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Abstract

Intrahepatic Cholangiocarcinoma (iCCA) is an asymptomatic
malignancy of the bile ducts in the liver. The research is pred-
icated on the assumption that a disease is a cluster of genes
interacting in a regulatory network and a few driver genes
regulating the network. Keeping this in mind, the paper pro-
poses a Gene Median Ratio Clustering (GMRC) algorithm to
independently rank the clusters and identify driver genes by
hybridizing gene-median ratio (GMR) and gene cluster net-
work (GCN). GMR then employs the Poisson distribution to
translate right-skewed data into the Normal distribution and
the Anscombe transformation to eliminate data noise and de-
termine the median difference in gene concentration between
distinct disease stages. Additionally, hierarchical clustering
is separately applied to raw data for gene clustering based on
the RNA sequence count. In the process, GMRC is evaluated
over the GSE32225 dataset of 155 patients to extract 12 clus-
ters network for proliferation patients.

1 Introduction

Intrahepatic Cholangiocarcinoma (iCCA) is one of the ep-
ithelial malignancies that fall within the metastatic group
of heterogeneous malignant biliary neoplasms. The worri-
some mortality of these tumors, which accounts for around
10% of all cancer-related fatalities globally each year, results
from their stealthy appearance, high aggressiveness, and re-
sistance to treatment (Buettner et al. 2017). Pathologists de-
tect iCCA incidentally in 0.5-7.4% of autopsies and 1-3%
of cholecystectomy samples. Current non-invasive methods
for diagnosing iCCA are inadequate, and histological con-
firmation is essential. High heterogeneity of iCCA at the
genomic, epigenetic, and molecular levels significantly re-
duces the efficacy of present therapies.

The research is motivated by the need for a clear distinc-
tion between key and driver genes. Key genes are those with
the most significant log2fold change and are the primary
nodes of a protein-to-protein network, while driver genes are
those that accelerate or inhibit the disease-causing cluster.
The genes communicate with one another to raise the tran-
scription rate, forming a disease gene regulatory system. In
a gene cluster network (GCN), driver genes either promote
or inhibit the whole disease regulatory system. Researchers
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have discovered numerous potential biomarkers; however,
only a few have been discovered and classified to identify
driver genes without using protein-to-protein interactions.
Researchers have identified key genes using the log2fold al-
gorithm with tight cutoffs. Not all these genes are poten-
tial biomarkers, but they can be mediating genes, meaning
they are not oncogenes but communicate with driver genes
or immune-related genes to promote other activities, such
as cell proliferation or metabolism. Fang er al. (Fang et al.
2021) modeled the data into normal distribution and con-
ducted variance transformation to account for differential
sequencing depth as a technical error. Tian et al. (Tian et al.
2019) deployed the hierarchical clustering algorithm to clus-
ter genes and utilized phenotype traits such as age, gender,
and height to rank clusters and identify driver genes. How-
ever, existing methodologies hardens the task of identifying
driver genes or disease gene cluster network as phenotype
traits may not be available in every clinical scenario.
Contrasting existing schemes, our proposed methodology,
namely, Gene Median Ratio Clustering (GMRC), feeds the
data in two independent processes: i) GMR - a difference in
the median ratio of a gene in distinct disease stages to iden-
tify overexpressed genes and shortlists genes with more than
100% median difference and ii) GCN - incorporation of the
hierarchical clustering to cluster genes based on RNA-seq
count. Upon receiving the desired findings (genes/biomark-
ers), GMRC ranks the clusters based on the number of com-
mon genes in GMR and GCN. Our core contributions are:

1. The proposed methodology GMRC independently em-
ploys the GMR and GCN such that the output of one al-
gorithm does not confluence the other.

2. GMRC can rank and identify driver genes without any
phenotypic trait or external protein-to-protein network.
GMR deploys median instead of mean, immunizing the
median ratio against high variations.

2 Proposed Scheme

This section discusses the data acquisition process and the
details of our proposed scheme, GMRC.

