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Abstract  18 

Background Progression of chronic lung disease often leads to the requirement for a lung 19 

transplant (LTX). Despite improvements in short-term survival after LTX, chronic lung allograft 20 

dysfunction (CLAD) remains a critical challenge for long-term survival. This study investigates 21 

the relationship between the metabolome of bronchoalveolar lavage fluid (BALF) from subjects 22 

post-LTX with underlying lung disease and CLAD severity.  23 

Methods Untargeted LC-MS/MS metabolomics was performed on 960 BALF samples collected 24 

over 10 years from LTX recipients with alpha-1-antitrypsin disease (AATD, n=22), cystic fibrosis 25 

(CF, n=46), chronic obstructive pulmonary disease (COPD, n = 79) or pulmonary fibrosis (PF, 26 

n=47). Datasets were analyzed using machine learning and multivariate statistics for 27 

associations with underlying disease and final CLAD severity. 28 

Results. BALF metabolomes varied by underlying disease state, with AATD LT recipients being 29 

particularly distinctive (PERMANOVA, p=0.001). We also found a significant association with 30 

the final CLAD severity score (PERMANOVA, p=0.001), especially those with underlying CF. 31 

Association with CLAD severity was driven by changes in phosphoethanolamine (PE) and 32 

phosphocholine lipids that increased and decreased, respectively, and metabolites from the 33 

bacterial pathogen Pseudomonas aeruginosa. P. aeruginosa siderophores, quorum-sensing 34 
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quinolones, and phenazines were detected in BALF, and 4-hydroxy-2-heptylquinoline (HHQ) 35 

was predictive of the final CLAD stage in samples from CF patients (R=0.34; p≤0.01). 36 

Relationships between CLAD stage and P. aeruginosa metabolites were especially strong in 37 

those with CF, where 61% of subjects had at least one of these metabolites in their first BALF 38 

sample after transplant.  39 

Conclusions: BALF metabolomes after LTX are distinctive based on the underlying disease 40 

and reflect final CLAD stage. In those with more severe outcomes, there is a lipid transition from 41 

PC to predominantly PE phospholipids. The association of P. aeruginosa metabolites with 42 

CLAD stages in LTX recipients with CF indicates this bacterium and its metabolites may be 43 

drivers of allograft dysfunction.  44 

 45 

Key messages: Despite the high prevalence of CLAD among LTX recipients, its pathology is 46 

not well understood, and no single molecular indicator is known to predict disease onset. Our 47 

machine learning metabolomic-based approach allowed us to identify patterns associated with a 48 

shift in the lipid metabolism and bacterial metabolites predicting CLAD onset in CF. This study 49 

provides a better understanding about the progression of allograft dysfunction through the 50 

molecular transitions within the transplanted lung from the host and bacterial pathogens. 51 

 52 

Key words Metabolomics; cystic fibrosis; bronchioalveolar lavage fluids; chronic lung allograft 53 

dysfunction, chronic lung diseases; phosphoethanolamine; phosphocholine; quinolones, 54 

Pseudomonas aeruginosa.  55 
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Introduction 61 

Lung transplantation (LTX) is a therapeutic option for patients who develop progressive 62 

and severe chronic lung disease [1].  However, chronic lung allograft dysfunction (CLAD) 63 

remains a major barrier to long-term LTX patient survival, as it affects 50% of patients at five 64 

years post-transplantation [2,3]. Bronchiolitis obliterans syndrome (BOS), a crucial phenotypic 65 

manifestation of allograft dysfunction [4,5], is used as a scaled measure of disease progression 66 

(i.e., CLAD stage) [6]. Notoriously a heterogenous disease, BOS severity scores were recently 67 

updated in 2019 [6] to better characterize the stages of severity experienced by LTX recipients.  68 

