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Abstract Models of infectious disease transmission have shown the importance of8

heterogeneous contact networks for epidemiology; the most connected individuals are most9

likely to be infected early. Yet it is cumbersome to parameterize and incorporate such networks10

into simple models. We introduce an alternative model framework that explicitly includes11

attendance at and disease transmission within gatherings of different sizes, which disaggregates12

sequential epidemics moving from the most to least social subpopulations that underly the13

overall, single-peaked infection curve. This can systematically bias initial estimates of the growth14

rate for emerging variants and their severity, if vulnerable populations avoid large gatherings.15

Finally, we show that how often similarly social individuals preferentially interact (i.e., homophily,16

or assortative mixing) tunes the magnitude and duration of these biases. Together, we provide a17

simple framework for incorporating socialization and behavior in epidemic models, which can18

help contextualize surveillance of emerging infectious agents.19

20

Introduction21

Directly transmitted infectious agents rely on the behavior of their hosts to start new infections and22

maintain themselves – specifically the contacts that their hostsmake alongwhich transmissionmay23

then occur. The contact networks that link individuals in a population are hence the routes along24

which communicable diseases spread, and considerable effort has been made to understand the25

nature of these networks and the implications for control of infectious agents (Bansal et al., 2010).26

The numbers of contacts individualsmake can vary greatly, just as the nature of contacts can differ;27

some may be merely fleeting opportunities for a pathogen to initiate infection while others are28

sustained exposures to a large inoculum. Such heterogeneity in secondary contact rates appears29

to be commonacross epidemics, given over-dispersion of empirically observed secondary infection30

distributions, meaning that few individuals disproportionately contribute more towards ongoing31

transmission (May and Anderson, 1987; Woolhouse et al., 1997; Lloyd-Smith et al., 2005; Stein,32

2011). While some of this may be due to infections with unusual properties, those infectious must33

still make contacts in order to transmit to them (Quinn et al., 2000; Fraser et al., 2007; Matthews34

et al., 2005; Lawley et al., 2008; Gopinath et al., 2012; Edwards et al., 2021).35

Another feature that contact networks exhibit is assortativity: the tendency for contacts to be36

made between nodes with similar properties (Newman, 2002). In social networks this is termed37

homophily, and in the case of communicable disease the consequence is that most transmission38

events take place among groups of similar individuals, which can be explicitly incorporated with39

a contact matrix (e.g., for age-structured models) (McPherson et al., 2001; Rohani et al., 2010).40

1 of 18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2022.11.15.22282366doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

bradfordptaylor@gmail.com
https://doi.org/10.1101/2022.11.15.22282366
http://creativecommons.org/licenses/by-nc-nd/4.0/


Varying contact networks can be incorporated into dynamical models of transmission and have41

produced insights into subjects such as the optimal allocation of vaccines (those which prevent42

transmission are more effective when used in those with the most contacts) or the importance of43

core groups in maintaining sexually transmitted infections and as a focus of interventions (Stigum44

et al., 1994; Endo et al., 2022).45

A special case of assortativity and homophily is when individuals share increased risks of expo-46

sure, and increased numbers of contacts – for example through gathering in groups of larger size.47

Larger gatherings both increase the chance that an infectious person attends, and the numbers to48

whom they may transmit (Altizer et al., 2003; Godfrey et al., 2009; Chande et al., 2020). The result-49

ing variations in risk of exposure may result from voluntary social interactions (and contact rates50

tend to be higher in younger people), but can also include sexual networks in which the majority51

of at-risk contacts occur between a small proportion of the population, or crowded settings such52

as workplaces in which employees are unable to mitigate their own risks of exposure (e.g., meat-53

packing plants in the early stages of the covid pandemic are a well-known case of workplaces in54

which large outbreaks occurred) (Yorke et al., 1978; Volz and Meyers, 2007; Taylor et al., 2020). In55

the context of an emerging pathogen or variant such transmission heterogeneity and homophily56

mean that any estimates from local surveillance efforts may not reflect the epidemic potential in57

other communities. The social context of disease spread can produce biases in surveillance given58

differences in resources between settings.59

Mathematical models may be used to project the expected consequences of outbreaks. For ex-60

ample, in the classic SIR model for a directly transmitted pathogen the basic reproduction number61