2.1 Data Acquisition

We leveraged the GSE32225 (NCBI 2017) data collected
from the NCBI website containing iCCA information of 155
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Figure 1: The schematic representation of our proposed
methodology to rank clusters and identify driver genes.
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Figure 3: Normalized data distribution (right) with mean=10
of the right-skewed (left) raw data using the Poisson distri-

. . bution.
patients. Out of 155, 6 patients belong to the Normal control

group (no cancer), 92 and 57 are at the Inflammation and
Proliferation stages in their bile duct tubes. There are around
24526 unique genes, and their RNA sequence counts in var-
ious disease stages of different patients have been reported.

right-skewed, as shown in Fig. 3 (left-side). For discrete
data, sparse data makes it hard to forecast gene corre-
lations or the chance of overexpressing a gene at a spe-
cific disease stage, inflammation, or proliferation. It is
important to note that the Poisson distribution can only be
deployed with correlated mean and standard deviation.
Thus, we transformed each RNA count say x, as shown
in Fig.3 (right-side) using the Poisson distribution, PD,
with hyper-parameter A = 10, as defined in Eq. ??:

(2.718) A"
x!

2.2 Gene Median Ratio (GMR) Algorithm

The function of an organ or tissue influences the activation of
genes for specific protein synthesis. A gene is overexpressed
if there is a statistically significant difference or change be-
tween diseased and healthy individuals in the read counts
or expression levels of RNA sequencing. The GMR algo-
rithm aims to establish overexpressed oncogenes in prolifer-
ation disease-stage patients against the count of inflamma-
tion genes. Fig. 1 presents the schematic representation of
our proposed methodology, and the details are given below:

PD(z) =

3. Sequencing Depth: Anscombe Transformation Bio-
logical replicates have comparable sequence counts and

1. Outlier Detection Outlier is a significant phase in RNA have the same transcriptional profile in a specific disease

sequence data modeling because when a patient’s RNA
sequence is extracted, the patient may have additional
phenotypic traits, , e.g., drinking and smoking, that may
increase the gene expression compared to the patient with
no drinking/smoking history. We also deploy outlier de-
tection to remove the variance from the data, such that
mean and standard deviation are correlated. Addressing
this concern, our proposed methodology utilizes princi-
pal component analysis (PCA) to extract data clusters
and remove patients with excessive RNA-seq counts. For
instance, the outliers, namely CCNY051, CCNY027, &
CCNYO012, in GSE32225 dataset are shown in Fig. 2.

. Poisson Distribution Upon data modeling, it is identi-

fied that the data is not normally distributed and is highly

stage, either inflammation or proliferation. However, in
most cases, the sequencing depth within a group will be
similar and diverse due to technical errors and the non-
availability of phonetic metadata, which behaves as noise
and significantly impact the biomarker extraction. There-
fore, we employed the Anscombes’ transformation to re-
move such data noise from RNA sequence count, say z,

, ¢ 1s a dispersion factor

. Ratio Computation The algorithm then determines me-

dian gene differences between disease phases, for in-
stance, Gene A’s median in inflammation and prolifer-
ation. The median difference gives a proportion of gene

overexpressed during proliferation, as shown in Fig. 4,
where the vertical axis shows the gene levels.

— Outlier 2

— Outlier 3
50000 cooenaicowors

2.3 Gene Clustering Network (GCN)

The interactions between genes in a network can lead to
disease-causing protein production. As an example of a fun-
damental GCN, as depicted in Fig. 5. Gene X may generate
a protein that activates Gene Y, which in turn produces a
protein that activates Gene Z. Thus, a gene regulatory net-
work is developed as a collection of molecular regulators
50000 = that interact with other genes, proteins, or miRNA, forming
-100000 -50000 0 50000 100000 . . .

PC1: 67.32% a chain in the cell to regulate the gene expression levels of
miRNA and proteins, controlling cell’s functioning. The de-

tailed step-by-step working of GCN is summarised below.

100000

PC2: 5.65%

Figure 2: Detecting outlier patients in raw data using PCA.
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Figure 4: Median ratio to identify overexpressed genes in
proliferation against inflammation.

1. Pearson coefficient: It is a method for calculating cor-
relation coefficients that evaluate the strength of the as-
sociation between two continuous/discrete variables. To
quantify the association, a linear relationship is estab-
lished between miRNA Gene X and Gene Y expression
levels in their respective cell groups. If the data points
are closer to the trend line, it infers Genes X and Y have
a strong relationship. Therefore, if all data points lie on
the trend line, the correlation equals 1, defined below.