These CLAD stages can occur post-LTX in patients with different pre-LTX lung diseases such 69 

as alpha-1-antitrypsin deficiency disease (AATD), cystic fibrosis (CF), chronic obstructive 70 

pulmonary disease (COPD), and pulmonary fibrosis (PF) [7–10].  71 

Bronchoalveolar lavage fluid (BALF) is a valuable sample type for studying pathological 72 

characteristics that develop after LTX due to the direct proximity of BALF sample origin to the 73 

site of stress and/or injury in the lung [11]. Metabolites detected within BALF can be indicative of 74 

physiological processes of disease progression, microbial lung burden, and possibly, allograft 75 

rejection [12,13]. However, there are few studies of BALF metabolomes describing the 76 

composition, microbial virulence factors, amino acids, lipids, and a myriad of pharmaceuticals 77 

[14–17].  78 

Untargeted mass spectrometry (MS)-based metabolomics allows exploration of the 79 

chemical diversity associated with a wide range of biological samples [18,19]. However, 80 

navigating the diverse chemical data generated in untargeted metabolomics studies, in which a 81 

large proportion of detectable metabolites are unknown, remains challenging [18,19]. Advances 82 

in bioinformatic analyses of MS data have enabled a more comprehensive interpretation of 83 

biological information contained within these highly technical and large datasets. For example, 84 

the Global Natural Products Social molecular networking web platform (GNPS) has simplified 85 

the exploration of the chemical space of metabolomes. GNPS is a tandem mass spectrometry 86 

(MS/MS) automated data organizational tool that enables comparisons of MS/MS fragmentation 87 

patterns among samples to cluster and visualize related molecules in a spectral network [20,21]. 88 

GNPS can be paired with metabolite feature quantification algorithms to create a 89 

comprehensive workflow for untargeted metabolomics of clinical samples [20,22]. In this study, 90 

we applied this approach to 960 BALF samples collected longitudinally from 194 LTX recipients 91 

to determine whether post-transplant BALF metabolomes reflect the underlying disease 92 

diagnosis; and whether specific molecular signatures correlate with allograft dysfunction.  93 

 94 
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Materials and Methods  95 

Study Design, Subjects, and BOS-Grading.  96 

Subjects with AATD, CF, COPD, and IPF who underwent lung transplantation at the 97 

University of Minnesota consented to have a portion of their post-LTX BALF used for research. 98 

BALF was collected over a 10-year period from 2002 to 2012 as a routine procedure per 99 

transplant protocol or if undergoing diagnostic BALF collection due to clinical indications, such 100 

as new radiographical changes, new respiratory symptoms, or a decrease in FEV1. Inclusion 101 

criteria were ≥ 18 years of age; diagnosis of AATD, CF, COPD, or PF; and receipt of a bilateral 102 

or single lung transplant. Exclusion criteria were < 18 years of age and the inability to provide 103 

consent and/or tolerate the BALF procedure. Clinical characteristics of subjects in this study, 104 

including disease progression scores and samples collected for each, are displayed in Table 1 105 

and Table S1. BOS-grade was recorded for patients based on the changes in their forced 106 

expiratory volume in one second (FEV1), initially determined using definitions of the International 107 

Society for Heart and Lung Transplantation (ISHLT) [23], and updated here to reflect current 108 

CLAD definitions [6]. The final CLAD stage was known for each patient, while some measures 109 

were determined after sample collection ceased. This protocol was approved by the University 110 

of Minnesota IRB (STUDY00004547). 111 

 112 

Bronchoalveolar lavage sampling material.  113 

Bronchoalveolar lavage fluid (BALF) was collected via orotracheal or nasotracheal 114 

bronchoscopy. Sterile saline was instilled into a subsegmental bronchus after advancement and 115 

occlusion of the airway lumen. BALF was separated into ~1.5 mL aliquots and frozen at -80 °C 116 

for further untargeted metabolomic analysis (see supplementary methods). All 960 samples 117 

were included for analysis of variation (ANOVA) among underlying disease types and 118 

associations with final CLAD stages.  119 

 120 

Organic extraction and LC-MS/MS analysis 121 

Methanolic extracts of 960 BALF samples (50:50 v/v) were analyzed on a Thermo 122 

QExactiveTM mass spectrometer coupled to a Vanquish Ultra-High-Performance Liquid 123 