𝑅0, determines the final size of the epidemic, but the model makes well known unrealistic assump-62

tions about mixing patterns and must be extended to account for heterogeneity and homophily63

(Kermack and McKendrick, 1927; Hébert-Dufresne et al., 2020). Network models haven proven64

informative means to interrogate the effect of social structure on epidemic spread, yet by their65

nature they are demanding to parameterize (Keeling and Eames, 2005; Keeling, 2005). Nonethe-66

less, capturing these heterogeneous contacts is necessary to contextualize the rapid growth of an67

epidemic as a result of the social context where the outbreak arises, rather than specific proper-68

ties of the pathogen. This sort of "founder effect" is familiar in population genetics, but less so in69

epidemiology (Mayr, 1942; Templeton, 2008).70

Here we present a simple extension of the classic SIR framework that specifically includes gath-71

ering sizes and homophily among individuals on the basis of the risk of infection. The resulting72

case curves are related to the gathering sizes and enable us to quantify how incorporating social-73

ization alters our expectations for early spread of emerging viruses and variants and how this is74

reflected in seroprevalence and genomic surveillance.75

Results76

Transmission at gatherings: Group-SIR model77

We propose modifying SIR models to account for varying contact rates and risk by explicitly model-78

ing gathering dynamics using sampling processes. For any SIR-like model there are two key events,79

transmission and recovery, yielding infection dynamics:80

𝑑𝐼
𝑑𝑡

=

transmission
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐵(𝑆, 𝐼, 𝑅) −

recovery
⏞⏞⏞
𝛾𝐼

We focus on how gathering dynamics alter transmission, 𝐵(𝑆, 𝐼, 𝑅) and ignore the effects of differ-81

ent recovery rates by normalizing time by themean infectious period, 1
𝛾
. The rate gatherings occur,82

𝑟gather, along with the size of the gatherings determine the social component of transmission that is83

controllable by non-pharmaceutical interventions. At a gathering, transmission can occur between84

each pair of the 𝑛 attendees who were randomly sampled from the overall population. Figure 1a il-85

lustrates this sampling process for the classic SIRmodel where n=2 and Figure 1b illustrates this for86
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Figure 1. Schematic of sampling processes leading to different epidemic models described. A) The classic SIR
model arises from sampling 2 individuals from a population of susceptible (black), infectious (red), and
recovered (blue) individuals. B) Sampling 𝑛 individuals yields a generalization of the SIR model, the group-SIR.
Infections occur independently between each S-I pair present in a congregation. C) Denoting individuals by
the maximum congregation size they are willing to attending yields the risk-SIR model. Societies can be
defined by a distribution of congregation sizes which determine the epidemiological dynamics (Boyer et al.,
2022).

the generalized “group-SIR" model. The expected number of infections at a gathering determines87

the overall transmission rate:88

𝐵group(𝑛, 𝑆, 𝐼, 𝑅) = 𝑟gatherE[Δ𝐼] = 𝑟gather
∑

{𝑠,𝑖,𝑟}
𝑠Pgroup(𝑠, 𝑖, 𝑟|𝑆, 𝐼, 𝑅)Pinfect(𝑖)

with probabilities89

Pinfect(𝑖) = 1 − (1 − 𝑝𝛽)𝑖,

Pgroup(𝑠, 𝑖, 𝑟|𝑆, 𝐼, 𝑅) =
𝑛!

𝑠!𝑖!𝑟!

