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ABSTRACT

The objective of this study was to use network analysis to identify subtypes of relapsing-
remitting multiple sclerosis subjects based on their cumulative signs and symptoms. We
reviewed the electronic medical records of 120 subjects with relapsing-remitting multiple
sclerosis and recorded signs and symptoms. Signs and symptoms were mapped to a neuro-
ontology and then collapsed into 16 superclasses by subsumption and normalized. Bipartite
(subject-feature) and unipartite (subject-subject) network graphs were created using Gephi.
Degree and weighted degree were calculated for each node. Graphs were partitioned into
communities using the modularity score. Feature maps were used to visualize differences in
features by the community. Network analysis of the unipartite graph yielded a higher modularity
score (0.49) than the bipartite graph (0.247). Network analysis can partition multiple sclerosis
subjects into communities based on signs and symptoms. Communities of subjects with
predominant motor, sensory, pain, fatigue, cognitive, behavior, and fatigue features were found.
Larger datasets and additional partitioning algorithms are needed to confirm these results and
elucidate their clinical significance.
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INTRODUCTION

Multiple sclerosis (MS) is one of several immune-mediated demyelinating diseases of the central
nervous system that includes transverse myelitis, optic neuritis, neuromyelitis optical, acute
disseminated encephalomyelitis, and acute hemorrhagic leukoencephalopathy [1]. MS has traditionally
been divided into four phenotypes based on clinical course that include relapsing-remitting multiple
sclerosis (RRMS), primary progressive multiple sclerosis (PPMS), secondary progressive multiple
sclerosis (SPMS), and relapsing progressive multiple sclerosis (RPMS) [2]. In 2013, the criteria for MS
phenotypes were revised to delete RPMS [3, 4, 5, 6]. More recently, there has been a trend to classify
MS cases by activity (active or inactive) or by phase (relapsing or progressive) [4, 5, 7]. Furthermore,
the clinical presentation of MS may differ by race [8, 9, 10]. Studies have suggested more cognitive
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impairment [8], a higher prevalence of optico-spinal and transverse myelitis presentations, [9], and a
faster rate of brain and retinal atrophy in African American patients with MS [10].

Another potential way of subtyping neurologic diseases is by the burden of neurological signs
and symptoms. This approach has been useful in identifying subtypes of frontotemporal dementia
(behavioral and aphasic variants), multiple system atrophy (cerebellar and Parkinsonian variants),
amyotrophic lateral sclerosis (typical, primary lateral sclerosis, progressive bulbar atrophy, progressive
muscular atrophy, and other variants), and Guillain-Barre syndrome (typical, Miller-Fisher variant,
and axonal variants) [11, 12, 13, 14]. Poser [15] emphasized that MS may have a variable onset
with symptoms as diverse as optic neuritis, facial pain, hemifacial spasm, Lhermitte sign, transverse
myelitis, limb weakness, limb numbness, urinary retention, dysmetria, intention tremor, incoordination,
dysarthria, hearing loss, color blindness, gait disturbance, and diplopia. Subtypes of multiple sclerosis
based on clinical presentation (signs and symptoms) are recognized [16, 17, 18, 19]. MS patients can
present with different predominant symptoms that may emphasize tremor [20], ataxia [21], visual
symptoms [22, 23], sensory symptoms including numbness and paresthesias [24, 25, 26, 27], pyramidal
tract findings such as weakness, hyperreflexia, spasticity, and hypertonia [28, 29, 30], or spinal cord
presentations that include paraparesis, sphincter dysfunction, and sensory levels [31, 32]. Some
patients present with cognitive impairment [33, 34], dysarthria [35], dysautonomia [36], depression
and psychiatric disturbances [37], imbalance [38] or fatigue [39]. It is of interest whether identifiable
subtypes of MS based on predominant clinical presentation (sensory, cerebellar, motor, visual, cognitive,
fatigue, etc.) can be reliably identified. Clinical subtypes could differ with regard to biomarker profile,
prognosis, course, and response to treatment. The network analysis of signs and symptoms could assist
in identifying clinically significant subtypes of MS.