Chromatography (UHPLC) system (ThermoFisher) (see supplementary methods) [21,24]. 124 

Subsequently, feature-based molecular networking (FBMN) was performed with a parent and 125 

fragment mass ion tolerance of 0.02 Da, a cosine score of 0.65, and a minimum matched peaks 126 

minimum of 4 [22]. FBMN is publicly available at 127 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=756456ac794d48b0bba80dbe28e0de66, 128 
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and raw data files are available in the MASSIVE data repository as MSV000085760.  Data 129 

curation consisted of removing metabolites detected in blanks and removal of known 130 

pharmaceuticals and their related nodes in the molecular network (see supplementary methods, 131 

Figure S1, and Table S2). Presence/absence frequency and rank abundance of all molecular 132 

features were calculated after creating a cutoff by summing the relative abundances of features 133 

above 10 x e5 abundance in samples obtained from subjects with AATD, CF, COPD, or IPF.  134 

 135 

Statistical analysis136 

Variations in metabolomic data associated with underlying disease type and the final 137 

CLAD stage for each subject were assessed using beta-diversity metrics and tested for 138 

significance with permutational multivariate analysis of variance (PERMANOVA). Metabolome 139 

variation was further assessed using random forest (RF) classification and regression analysis 140 

(numerical CLAD stages, 0 to 4). A Bray-Curtis dissimilarity matrix was calculated on the entire 141 

metabolome and used to generate principal coordinate analysis (PCoA) plots through the in-142 

house tool ClusterApp and visualized in EMPeror [25]. PERMANOVA tests were performed for 143 

diseases and CLAD stages (as a categorical variable) with subject-source as an interacting 144 

factor to account for variation in the number of samples per subject. Post-hoc tests among 145 

disease types were performed with R packages Devtools and Vegan (pairwise-adonis) [26,27]. 146 

Variable importance plots from both RF approaches were used to identify metabolites driving 147 

the variation observed. Pearson correlations were used to determine relationships between 148 

metabolite abundance and final CLAD stages, as well as the correlation of P. aeruginosa 149 

metabolites with its relative abundance determined using 16S rRNA sequence data from the 150 

same samples. 16S rRNA sequence data were generated using bacterial genomic DNA 151 

extracted from each sample, sequencing the V4 region using Illumina MiSeq TruSeq 2x300 152 

paired-end technology, and sequence analysis in R as previously described [28]. The relative 153 

abundance of P. aeruginosa was determined using DADA2 [29]. R packages random forest, 154 

vegan and ggplot2 were also used for these analyses [30–32] (see supplementary methods).  155 

 156 

Results 157 

Sample collection and clinical design. 158 

The two primary objectives for this study were: i) to determine if the metabolome of 159 

BALF collected after LTX was associated with the underlying pre-LTX lung diagnosis, and ii) if 160 

the data were associated with measures of CLAD severity across all subjects and within each 161 

underlying disease type. The dataset comprised longitudinal BALF samples (n = 960) collected 162 
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over a 10-year period from subjects (n = 194) with one of four underlying conditions prior to 163 

transplant; AATD (n = 22), CF (n = 46), COPD (n = 79), and PF (n = 47). Clinical parameters 164 

and patient demographic information are presented in Table 1. Subjects developed CLAD at 165 

different times and to varying degrees during the collection period. The final BOS-grade of all 166 

subjects was known, even when this measure was recorded after BALF collection had ceased. 167 

Thus, metabolome data variation was tested against this final BOS-grade measure. 168 

 169 

BALF metabolome variation based on the underlying lung disease type pre-transplant 170 

Since BALF samples were obtained via bronchoscopy, numerous drugs and xenobiotics 171 

were identified in the dataset. We reasoned that these molecules could confound underlying 172 

biologically significant trends, so they were removed from the metabolome data using Global 173 

Natural Product Social (GNPS) library searching and molecular networking to identify known 174 

and chemically related pharmaceuticals in the GNPS libraries. After filtering pharmaceuticals 175 

and sample contaminants (detected in controls), the entire BALF data set included 4755 176 

molecular features, of which 361 had a spectral match to known compounds in GNPS libraries 177 