( 𝑆
𝑁

)𝑠 ( 𝐼
𝑁

)𝑖 ( 𝑅
𝑁

)𝑟

where lower-case 𝑠, 𝑖, and 𝑟 denote the integer number of sampled susceptible, infectious, and90

recovered individuals attending the gathering and uppercase 𝑆, 𝐼 , 𝑅 denote the population-level91

densities such that 𝑆 + 𝐼 + 𝑅 = 𝑁 . To average, we sum over all possible combinations of 𝑛 SIR92

attendees sampled from the population densities according to a multinomial distribution, Pgroup.93

A susceptible is infected at the gathering with probability,Pinfect whenever any attending infectious94

individual transmits according to a pairwise probability of infection, 𝑝𝛽 . The dynamics simplify to95

a classic SIR model when gatherings are restricted to pairs, n=2, whereas the transmission term96

becomes increasingly nonlinear for larger gatherings (see Appendix for details).97

Increasing gathering sizes leads to sharper epidemics for otherwise fixed parameter values98

(Figure 2a). This is expected since increasing group sizes implicitly increases the total number of99

contacts relative to the recovery rate, i.e., increasing the basic reproduction number, 𝑅0. Rescaling100

the transmission rate by the total number of pairwise interactions at a gathering,
(𝑛
2

)

, collapses the101

group-SIR dynamics onto each other (Figure 2a inset). There are fewer cases at the epidemic peak102

for larger gatherings as a result of multiple infectious individuals infecting the same susceptible,103

effectively reducing the number of pairwise interactions. In short, congregating in larger groups104

increases the rate of epidemic spread, but has minor impact on the dynamics when correcting for105

the number of interactions except by reducing the cumulative number of infections, in line with106

prior observations (Volz et al., 2011).107
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Figure 2. Generalized SIR dynamics. A) Group-SIR dynamics, where transmission occurs within groups with
sizes here denoted by the subscript. B) Risk-SIR dynamics, where transmission occurs within groups
according to a distribution here set with sizes n=2,3, and 4 at equal frequency. Subpopulations are denoted
by their risk level shown, which specifies the maximum gathering size they are willing to attend. C) The
sequential peaks of infection cause the overall infection fatality ratio (IFR) to be dynamic when it varies
between subpopulations. Here we compare IFR dynamics when the IFR is positively correlated with risk level
(IFR high risk) and when the IFR is negatively correlated with risk level (IFR low risk). Note, we assume that
mortality dynamics are the same as recovery dynamics to demonstrate this qualitative point.
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Gathering size dependent attendance: Risk-SIR model108

During infectious disease outbreaks individuals may vary in how much they alter their behavior in109

response to perceived risk (Perra et al., 2011; Eksin et al., 2017; Arthur et al., 2021; Harris et al.,110

2023). To capture this we can further generalize the group-SIR dynamics where individuals choose111

among differently sized, concurrent gatherings and avoid those larger than their "risk level":112

𝑑𝐼𝑘
𝑑𝑡

= 𝐵risk(𝑘) − 𝛾𝐼𝑘

where risk levels are denoted by subscripts. Transmission follows from repeatedly sampling from113

the population for a given distribution of differently sized gatherings, P𝑛:114

𝐵risk(𝑘) = 𝑟gather
𝑘
∑

𝑛=2
P𝑛𝐵group(𝑛;𝑆𝑘,

∑

𝑚≥𝑛
𝐼𝑚,−𝑆𝑘 +

∑

𝑚≥𝑛

(

𝑅𝑚 + 𝑆𝑚
)

)

Each transmission term captures new infections within a particular focal subpopulation of indi-115

viduals with the same risk level, 𝑘, such that only the respective susceptibles, 𝑆𝑘, contribute. These116

focal susceptibles can be infectedwhen attending any gathering no larger than their risk level, 𝑛 ≤ 𝑘,117

by any attending infectious individual with risk levels at least as large as the respective gathering118

size,𝑚 ≥ 𝑛. In contrast, infections among susceptibles fromother subpopulations donot contribute119

to new focal infections and thus they function similarly to the recovered population. Overall, the120

transmission term is a weighted average over all gathering sizes according to a distribution, 𝑃𝑛,121

set by society (e.g., by lockdowns) (Boyer et al., 2022). The risk-SIR model includes transmission122