A network (also called a graph) is an assembly of nodes that are interconnected by edges [40]. When all
connected nodes come from the same class, the graph is called unipartite. When each node is connected
to a node of a second class, the graph is called bipartite. Networks can be created from large medical
datasets and analyzed without a priori knowledge of how the nodes connect [41]. Algorithms can
partition networks into communities of interconnected nodes (also called clusters) [42]. Barabási [43]
defines a community as “a locally dense connected subgraph in a network (page 325)” and that “...we
expect nodes that belong to a community to have a higher probability of linking to other members of that
community than to nodes that do not belong to the same community....” Many partitioning algorithms
depend upon the maximization of a metric called modularity which measures how well each community
is separated from other communities.

Network analysis has proven useful in visualizing the complex relationships between the phenotypes,
genes, proteins, and metabolic pathways that underlie human diseases (Table 1) [44, 45]. Network
analysis has been applied to identifying potential genetic causes of autism [46] as well as the clustering
of autism subjects by phenotype [47, 48]. Network analysis has been used to identify genes that
may govern MS susceptibility [49] as well as brain areas that may undergo disconnection in MS
[50, 51, 52, 53].

Proposed Approach

Our goal was to determine if clinical subtypes of RRMS based signs and symptoms could be identified.
We found 244 unique neurologic signs and symptoms in a cohort of subjects with relapsing-remitting
MS and collapsed them into sixteen superclasses. The count of signs and symptoms in each superclass
was normalized for each subject. A bipartite graph was created in Gephi, with each subject node
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Graph Domain node node edge Citation
unipartite phenotypes phenotype phenotype similarity [55]
unipartite metabolism metabolic pathway metabolic pathway interaction [56]
unipartite diseases disease disease phenotype [57]
unipartite proteins protein protein interaction [57]
bipartite proteins disease protein disease-gene [57]
bipartite heart disease heart disease disease co-morbidity [58]
unipartite autism gene gene co-expression [59]
unipartite autism gene gene co-expression [46]
bipartite autism autism disease association [60]
unipartite autism subject subject phenotype [48, 47]
unipartite brain disease brain area brain area connectivity [61]
unipartite interactome disease disease metabolism [62]
unipartite MS brain area brain area connectivity [50, 51, 52, 53]
unipartite MS gene gene susceptibility [49]
unipartite MS MS patient MS patient sign/symptom †
bipartite MS MS patient phenotype sign/symptom †
† This paper

Table 1. Some examples of the application of network analysis to problems in human disease. This list
is representative and not definitive. In general, network analysis begins with identifying nodes and edges.
When nodes are connected to nodes of the same class, the graph is unipartite. When nodes are connected
to a node of a second class, the graphs are bipartite. Edges connect the nodes.

connected to each of the sixteen superclass nodes by an edge proportional to the normalized count of
signs and symptoms. Distances between subjects were calculated by the cosine similarity of their signs
and symptoms. A unipartite graph was created in Gephi where the nodes were subjects, and the edges
were subject similarities. The unipartite and bipartite graphs were partitioned into communities based on
the Louvain algorithm [54]. We used modularity scores to evaluate the quality of the partition and heat
maps to evaluate the composition of the communities.

METHODS

Subjects

One hundred and twenty MS subjects followed at the University of Illinois-Neuroscience Center were
enrolled in the University of Illinois at Chicago (UIC) Neuroimmunology Biobank between August
2018 and March 2020 (mean age 42.7 ± 12.8 years, 73% female, 27% male, 58% Black, 42% White).
The Biobank is approved by the Institutional Review Board (IRB) of the University of Illinois College
of Medicine. All subjects provided informed written consent at enrollment. Subjects were between 18-
80 years old and had a diagnosis of RRMS based on the 2017 McDonald criteria [63]. Subjects had
been recruited for a study of blood biomarkers in MS where RRMS was an inclusion criterion, and
progressive MS was an exclusion criterion. Seven subjects with normal neurological examinations were
excluded from the analysis leaving a final study sample of 113 subjects.