[21].  178 

PCoA ordination of the entire dataset, colored by pre-transplant disease diagnosis, 179 

revealed significant differences between AATD, CF, COPD, and PF cohorts (PERMANOVA F = 180 

3.91, p = 0.001, Figure 1a). Additionally, post-hoc testing showed significant pairwise 181 

differences between diseases (Table 2), suggesting that allograft metabolomes are dependent, 182 

in part, on the underlying disease of the transplant recipient. This unique disease signature was 183 

especially marked in subjects with AATD, as evidenced by its low random forest (RF) 184 

classification error (13.3%, Table S3) and separation by PCoA clustering (Figure 1a). We then 185 

used supervised RF classification analysis to identify metabolites that most strongly 186 

distinguished BALF samples by the underlying disease. The top 10 metabolites driving 187 

differences between groups included phenylalanine, phosphocholines, and other lipids. Notably, 188 

phenylalanine was particularly abundant in subjects with underlying AATD (pairwise p-value CF 189 

p = 2.9 e-11, COPD p = 4.7 e-14, and IPF p = 3.1 e-13) (Figure 1b, Figure S2). 190 

To further understand the nature of the unique BALF metabolome in LTX recipients with 191 

AATD, we analyzed metabolite presence/absence to determine the degree of chemical sharing 192 

among underlying diseases. Although most metabolites were shared across all four diseases, 193 

AATD unexpectedly had fewer molecules shared with the other diseases (either one other, or 194 

two others, Figure 1c). Rank abundance curves of the metabolome revealed that AATD had 195 
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fewer overall metabolites, and these were less abundant than the other three disease types 196 

(Figure 1a,d).  197 

 198 

Longitudinal allograft metabolomes are associated with CLAD severity outcomes 199 

 Each subject’s final CLAD stage was then used to assess the relationship between the 200 

entire longitudinal metabolome dataset and disease severity (n = 960). PERMANOVA 201 

(categorical CLAD stage, F = 4.023, p = 0.001) and RF regression (linearized CLAD stage, 202 

variance explained = 11.08%) revealed an overall association of the final CLAD stage with 203 

collective longitudinal metabolome composition (Figure 2a). When tested separately on each 204 

pre-LTX disease diagnosis, CLAD stages maintained their categorical significance for all but IPF 205 

(Figure 2b). RF regression showed that LTX recipients with underlying CF had the strongest 206 

association of their BALF metabolome variation with numerical CLAD stages (% variance 207 

explained = 34.04), followed by COPD (14.36) and markedly less variation in IPF (4.65) and 208 

AATD (3.16) (Figure S3). These results demonstrate a significant relationship between the 209 

BALF metabolome after LTX and the final CLAD stage, which was particularly strong among 210 

individuals with CF.  211 

 212 

Altered phospholipids and P. aeruginosa-derived molecules drive association with the 213 

final CLAD stage 214 

The association between CLAD stage and longitudinal metabolome composition, 215 

particularly among CF subjects, motivated further analyses of specific metabolites that most 216 

strongly influenced trends in the dataset. Variable importance plots from the RF analysis of the 217 

entire dataset and each disease analyzed separately revealed several metabolites of interest 218 

(Figure S3, S4). Molecular networking was then used to help annotate and identify these and 219 

related molecules. With this approach, we identified four clusters (‘molecular families’) of 220 

interest, including phosphoethanolamine (molecular family I), phosphocholine (molecular 221 

families II and III), and quinolone-like-molecules (molecular family IV, Figure S5). The molecular 222 

family I included the phospholipids lysophosphoethanolamine (lysoPE) 18:0/0:0 (m/z 482.3225 223 

[M+H]+, C23H49NO7P, 3.4 ppm error) and lysoPE 18:1/0:0 (m/z 480.3073 [M+H]+, C23H47NO7P, 224 

2.40 ppm error). Molecular family II included phosphatidylcholine 16:0/14:0 (m/z 728.5183 225 

[M+Na]+, C38H76NO8P, 2.42 ppm error). Molecular family III corresponds to PC 16:0/18:0 (m/z 226 