heterogeneity as subpopulations with higher risk level attend a larger fraction of gatherings, ho-123

mophily as subpopulations with higher risk levels preferentially interact at larger gatherings, and124

super-spreading as multiple infections can occur at large gatherings.125

The risk-SIR yields single-peaked epidemics like the classical SIR, but with underlying sequen-126

tial peaks among decreasing risk level subpopulations (Figure 2b). Differences in growth rates127

cause these different peaks, namely that susceptibles in higher risk subpopulations attend larger128

gatherings on top of attending the same gatherings at the same rate as those in lower risk subpop-129

ulations. Similarly, infections in higher risk level subpopulations lead tomore secondary infections.130

The basic reproduction number of an infectious individual with a specified risk level, 𝑘, follows a131

recurrence relation:132

𝑅0(𝑘) = 𝑅0(𝑘 − 1) +
𝑟gather
𝛾

P𝑘𝑝𝛽(𝑘 − 1)

(

1 −
(

1 − 1
∑

𝑚≥𝑘 𝑁𝑚

)𝑘
)

≈ 𝑅0(𝑘 − 1) +
𝑟gather
𝛾

P𝑘𝑝𝛽
𝑘(𝑘 − 1)
∑

𝑚≥𝑘 𝑁𝑚

such that a disproportionate number of secondary infections occur at larger gatherings as enu-133

merated by 𝑘 (see Appendix for derivation). The largest fraction of the secondary infections occur134

within the same risk subpopulation or in larger risk subpopulations as these susceptibles can at-135

tend all the same gathering as those infectious, whereas susceptibles in smaller risk subpopulation136

do not attend the larger gatherings. Together, these dynamics cause the initial growth of the epi-137

demic to be driven by the largest risk subpopulations, in line with prior work (May and Anderson,138

1987).139

Impact on Surveillance140

The sequential epidemic peakswithin risk subpopulations havemultiple impacts for disease surveil-141

lance. First, the cases initially accumulate within subpopulations at most risk, highlighting the im-142

portance of caution when interpreting and designing serosurveys to account for differential risk143

of exposure. Any underlying surveillance metrics that vary between subpopulations will now be144

dynamic. For example, we use infection fatality rates (IFR) to predict the threat of an emerging out-145

break. If virulence depends on comorbidities that vary in frequency between each subpopulation146
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then the IFR will change over the successive peaks of the underlying outbreaks in different sub-147

populations. Figure 2c illustrates IFR dynamics for two general cases. First, when individuals with148

comorbidities choose to avoid larger gatherings, i.e., subpopulation IFR negatively correlates with149

risk level (IFR low risk), then the IFR increases over time because at risk populations are infected rel-150

atively more frequently at later times. This would also reduce case ascertainment at the outset of151

an epidemic, potentially biasing for lower estimates of𝑅0. Conversely, if individuals with comorbidi-152

ties attend larger gatherings, i.e., subpopulation IFR positively correlates with risk level, then the153

IFR decreases over time (IFR high risk). This latter example is particular relevant for essential work-154

ers during lockdowns and communicable childhood diseases within school settings. IFR dynamics155

emphasize the danger in reporting aggregate statistics without accounting for disproportionate156

disease spread among subpopulations, such as when tracking emerging variants.157

An epidemic grows at a rate determined by the socialization of all infectious individuals, i.e.,158

it’s risk distribution. Meanwhile, a variant emerges within a subset of these infectious individu-159

als. Thus, even a neutral variant with no increased transmissibility relative to the background it160

emerges in is expected to increase in frequency if it is transmitted by individuals more social than161

average across the epidemic. Figure 3a shows the risk distribution of an epidemic and aneutral vari-162

ant emerging within themost social subpopulation at a given time. The resulting variant frequency163

dynamics, shown in Figure 3b, mimic logistic growth–approaching an equilibrium frequency prior164

to sweeping. This dynamic emphasizes the role that social context plays in determining the ob-165

served growth rate of a variant. For example, a variant of concern with increased transmissibility166

relative to wild type will ultimately grow in frequency, but if it emerges within a less social subpop-167

ulation then the observed increase in frequency will be delayed (figure 3c) increasing its chance168

to stochastically become extinct. The same plot with a logarithmic y-axis shows a clear decreases169

in frequency of the more transmissible variants that emerge in less social subpopulations, which170

increases the chance for stochastic extinction (See Appendix figure 1).171

Since both increased transmissibility and increased contact opportunities contribute to the ap-172

parent fitness of a variant, identifying fast growing lineages during genomic surveillance imposes a173

selection bias towards identifying lineages preferentially spreading amongmore social individuals.174