Neuro-phenotyping

The neurological progress notes from the electronic health record of all subjects were reviewed, and
neurological signs and symptoms were recorded [64]. For the purposes of this study, the cumulative
signs and symptoms (both active and resolved) of each subject were recorded. Signs and symptoms were
mapped to concepts in a neuro-ontology that had 1600 possible concepts [65]. Subjects had 13.2 ∓ 9.2

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.16.22282420doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.16.22282420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Howlett-Prieto et al. Brief Research Report: Network Analysis of Multiple Sclerosis

signs and symptoms (mean ∓ standard deviation). The 113 subjects had 1453 total signs and symptoms
(244 unique signs and symptoms). We used the hierarchy of the neuro-ontology [66] to collapse by
subsumption the signs and symptoms into 16 superclasses that included behavior, cognitive, cranial
nerve, eye movement, fatigue, gait, hyperreflexia, hypertonia, incoordination, pain, sensory, speech,
sphincter, tremor, vision, and weakness Each subject was represented as a 17-dimension vector. The
first element of the vector was the case identification label, and the subsequent sixteen elements were
the count of signs and symptoms for each of the sixteen superclasses. The final dataset was a 113 x
17 element array with rows as instances (subjects) and columns as features (superclasses of signs and
symptoms). A normalized array was created by normalizing each feature over the interval [0,1] using the
continuize widget in Orange 3.32.0 [67]. For the availability of python programs and datasets, see the
Data Availability statement.

Network analysis, distance metrics, feature maps

Network analyses were performed on normalized 113 x 17 data arrays [67, 68, 69]. Bipartite networks
were visualized in Gephi 0.9.7 using a variety of layouts, with the final analysis using the Force Atlas
layout with a repulsion force of 10,000. Visual inspection showed Force Atlas to have the optimal
spacing of nodes and clarity of visualization. The bipartite network contained nodes of subjects and
features (signs and symptoms) as nodes with a magnitude of the edges connecting subjects to features
equal to the normalized feature score for each subject. In the bipartite networks, there were no direct
subject-subject or feature-feature edges. Node sizes were proportional to the average weighted degree
of each node. Communities were named based on their predominant features. Nodes were colored
by their community membership, and colors were used consistently across graphs based on feature
predominance. Edge widths were proportional to edge weight for the bipartite graphs.

The unipartite networks were based on distances between subjects derived from the feature vectors for
each subject. Distances were calculated in Orange using the distances widget for Pearson, Euclidean,
and cosine distances. Visual inspection of the network graphs showed that the cosine-based graphs were
superior to those based on the Pearson or Euclidean distances. Only the cosine distances were retained
for further analysis [70]. For the unipartite graphs, all nodes were subjects, and the edges were subject
similarity based on the cosine distances. Node size was proportional to degree (number of edges for each
node). Edge width was fixed.

Gephi was used to partition the unipartite and bipartite networks into communities based on the Louvain
algorithm [54]. The Louvain algorithm maximizes modularity (a measure of community separation).
Modularity rises from 0.0 as the number of intra-community edges increases relative to inter-community
edges. Larger values of modularity reflect a more robust separation of the communities. The degree,
average degree, and modularity class for each node were calculated by Gephi. Modularity resolution
was set to 1.0 for the normalized unipartite graph and 1.15 for the normalized bipartite graph. For
the normalized unipartite graph, two subjects were excluded from the final analysis as they formed
communities with only one node. For the normalized unipartite graph, a cosine distance threshold of 0.4
was used to exclude weak edges. Feature means for each community were calculated by SPSS 28 (IBM,
Chicago, IL). Differences between community feature means were tested by one-way ANOVA (SPSS).
Feature maps were created with the heat map widget from Orange.
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bipartite
communities

unipartite fatigue behavior hypertonia/ gait/ sensory
communities weakness sphincter
pain 0 24 6 10 21
fatigue 72 2 10 2 2
cognitive 0 0 9 9 9
sensory 0 0 2 3 56
gait/weakness/hypertonia 0 6 36 36 2

Table 2. Community concordances between bipartite and unipartite graphs as measured by Jaccard
Index. Jaccard index is shown multiplied by 100. Fatigue and sensory communities show high
concordance across graphs. The hypertonia/weakness and gait/sphincter communities from the bipartite
graph overlap with the gait/weakness/hypertonia community from the unipartite graph.