780.5529 [M+Na]+, C42H80NO8P -2.20 ppm error). Finally, in molecular family IV, we identified 4-227 

hydroxy-2-heptylquinolone (HHQ, m/z 244.1689 [M+H]+, C16H22NO 2.8 ppm error), a 228 

Pseudomonas aeruginosa-derived quinolone and known quorum sensing metabolite that plays 229 
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an integral role in the gene expression and physiology of this opportunistic pathogen (Figures 230 

S5 and S6) [33].  231 

We then plotted the relationship between the feature abundances of each metabolite of 232 

interest with the final CLAD stages across the entire dataset. Both lysoPE(18:0/0:0) and 233 

lysoPE(18:1/0:0) significantly increased with disease progression (Pearson r = 0.23, p = 6.9e-13 234 

, and r = 0.16, p = 0.017, respectively). In contrast, phosphocholine molecules PC (16:0/14:0) 235 

and PC(16:0/18:0) decreased as final disease severity increased (Pearson r = -0.22, p = 4.4e-236 

10 and r = -0.19, p = 1.9e-08, respectively). Linear regression analysis of HHQ abundance and 237 

individual subjects’ final CLAD stage also showed a significant increase as allograft dysfunction 238 

worsened (Pearson r = 0.14, p = 0.0035) (Figure 3a).  239 

Finally, we parsed the molecular dynamics of these molecules based on the underlying 240 

disease and identified unique trends within each condition. LysoPE (18:0/0:0) significantly 241 

increased with disease progression in CF (Pearson r = 0.33, p ≤ 0.001), followed by COPD (r = 242 

0.28, p ≤ 0.001) and IPF (r = 0.14 p ≤ 0.001), but not in AATD. LysoPE (18:1/0:0) abundance 243 

was positively correlated with IPF only (Pearson r = 0.42, p ≤ 0.001).  The feature abundance of 244 

PC (16:0/14:0) significantly decreased as disease severity worsened only in CF and COPD 245 

(Pearson r = -0.41, p ≤ 0.001 and r = -0.28 p ≤ 0.001, respectively), whereas PC (16:0/18:0) 246 

significantly decreased in CF, COPD and IPF (Pearson r = -0.27, p ≤ 0.001; r = -0.24, p ≤ 0.001; 247 

and r = -0.19 p ≤ 0.001, respectively). Neither of these molecules varied with CLAD stages in 248 

AATD. In the case of HHQ, its molecular abundance significantly increased with disease 249 

progression in CF (Pearson r = 0.34, p ≤ 0.001) (Figure 3b) but not the others, indicating that 250 

the trend seen in the complete dataset was driven by the CF samples.  251 

 252 

Pseudomonas aeruginosa molecular signatures in subjects with CF after LTX 253 

 The association of HHQ with CLAD severity led to further analysis of the diversity of P. 254 

aeruginosa metabolites and their relationship with clinical outcomes, particularly in those 255 

subjects with CF. Molecular networking allowed us to identify additional molecular signatures 256 

from the pathogen, including 2-heptyl-4-quinolone-N-oxide (HQNO; m/z 260.1645 [M+H]+, 257 

C16H22NO2 ; 10.67 ppm), 2-nonyl-4-quinolone (HNQ;  m/z 270.1852 [M+H]+, C17H24NO; 7.45 258 

ppm), pyocyanin (m/z 211.0866 [M+H]+, C13H11N2O ; 5.64 ppm) and pyochelin (m/z 325.0675 259 