To see this, we simulated the individual transmission and recovery events of a risk-SIR model us-175

ing the Gillespie algorithm and tracked all possible lineages (Gillespie, 1977). Figure 4a shows the176

frequency dynamics of the fastest growing lineage (having reached a given size at a given time - dot-177

ted vertical line). This lineage is neutral but appears to be growing more rapidly than its peers, and178

continues to increase in frequency after identification. This occurs because the risk distribution of179

the variant at the point of sampling, shown in Figure 4a (inset), contains relatively more social indi-180

viduals relative to the rest of the epidemic and, in turn, an expected increase in frequency relative181

to the epidemic. Note, here and throughout we follow common usage by epidemiologists to refer182

to pathogen clades as lineages, i.e., all ancestors of a focal case.183

Whether identifying fastest growing lineage biases for those with spreading among more risky184

subpopulations depends on censusing parameters. This dependence arises because selecting185

fast-growing lineages biases the risk distributions by two opposing processes. On one hand fast-186

growing lineages aremore likely to spread among the riskiest subpopulations because they attend187

more and larger gatherings and subsequently more frequent secondary infections. On the other188

hand, the fastest growing lineages preferentially include recent infections, which bias towards less189

risky populations given the sequential spread of the epidemic frommore risky to less risky subpop-190

ulations over time. Figure 4b shows the the median risk distribution bias for different censusing191

parameters across 250 repeated simulations of an epidemic spreading within a society with high192

variance in gathering rates (see caption). The x-axis specifies theminimum frequencywithin a 100%193

bandwidth that the fastest growing lineage will be tracked, e.g., 0.01 refers to the fastest growing194

lineage among those between .01 and .02 frequency. Fast growing lineages tend to have biased195

risk distribution particularly early on during epidemics, in line with greater stochastic deviations196

of smaller lineages for a given frequency. Figure 4c shows whether the identified lineages tend to197
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Figure 3. Variant frequency dynamics depend on which risk subpopulation it emerges within. A) Risk
distribution of an epidemic (red) and a neutral variant (blue) that emerges within the highest risk
subpopulation. B) The associated frequency dynamics of the emerging neutral variant. C) Frequency
dynamics of a variant with 50% greater transmissibility relative to the background epidemic emerging in
different risk subpopulations

grow over time due to the bias for different censusing parameters. We see that the long-term ef-198

fect of the bias is larger formoderate frequencies (.04 vs .01), due to the fact that larger lineages for199

a given frequency take longer to deterministically relax their risk distribution to that of the entire200

epidemic. Note, given the impact of this bias is larger for moderately sized fast-growing lineages201

means we are susceptible to identifying these lineages during surveillance. For example, the CDC202

tracks lineages > .01 frequency. Our above results suggest these lineages are susceptible to being203

misidentified as having increased transmissibility and that their continued transient increase in fre-204

quency following censusingwould incorrectly solidify these concerns. By understanding how social205

structure modulates these biases, we can better establish from which communities we expect to206

identify these spurious variants of concern.207

Society modulated surveillance bias208

Who interacts with whom in a society affects the magnitude of the above identified surveillance bi-209

ases. For example, the amount of homophily, i.e., assortative mixing, within a community sets the210

time scale over which such lineages will continue to spuriously increase in frequency. Intuitively,211

homophily increases the probability a skewed risk distribution remains skewed as onward infec-212

tions primarily occur within riskier subpopulation. As the risk-SIRmodel has a fixed social structure213