Correlation(X,Y) = 7 _Co“m(";??)"\f«/e(X,Y) —

2. Soft Thresholding: After establishing pair-wise correla-
tions between the genes, an adjacency matrix is gener-
ated. Soft thresholding (Zhang and Horvath 2005) em-
phasizes substantial connection (higher correlation co-
efficients) and suppresses low correlation (noise) by in-
creasing the correlation’s strength. The RNA sequence is
raised to a power that yields a scale-free network with
power-law-distributed node connections. Most nodes
have few connections, while a few hubs have many. This
technique is performed on each power term until the ad-
jacency matrix-derived graph network has a scale-free
topology as depicted in Fig. 6, where the correlation val-
ues are raised to a power to obtain a scale-free topology
network with soft thresholding (with a threshold value 6).

3. Dissimilarity Measurement: Distance between genes in
the weighted adjacency matrix minus one is used to mea-
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Figure 5: Gene cluster network depicting genes interaction,
proteins formation to regulate the disease network.
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Figure 6: Soft thresholding to obtain a scale-free topological
network.

sure the similarity between the genes. To assess the topo-
logical overlap of Gene 1 and Gene 3 (ref. Fig. 6) with
a similarity matrix of a threshold value, the row- and
column-wise correlation are aggregated followed by di-
viding by the minimum of row/column-wise aggregation,
and added one. Further, subtract one from the resulting
value to obtain dissimilarity. High correlation means a
higher topological overlap and lesser dissimilarity.

4. Linkage Hierarchical Clustering: Upon successfully
computing the correlation and dissimilarity measure, we
deploy hierarchical clustering to generate groups of sim-
ilar genes having similar characteristics. Each data point
is assigned to a separate cluster, compute the distance be-
tween each cluster, join the two most similar clusters, and
disjoin the highly dissimilar gene. GMRC employs mean
linkage as the distance metric, defined as the distance be-
tween each cluster’s point and other clusters.

2.4 Ranking Clusters and Identify Driver Genes

In the last phase of the GMRC algorithm, we rank the clus-
ters and identify the driver genes in the clusters. The clus-
ter ranking is as follows: the cluster with the highest num-
ber of identical genes in the GMR up-regulated gene series
ranks the highest. The identical genes in both algorithms are
the driver genes communicating with each other, and the re-
maining genes in the cluster are the mediating genes.

3 Results and Experimental Analysis
3.1 Gene Cluster Network - Cluster Extraction

We only performed our experimental analysis for patients at
the proliferation stage and observed that the data was par-
titioned into two distinct groups. We utilized hierarchical
clustering and PCA, which concluded that there is a tran-
sitional time between inflammation and proliferation when
patients migrate from the inflammation to the proliferation
stage. Using the hierarchical clustering algorithm, 12 gene
cluster networks are obtained, as tabulated in Table 1. Fol-
lowing the execution of the clustering method, two dendro-
grams comprising separate clusters are generated. Figs. 7(a)
and (b) depict the unmerged and merged clusters, respec-
tively. It can be observed that the turquoise cluster is the
dominant cluster (by size), followed by the blue cluster.
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Table 1: Extracted clusters using GMRC.

Module Color | Genes | Module Color | Genes | Module Color | Genes
Black 142 | Blue 2952 | Brown 2250
Green 178 | Green-Yellow 26 | Grey 16588
Magenta 67 | Pink 91 | Purple 27
Red 153 | Turquoise 5064 | Yellow 480
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Figure 7: Hierarchical Clustering for Proliferation disease
stage