[M+H]+, C14H16N2O3S2; 10.46 ppm). Molecular network node mapping based on disease showed 260 

that the entire molecular family of quinolones and pyochelin were enriched in subjects with 261 

underlying CF (pie charts within nodes) (Figure 4a). We were therefore interested in determining 262 

when these molecules were detected in the longitudinal BALF samples of each subject. We 263 
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found that ~60% of samples (n = 46) from subjects with CF were positive for at least one P. 264 

aeruginosa molecule in the first BALF sample collected (Figure 4b), and the abundances were 265 

particularly high at this first-time point (Figure 4c). This proportion of positive samples stayed 266 

relatively stable, with a slight decrease in successive BALFs collected (Figure 4b). Some 267 

subjects showed acquisition of P. aeruginosa molecules as time since transplant progressed, 268 

whereas most initially had high abundances and a subsequent decrease (Figure 4c). However, 269 

a Pearson correlation between the abundance of these molecules and the time since LTX was 270 

not significant (R = 0.074; p = 0.18). The abundance of these molecules did increase (R = 0.34; 271 

p = 0.0046) with the relative abundance of Pseudomonas sp. (Figure 4d,e).   272 

 273 

Discussion 274 

In this study, we applied untargeted metabolomics to 960 BALF samples from patients 275 

who had undergone LTX for chronic lung disease. We had a particular interest in metabolite 276 

variation based on the underlying disease and the “gold standard” measure of disease severity 277 

(i.e., CLAD stage). The post-LTX metabolome data differed based on the underlying disease, 278 

with the unique profile found in AATD. Other chronic lung diseases (CF, COPD, PF) were 279 

significantly different from one another but more difficult to distinguish overall. The uniqueness 280 

of AATD was driven by differences in aromatic amino acids (phenylalanine), an overall lack of 281 

shared molecules with the other diseases, and a lower abundance of metabolite features 282 

overall. We note that all four underlying conditions have unique etiologies, and the findings here 283 

indicate that, somewhat unexpectedly, the chemical environment of the lung allograft reflects 284 

the initial disease of the recipient, particularly in the case of AATD. The high abundance of 285 

phenylalanine in allografts from subjects with AATD may reflect increased proteolysis, which is 286 

a hallmark of this disease [23], though further research is needed to confirm this hypothesis. 287 

The overall annotation rate of MS/MS spectra in our dataset was 7.6%, which is not 288 

uncommon in untargeted metabolomics studies [34]. Low levels of metabolite identification are a 289 

known challenge in metabolomics and can limit the ability to infer mechanistic associations with 290 

disease severity, although annotation rates in untargeted metabolomics experiments are 291 

increasing as new search algorithms and databases become available [22,35–37]. 292 

Nevertheless, there is considerable power in using comprehensive molecular data from 293 

untargeted metabolomics experiments to identify biological trends, even when the molecular 294 

structures are not known. An important step for this approach, which we performed here, is the 295 

removal of pharmaceuticals and xenobiotics, which can be highly abundant and overwhelm 296 

underlying biological signals. The molecular networking algorithm applied here greatly increases 297 
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the ability to ‘clean up’ the metabolome by enabling the identification and visualization of 298 

pharmaceuticals and their chemical relatives. 299 

Bronchoalveolar lavage fluids have been used recently for describing molecular changes 300 

in lipids and metabolites after LTX [16]; however, the association of these compounds with 301 

allograft dysfunction has not been addressed. One of the strongest signatures in our 302 

metabolomic data was the association of the metabolome with the final CLAD stage of each 303 

subject, and this was particularly strong for those with CF. In this case, many of the molecular 304 

features driving the association had annotations in the GNPS libraries, and they were primarily 305 

phospholipids and bacterial metabolites. A closer analysis of these molecules identified a 306 

transition in lipid species associated with an increased final CLAD stage. Subjects whose final 307 

CLAD severity was lower had more abundant phosphocholine lipids in their longitudinal BALF 308 

metabolome, while those with more severe CLAD outcomes had a higher abundance of 309 

phosphoethanolamine lipids. This phospholipid lipid transition may indicate a disruption in 310 

airway surface liquid (ASL) in the transplanted lung as the disease progresses or alterations in 311 

lipid metabolism. ASL is mainly composed of phospholipids (90%) and proteins (10%), which 312 

are products of surface and submucosal gland epithelia and resident phagocytic cells [38]. 313 