and homophily, we can better understand the relationship between homophily and skewed risk214

distribution retention by analyzing a simplified SIR type model that disentangles transmission het-215

erogeneity and homophily:216

𝑑𝐼𝐻
𝑑𝑡

= 𝑆𝐻 (𝛽𝐻𝐻𝐼𝐻 + 𝛽𝐻𝐿𝐼𝐿) − 𝛾𝐼𝐻
𝑑𝐼𝐿
𝑑𝑡

= 𝑆𝐻 (𝛽𝐻𝐿𝐼𝐻 + 𝛽𝐿𝐿𝐼𝐿) − 𝛾𝐼𝐿
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Figure 4. Selection bias of fast growing clades a) An example of a fast growing clade that continues to grow
beyond the point it was identified (blue vertical line) and its risk distribution among infectious individuals as
compared to all others infectious at the moment of censusing (inset). b) Median difference between the
median of the fastest growing risk distribution and the risk distribution of the rest of the epidemic for given
censusing frequency within a 100% bandwidth for epidemics with subpopulations [5000, 0, 5000, 0, 5000] for
risk numbers 2-6. c) Relative frequency dynamics of the fastest growing lineages following censusing across
different censusing parameters for epidemics with subpopulations [5000, 0, 5000, 0, 5000] for risk numbers 2-6.
Red lines denote median and interquartile ranges across 250 simulations shown in transparent black lines.
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where 𝐻 denotes highly social individuals and 𝐿 denotes less social individuals. This is a min-217

imal model including transmission heterogeneity when the subpopulations differ in their basic218

reproduction number, i.e., 𝑅0,𝐻 = 𝛽𝐻𝐻𝑆𝐻+𝛽𝐿𝐻𝑆𝐿
𝛾

> 𝛽𝐿𝐿𝑆𝐿+𝛽𝐿𝐻𝑆𝐻
𝛾

= 𝑅0,𝐿, while smaller values of cross-219

transmission, 𝛽𝐻𝐿, correspond to societies with greater homophily. For this model, the risk dis-220

tribution simplifies to the relative fraction of the more social subpopulation 𝑓𝐻 = 𝐼𝐻
𝐼𝐻+𝐼𝐿

. We can221

solve for the equilibrium risk distribution, 𝑓 ∗
𝐻 , early on in an epidemic during exponential growth222

by fixing the susceptibles (𝑆𝐻 and 𝑆𝐿) to constants and solving the respective dynamics, 𝑑𝑓𝐻
𝑑𝑡

= 0.223

The equilibrium risk distribution depends on the structure of society, with increasing homophily224

reflected as a higher proportion of highly social individuals (see Appendix figure 2).225

Randomness in individual transmission and recovery events (i.e., demographic stochasticity)226

causes the risk distribution to drift, even when at equilibrium. We can solve for the dynamics of227

the probability distribution over risk distributions as induced by demographic stochasticity via a228

so-called “master equation" parametrized by the average rates of the individual events (van Kam-229

pen, 2007). Figure 5a shows probability distributions after 500 population changes (transmission230

or recovery) for epidemics varying in homophily and initiated with 20 infectious individuals dis-231

tributed according to their respective equilibrium risk distribution. Note, we vary homophily alone232

and keep the same levels of transmission heterogeneity across models by fixing the subpopula-233

tion basic reproduction numbers, 𝑅0,𝐻 and 𝑅0,𝐿. Demographic stochasticity induces a spread that234

eventually dissipates over time (see Appeneix figure 3). This means emerging variants are likely235

to deviate further from the equilibrium growth rate than the rest of the epidemic. This motivates236

quantifying how often a variant will grow faster versus slower than the equilibrium growth rate,237

𝜌 = P(𝑓𝐻>𝑓∗
𝐻 )