The concordance for set membership between communities was measured by the Jaccard Index [71]
where J is the Jaccard Index and A and B are the set memberships of two communities:

J =
A ∩B

A ∪B
.

RESULTS

Bipartite network analysis

The normalized feature bipartite graph was partitioned into five communities (Figure 1a) with a
modularity score of 0.247. Communities were named and color-coded by the one or two features with
highest community means: fatigue (n=23), behavior (n=10), hypertonia/weakness (n=33), gait/sphincter
(n=22), and sensory (n=25) (Figure 1b). ANOVA showed significant differences between communities
for behavior (p < .001), cranial nerve (p = .008), eye movements (p < .001), fatigue (p < .001),
gait (p = .029), hyperreflexia (p = .031), hypertonia (p < .001), incoordination (p = .002), sensory
(p = .018), sphincter (p = .021), tremor (p = .006), and weakness (p = .001).

Unipartite network analysis

The normalized features unipartite graph was partitioned into five communities (Figure 2a) with a
modularity score of 0.49. Communities were named by their predominant features: Community 1
(pain), Community 2 (fatigue), Community 3 (cognitive), Community 4 (sensory), and Community
5 (weakness/gait/hypertonia) (Figure 2b). ANOVA analysis showed significant differences between
communities for behavior (p = .033), cognitive (p < .001), eye movements (p = .047), fatigue
(p < .001), gait (p < .001), hyperreflexia (p = .014), hypertonia (p < .001), incoordination (p < .001),
pain (p < .001), sensory (p < .001), and weakness (p = .037).

Community overlap across graphs

Although partitioning of the the bipartite and unipartite graphs produced somewhat different
communities, similarities between community membership across graphs was notable. We used the
Jaccard Index (a measure of set similarity) to assess similarity between communities. Membership
for the fatigue and sensory communities was similar for the unipartite and bipartite graphs (Table 2).
The unipartite graph community gait/weakness/hypertonia showed similarity to the bipartite graph
communities hypertonia/weakness and gait/sphincter.
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DISCUSSION

Multiple sclerosis can present as sensory loss, weakness, incoordination, sphincter disturbance, diplopia,
visual loss, cognitive impairment, fatigue, or even pain. We have used network analysis to explore
whether we could identify distinct clinical subtypes of multiple sclerosis based on signs and symptoms.
We first mapped the signs and symptoms of a cohort of multiple sclerosis subjects to concepts from a
neuro-ontology. We then created a bipartite graph, where subjects and their signs and symptoms were
nodes in a graph (Figure 1a). In a bipartite graph, subjects are connected to signs and symptoms and not
to other subjects. When the signs and symptoms of a subject are converted to vectors, distances between
subjects can be calculated so that subject nodes can be connected other subjects to form a unipartite
graph (Figure 2a). Network analysis allowed us to identify communities of multiple sclerosis subjects
who shared signs and symptoms in common. Partitioning of the unipartite and bipartite graphs based
on modularity score identified communities with strong fatigue and sensory feature predominance.
Both partitions had communities characterized by weakness that was combined with hypertonia or
gait disorders. Partitioning of the bipartite graph produced a small community with behavioral changes
(depression, anxiety, etc.) and a gait/sphincter community. Partitioning of the unipartite graph produced
a small community with cognitive disorders and a medium-sized community with pain (Figure 2b.