Approximately 70–80% of ASL lipids are dipalmitoyl phosphatidylcholine (DPPC) [39,40] and PE 314 

is a major phospholipid in lung surfactant. The increase in PE abundance associated with CLAD 315 

severity found here may be due to the influx of neutrophils or other inflammatory cells containing 316 

this lipid. Another potential source is allograft-colonizing microbiota, as PE lipids are known to 317 

be a component of bacterial membranes [41,42].   318 

Detection of quorum-sensing metabolites from P. aeruginosa in BALF and the 319 

association of HHQ with final CLAD severity implicates the bacterium and its metabolism in 320 

disease progression. These molecules were particularly prevalent in subjects with underlying 321 

CF, where this bacterium is a known opportunistic pathogen responsible for chronic airway 322 

infection [43–45] [43]. P. aeruginosa regulates the production of its virulence factors through its 323 

quorum sensing system, which plays an important role in CF pathogenesis. Multiple quinolones 324 

from P. aeruginosa such as HQNO, HNQ, and PQS (Pseudomonas quinolone signal), were 325 

detected in BALF, as were other two other small molecule virulence factors pyocyanin and 326 

pyochelin. Quorum sensing is mediated through N-acyl-homoserine lactones (AHLs) and alkyl 327 

quinolones (AQ) [46], the latter of which were detected in this study. The correlation between 328 

the abundance of these molecules and the final CLAD stage indicates they could potentially be 329 

explored as biomarkers of bacterial infection in CF patients post-LTX and as indicators of CLAD 330 

progression. Furthermore, they are relatively easy to detect with LC-MS/MS rapidly after sample 331 
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extraction. Finally, we note that many of these P. aeruginosa small molecules were detected in 332 

the first BALF sample after LTX. This observation supports the hypothesis that the bacterium 333 

readily re-colonizes the respiratory tract post-LTX from its reservoir in the upper airways (i.e., 334 

paranasal sinuses) [44]. Though data from this study cannot directly assess this infection 335 

reservoir, the detection of quinolones in BALF so early after LTX is an important finding for 336 

understanding the pathogenesis of CLAD. 337 

  338 

Conclusions 339 

The BALF metabolome after lung transplant revealed differences based on underlying lung 340 

disease type and association with final CLAD severity. An important metabolic trend was a shift 341 

in the relative abundance of phosphocholine and phosphoethanolamine lipids that were 342 

predictive of a subject’s final CLAD stages with CF. These findings indicate potential predictive 343 

value for the lipid profile as an indicator of disrupted airway surface liquid and impending CLAD 344 

severity. Importantly, our LC-MS/MS approach readily detected virulence metabolites from the 345 

bacterial pathogen P. aeruginosa, especially in CF samples, which were associated with poor 346 

CLAD outcomes. This study provides a picture of the molecular transitions within the 347 

transplanted lung from the host and bacterial pathogens that may help understand the 348 

progression of allograft dysfunction and merits further study with more targeted approaches for 349 

the molecules identified.  350 
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Clinical parameters AATD CF COPF IPF 

Number of subjects 22 46 79 47 

Sex ratio (F/M) 0.69 (9/13) 1.20 (25/21) 1.20 (43/36) 0.42 (14/33) 

Average of age at LTX 

(range) 
55 (42 – 55) 36 (20 – 54) 59 (44 – 74) 58 (39 – 68) 

Average of last recorded 

FEV1 (range) 
64 (18 - 96) 69 (17 – 100) 65 (23 – 100) 68 (26 – 99) 

Average of last recorded 

CLAD stage (0 to 4) 
1.57 1.35 1.62 1.36 

Number of subjects with P. 

aeruginosa (%) 
11 (50%) 32 (70%) 7 (5%) 4 (9%) 

BALF samples 130 185 362 283 

BALF average/subject 

(range) 
5.01 (2-12) 4.02 (1-9) 4.58 (2-9) 6.02 (3-10) 