P(𝑓𝐻>𝑓∗
𝐻 )+P(𝑓𝐻<𝑓∗

𝐻 )
. Figure 5b compares the relative probability of increased sociality, 𝜌, dynam-238

ics after initiating infectious populations at their respective equilibrium value, 𝑓 ∗
𝐻 , for different239

amounts of homophily. Emerging variants in societies with increased homophily have larger bias240

towards increased growth rates relative to the overall epidemic. Figure 5c shows the bias in risk241

distribution for epidemics initiating either in the more social (𝐼𝐻 , dashed lines) or the less social242

(𝐼𝐿, solid lines) subpopulations. The subpopulation in which a variant emerges sets an initial risk243

distribution bias and societies with increased homophily retain this bias longer. However, the risk244

distribution bias ultimately approaches the same biased quasi-equilibrium value as seen above245

when started at the equilibrium.246

Preferential stochastic extinction of slower growing epidemics exacerbates the growth bias in-247

duced by homophily. An epidemic goes stochastically extinct when its last remaining infectious indi-248

vidual recovers prior to onwards transmission. Intuitively, epidemics are more likely to go stochas-249

tically extinct when the last remaining infectious individual is among a less social subpopulation.250

This further increases the growth bias beyond that induced by homophily alone (see Appendix251

Figure 4). Hence, we expect emerging variants to increase in frequency by preferentially spread-252

ing among more social individuals, particularly when they emerge in societies with high levels of253

homophily.254

Discussion255

The dynamics of communicable diseases are intimately linked to the contacts that are made be-256

tween their hosts (Buckee et al., 2021). These are the opportunities to transmit and initiate new257

infections, and must be accounted for if we wish to interpret recent data during the course of an258

outbreak or forecast its course. Here we have presented a simple and flexible means to incor-259

porate network structure implicitly into the classic SIR-framework and relate it to varying risks of260

exposure. By allowing interactions within groups of size > 2, representing varying risk-groups as261

a result of choice or necessity, the dynamics can no longer be described simply as the product of262

the proportions of the population that are susceptible or infectious, allowing us to examine the263

dynamics in separate risk groups and the impact on individual chains of transmission within them.264

Prior studies on how contact heterogeneity impacts disease spread has been a major contrib-265
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Figure 5. Homophily biases risk distributions a) Smoothed probability distributions of the risk distribution of
epidemics initiated with 20 individuals at the respective equilibrium distribution after 500 population changes
(total recovery or transmission events). Vertical dashed lines specify respective equilibrium risk distributions.
B) Relative probability of a more social risk distribution (𝑓𝐻 > 𝑓 ∗

𝐻 ) than a less social risk distribution (𝑓𝐻 < 𝑓 ∗
𝐻 )

for epidemics initiated with 20 infectious individuals distributed according to the equilibrium risk distribution
(𝑓 ∗

𝐻 ) denoted as homophily. C) Relative probability of a more social risk distribution (𝑓𝐻 > 𝑓 ∗
𝐻 ) than a less

social risk distribution (𝑓𝐻 < 𝑓 ∗
𝐻 ) for epidemics initiated with 1 infectious individuals either in the more social

subpopulation (dashed lines) or the less social subpopulation (solid lines).

10 of 18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2022.11.15.22282366doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.15.22282366
http://creativecommons.org/licenses/by-nc-nd/4.0/


utor to the epidemiology of HIV-1 among at-risk populations, and more recently Mpox transmis-266

sion along dense contact networks among men who have sex with men (May and Anderson, 1987;267

Endo et al., 2022). This includes sequential spread to populations with low contact rates from ‘core268

groups’ characterized by higher numbers of contacts (Yorke et al., 1978; Colgate et al., 1989). Our269

work explicitly includes gatherings as a mechanism for the separation of and homophily between270

high and low contact subpopulations. This context is more relevant for pathogens with shorter271

latency time than HIV including respiratory viruses like SARS-CoV-2 in which super-spreading (i.e.,272

overdispersed transmission) plays a large role in the observed dynamics – especially at the out-273

set as the pathogen is introduced and becomes established. By emphasizing the importance of274

gatherings as the locus of spread, our model is aligned with interventions that utilize retrospective275