Partitions of the unipartite graph yielded higher modularity scores than the bipartite graph, suggesting
that the partition of the unipartite graph was more robust. The partition of the unipartite graph (Figure
2a) gave the highest modularity score and showed an especially robust separation of communities. The
named communities for Figure 2b (pain, fatigue, cognitive, sensory, and gait/weakness/hypertonia)
deserve special consideration as potentially identifiable multiple sclerosis subtypes. We found a strong
overlap between the fatigue and sensory communities across both graphs (Table 2 as measured by the
Jaccard Index. Significant overlap between the gait/weakness/hypertonia community from the unipartite
graph with the gait/sphincter and hypertonia/weakness communities from the bipartite graph was noted.
Although the partitioning of networks based on features suggests that identifiable MS subtypes may
exist, variability across partitions does not permit a definitive characterization of subtypes at this time.

Although we did not correlate community features with MRI findings, the communities detected may
reflect the anatomic location of MS lesions [72, 73]. While some identified communities may correlate
with the anatomic localization of demyelinating plaques, correlations with other disease markers such as
glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) are possible.

Two strengths of this study should be mentioned. First, community detection was done by network
analysis which offers an alternative to unsupervised machine learning algorithms based on cluster
analysis. Second, we used subsumption and the hierarchical organization of signs and symptoms in
an ontology to reduce the number of features used in the analysis [66]. The current study demonstrates
that subsumption can successfully group signs and symptoms of MS subjects into superclasses. These
superclasses can be used to characterize the clinical features of communities identified by network
analysis.

The current study has several limitations. The sample size was small (N = 113). The small sample
size raises questions of selection bias which may have influenced what communities of subjects
were found by network analysis. Network analysis of larger sample sizes may detect more robust
communities with a different profile of predominant features. Another limitation was that we evaluated
only one partitioning algorithm (Louvain). Other partitioning algorithms are available and might yield
different results. We used subsumption to reduce the number of clinical features from 244 to sixteen.
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Different subsumption strategies would likely yield different results. We calculated distances between
subjects using the cosine distance metric; other distance metrics are available and may have resulted in
different results. The modularity scores of the partitions were modest (0.25 to 0.49), suggesting that the
separation between communities was modest. Another limitation was that subjects in the study were
diagnosed with the RRMS phenotype. Without further analysis, our data cannot be extrapolated to other
disease course phenotypes. Our analysis did not consider the race or sex of the subjects, which could
influence clinical subtype [8, 9, 10]. Finally, we partitioned MS subjects based on their accumulated
signs and symptoms. Examining networks based on signs and symptoms at a single point in time would
be instructive.

CONCLUSIONS

MS phenotypes based on the clinical course are well-established and broadly accepted. Clinical
subtypes of MS based on clinical presentation and clinical burden of signs and symptoms have long
been recognized. Network analysis of signs and symptoms in MS subjects offers an avenue to identify
clinical subtypes of MS. In particular, the feature maps (Figures 1b and 2b) suggest that identifiable
subtypes of MS with predominant signs and symptoms related to weakness, sensory loss, behavioral
changes, cognitive difficulties, pain, and fatigue deserve further investigation. Further investigation may
reveal epigenetic, radiological, immunologic, or protein biomarkers that correlate with these MS clinical
subtypes.
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Figure 1a. Bipartite graph of normalized features. Labeled
nodes are features; unlabeled nodes are subjects. Weighted
connections (edges) are between features and subjects.

Figure 1b. Feature map of the five communities identified by
partitioning the bipartite graph with unnormalized features.
Asterisks indicate features that differed significantly by
community (One-way ANOVA, p < 0.05, df = 4)

Figure 2. Modularity analysis of the bipartite graph of normalized data showed five communities.
Community 1 was predominantly fatigue, Community 2 was predominantly behavioral, Community
3 was weakness and hypertonia, Community 4 was gait and sphincter, and Community 5 was
predominantly sensory features.
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Figure 2a. Unipartite graph based on normalized
features. Nodes are subjects, and node size is proportional
to the number of edges. The largest communities are
gait/weakness/hypertonia (red, n=38) and fatigue (orange,
n=32). Note the small cognitive community (pink, n=3).

Figure 2b. Feature map of the five communities identified
by partitioning the unipartite network graph based on
normalized features. Asterisks indicate features that
differed significantly by community (One-way ANOVA,
p < 0.05, df = 4)
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