Average of sample collection 

(years) 
2.93 3.33 3.64 4.05 

 367 

Table 1. Clinical characteristics of subjects (total n=194) and samples (total n=960) collected 368 

post-LTX grouped by prior underlying disease – alpha-1 anti-trypsin deficiency (AATD), cystic 369 

fibrosis (CF), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis 370 

(IPF). BALF sampling information, microbiology associated with Pseudomonas aeruginosa, age 371 

at transplant (LTX), sex ratio (female/male). The averages of the last recorded forced expiratory 372 

volume per 1 second expressed as a percent of predicted (%FEV1) and the CLAD stage are 373 

displayed based on pre-transplant diagnoses. 374 

 375 

 376 

 377 
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Pairwise Comparisons F-value p-value 

COPD and IPF 26.5689 0.001 

COPD and CF  2.1869 0.002 

COPD and IPF  1.7698 0.017 

AATD and CF  21.2079 0.001 

AATD and IPF 28.6926 0.001 

CF and IPF 3.1142 0.001 

Table 2 Post-hoc pairwise comparisons of BALF metabolome among different diseases (AATD, 378 

CF, COPD, and IPF).  379 

  380 
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 381 

 382 

Figure 1. Lung allograft metabolomic profiles vary by pre-LTX condition. a) PCoA plot of a 383 

Bray-Curtis distance matrix of lung allograft BALF metabolomic profiles. Samples colored by 384 

pre-LTX disease and demonstrate significant differences among disease types (PERMANOVA, 385 

F=3.91, p = 0.001, random forest out-of-bag (OOB) error = 41.03%). b) Feature abundance of 386 

DL-Phenylalanine by disease state. Kruskal-Wallis test and post-hoc Dunn test p-values are 387 

shown. c) Uniqueness and sharing of BALF metabolites across diseases. Molecule presence or 388 

absence was determined and plotted by the number of molecules that are unique, shared with 389 

one other, two others, or all four diseases. d) Ranking molecular abundance curves of BALF 390 

metabolome colored by disease. 391 

  392 
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 393 

Figure 2. Principal coordinate analysis plots of Bray-Curtis distance matrices calculated for 394 

BALF metabolome based on CLAD stage measurements: Statistics from the categorical 395 

PERMANOVA testing (F and p-value) and linear variation based on the RF analysis (%Var) are 396 

shown for each plot. a) PCoA plot of the entire BALF metabolome colored by the final CLAD 397 

stages. b) PCoA plots of the entire BALF metabolomic data separated by disease type colored 398 

by the final CLAD stages. 399 
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 400 

Figure 3 a) Scatter plots and linear regression analysis of feature abundances of target 401 

molecules lysoPE (18:0/0:0), lysoPE (18:1/0:0), PC (16:0/14:0), PC( 16:0/18:0), and HHQ for all 402 

diseases against the final BOS-grade. Statistics of the linear regression are shown on the plots. 403 

b) Box plots of feature abundances of each molecule with final CLAD stages separated by 404 

individual diseases (AATD, CF, COPD, IPF). Pearson correlation test (R) is displayed, and *** = 405 

p values ≤ 0.001. 406 
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 408 

Figure 4. Pseudomonas-derived molecules in subjects that underwent lung transplant due to CF 409 

disease. A) Molecular networks of microbial molecules produced by Pseudomonas sp. that were 410 

identified by GNPS library searching. Each node represents a unique MS/MS spectrum 411 

(putative molecule), and connections between nodes are determined by spectral similarity 412 
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(cosine score) from MS/MS alignment. Pie charts represent total feature abundance colored by 413 

the underlying disease. B) Percentage of samples that displayed Pseudomonas-like molecules 414 

in subjects with CF across longitudinal BALF sampling time points and C) dynamics among 415 

subjects over time. D) Linear correlation plot displaying the abundance of selected 416 

Pseudomonas molecules post-LTX and E) its relation to Pseudomonas spp. relative abundance 417 

in samples.  418 

  419 
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Color information in sub-networks
Pie chart colors represents feature abundance based on diseases
  
Annotated by GNPS:     Edge width represent spectral similarity between nodes (cosine score)  0.70 - 1.00                      
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R = 0.074, p = 0.18

HQNO: 2-heptyl-4-quinolone-N-oxide 
HNQ: 2-nonyl-4-quinolone  
HHQ: 4-hydroxy-2-heptylquinolone  

Quinolones nomenclature
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