3.2 Key Driver Genes

After obtaining the clusters in Section 3.1, GMRC ranks the
clusters in the probability of being a disease-causing clus-
ter. Thus, the brown cluster (refer Fig. 7 (a)) topped the rank
with 2250 genes having 30 common genes with GMR. From
30, 22 genes are identified as driver genes using prior liter-
ature, as depicted in Table 2. These 22 genes are potential
biomarkers in other carcinomas also. TUBA1B gene is over-
expressed by 132% in the proliferation disease patients and
is a potential biomarker in Wills Tumor (Xu et al. 2020),
also known as nephroblastoma in pediatric patients. While
being a potential biomarker in children’s kidney cancer, it
is a potential biomarker in Hepatocellular Carcinoma, the
same as CISD1 (Lu et al. 2022). CISD1 is overexpressed by
115% in our dataset in proliferation and is known to regulate
ferroptosis negatively. Apart from this, SSU72 gene (Kim
et al. 2022), which is overexpressed by 125%, is a potential
biomarker in liver inflammation, leading to proliferation.
Contrasting, the researchers also observed a few genes
which are potential biomarkers in other cancer types. For
instance, SEPTIN2 (He et al. 2019) is a tumor belonging
to the SEPT family of genes that increase the cellular pro-
cess of hepatoma, glioblastoma, and mesangial carcinoma
cells and are overexpressed by 131% in breast and biliary
tract cancer. PAPOLA (Komini et al. 2021) is observed to

Table 2: Extracted Genes from the brown cluster (refer
Fig. 7(a)) using GMRC algorithm.

Biomarker Gene Name Biomarker Gene Name
Hepatocellular | TUBA1B, SSU72, CISD1 | Ovarian CCNY, ZFP36L1
SEPTIN2, PAPOLA, Colorectal
Breast BIRC2, NUSAPI, COree | GIDS, RABY
Carcinoma
ATP6V1G1, PTGES3
Gastric RHOA, PCBP2, STK3 | Prostrate TMEM256
. Tumor
Gliomas MTPN . CCZ1B, ITGB1
Progression
Regulates Endometrial
. CD44 ) YTHDCI1
Cancer Metasis Carcinoma

be associated with proliferation, which is an ideal candidate
target from prior research as it is overexpressed by 119%
in triple-negative breast tumors. Likewise, BIRC2 (Samanta
et al. 2020), NUSAP1 (De Luca, Romano, and Bucci 2021),
ATP6VI1IGI1 (Qiu et al. 2021), PTGES3 (Adekeye et al.
2022), that are overexpressed by 118%, 111%, 117%, and
118% respectively, are potential biomarkers in breast can-
cer, have also been overexpressed in iCCA proliferation,
giving the researchers an opportunity for drug re-purposing.
CCNY (Liu et al. 2016), and ZFP36L1 (Suk et al. 2018)
are potential biomarkers in Ovarian cancer and are also
overexpressed by 127% and 123%, respectively. Other po-
tential biomarkers are RHOA (Nam, Kim, and Lee 2019),
PCBP2 (Chen et al. 2018), and STK3 (Chen et al. 2021),
which are found to be overexpressed by 112%, 120%, and
117%, respectively, and are found in Gastric carcinoma.
It (Harmouch 2022) is caused by a germ called Helicobacter
pylori which further causes a mutation in these genes. The
last potential biomarkers obtained in our experiments in Col-
orectal Cancer genes are GID8 (Lu et al. 2017), RAB7 (Hu
et al. 2021), which are highly overexpressed in iCCA prolif-
eration by 110% and 112%, respectively.

4 Conclusion

This paper proposes a neoteric and independent process,
GMRC, that integrates GMR and GCN, devoid of any
clinical phenotypic feature. GMRC resists the varying re-
sults from technical mistakes or other diseases and does
not need external data to rank clusters and identify onco-
genes. Compared to existing methods that need an exter-
nal clinical phenotype and PPI network to generate onco-
genes, the suggested procedure produced 73% pure cancer-
driving genes. The extracted oncogenes are TUBABIB,
SSU72, CISDI1, SEPTIN2, PAPOLA, BIRC2, NUSAPI,
ATP6V1G1, PGTES3, RHOA, PCBP2, STK3, CCNY,
ZFP36L1, GID8, RAB7, CCZ1B, ITGB1, MTPN, CD44,
YTHDCI1, TMEM256. In addition, we can effectively ex-
tract a more significant number of possible oncogenes than
conventional methods. These genes are potential indicators
for other carcinomas, enabling more investigation into drug
repurposing for rare diseases.
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