakness of the variants of 691 

DCM used in this study is that they all rely on variational Bayesian techniques, rendering model 692 

inversion susceptible to local extrema in the objective function (Daunizeau et al., 2011). In theory, 693 

this could have been addressed by a multi-start procedure, as in previous work with DCM (Schöbi et 694 

al., 2021; van Wijk et al., 2018). In practice, however, we were unable to implement this approach 695 

given that it would have led to an explosion of the already very substantial compute time. Finally, 696 

the greatest limitation of our study is the definition of depressive episodes. Given the heterogeneity 697 

of clinical data in the UK Biobank and the lack of systematic information about absence/presence of 698 

a clinical diagnosis of depression, we combined multiple sources of information within UK Biobank – 699 

i.e., clinical records, questionnaires (PHQ, MHQ) and self-report specifically on issues of depression – 700 

to identify indicators of at least one depressive episode within three years after the fMRI scan. 701 

Clearly, this partial reliance on self-report is not ideal; additionally, the resulting group of 702 

participants with a putative depressive episode (D+ group) is likely heterogeneous and might include 703 

people with very different severities of depression. Furthermore, there is rarely information on 704 

when exactly within the 3-year period a depressive episode occurred; the likely interindividual 705 

variability in the latency of symptom onset after the fMRI scan would further add to the 706 

heterogeneity of the D+ group. Having said this, our approach is similar to previous analyses of 707 

depression in the UK Biobank that also relied on self-report and questionnaires like the MHQ 708 

(Howard et al., 2020). More generally, a pragmatic approach to identifying individuals with likely 709 

clinical characteristics is often unavoidable when working with large heterogeneous databases (for 710 

an example using self-reported depression in genetics, see Wray et al., 2018). The challenge how to 711 

optimally extract data from the UK Biobank for studies of MDD is being addressed by ongoing 712 

methodological developments (Dutt et al., 2022) which will help to improve and standardise future 713 

studies. 714 

Overall, our results have four implications. First, given the challenging nature of the prediction 715 

problem tackled in the study (i.e. occurrence of indicators of depressive episodes, as opposed to full 716 

clinical diagnoses, over a three year period), it is encouraging that significant predictions on held-out 717 

data can be obtained at all. Second, despite this success and the potential for further optimisation, 718 

our study suggests that fMRI on its own may not be sufficient for clinically useful predictions. Future 719 

studies of predicting depression should utilise fMRI-based connectivity estimates in conjunction with 720 

additional data (e.g. demographic, socioeconomic, clinical). Third, while GE results based on rDCM 721 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.22281138doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.17.22281138
http://creativecommons.org/licenses/by/4.0/


were consistently successful across all classifiers and enjoyed a numerical advantage over FC for 722 

clinical predictions, performance differences were modest and nonsignificant.  The magnitude of 723 

performance differences between GE and FC in this study and previous work suggests that adding 724 

task-based fMRI may enhance the difference in predictive accuracy. Finally, using IC components as 725 

network nodes diminishes the usual advantage of GE with regard to biological interpretability of 726 

predictions. In order to maintain the interpretability of GE based predictions, it would seem 727 

advantageous to compute effective connectivity between disjoint areas from parcellations based on 728 

combined anatomical-functional criteria (e.g. Fan et al., 2016; Glasser et al., 2016). We hope that 729 

these conclusions will be useful for future work on predicting the occurrence of depressive episodes. 730 

  731 
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