contact tracing to enable epidemiologists to monitor key locations where transmission occurs and276

link these data to population-level predictions (Boyer et al., 2022).277

In an unmitigated outbreak, the only factor reducing the rate of new infections is convalescent278

immunity, and it has been recognized for some time that variable contact rates can have a large279

impact on the point at which this begins to take effect (Hébert-Dufresne et al., 2020). This is im-280

portant for vaccination strategies aimed at those most likely to become infected and transmit, as281

it can markedly reduce the ‘herd immunity threshold’ necessary to achieve control and prevent282

large outbreaks (Woolhouse et al., 1997). Our model readily captures this and shows moreover283

that a single outbreak is itself made up of multiple ones with different dynamics in distinct but284

overlapping networks with distinct but overlapping epidemic curves. Those with themost contacts285

are rapidly infected, leading to the counterintuitive result that those whomake the fewest contacts286

and/or have the fewest risks of exposure are more likely to be infected at times when the force287

of infection is lower, particularly late in the epidemic. This finding is important when interpreting288

the relationship between crude case counts and severe outcomes, where the latter vary markedly289

among individuals. It is illustrated by the use of hospitalizations and deaths as a lagging indicator290

of cases early in the COVID-19 pandemic, and likely contributes to the much smaller variance in291

numbers of severe outcomes over time as compared with estimates of case counts or wastewater292

data (Khan et al., 2023). Intuitively, those who are most vulnerable are least likely to be infected293

early on, but they and their networks will remain capable of supporting a sustained outbreak over294

a longer period of the epidemic.295

This can also produce substantial bias in the apparent value of key parameters that are impor-296

tant for forecasting and estimating the impacts of an outbreak. If there is any correlation between297

the risk groups and the probability of severe illness, quantities such as the infection fatality rate or298

infection hospitalization rate will be biased. And this bias is in addition to those already known to299

arise through under-ascertainment of mild infections (Accorsi et al., 2021).300

The model also suggests caution when interpreting and estimating the fitness of emerging lin-301

eages such as putative ‘variants of concern’. The founder effect in population genetics refers to302

a spurious appearance of fitness as a result of stochastic factors, as when a small number of mi-303

grating individuals colonizes a deserted island (Wright, 1942). Here, it indicates that early on in304

an epidemic the initial growth rate of any lineage that becomes common enough to be noticed305

is expected to be biased upward in relation to its true fitness, simply because it is spreading by306

definition in the networks which make the most contacts. Conversely, as the overall epidemic is307

declining those lineages that are persisting are infecting a higher proportion of fewer contacts, and308

so past the peak increases in proportion of a sample becomes a more reliable indicator of fitness.309

Because we have developed an extension of the SIR model, we have not explicitly considered310

immune evasion. However it can readily be seen that the host population in which a pathogen311

with immune evasion is most likely to experience both high fitness and start spreading is that312

which makes the most contacts and within which seroprevalence is highest (Bushman et al., 2021).313

Although this may be complicated by the timescale of waning immunity this is beyond the scope314

of the present work.315

The SIR model has been a valuable source of intuition for generations of epidemiologists but is316
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known to be limited. Here we have shown the value of a small change to incorporate larger group317

sizes than pairwise interactions. The results help interpret the expected course of epidemics where318

socialization and awareness of the epidemic drive transmission, such as during the recent Mpox319

outbreak (Endo et al., 2022). Furthermore, our model highlights how varying exposure leads to320

under-appreciated sources of bias when tracking putative variants of concern. Overall, the sim-321

plicity of the model may allow it to be readily applied to more complicated scenarios in which risk322

perception varies over time and the relative compositions of risk groups change accordingly.323

Code availability324

All code used to generate the figures is available at: https://github.com/bradfordptaylor/risk_sir.325
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Appendix 1423

𝑛 = 2 and 𝑛 = 3 group-SIR transmission terms424

Here, we expand the group-SIR transmission term to connect it to the classic SIR model
and to show how transmission grows nonlinearly with increasing group size. The sampling
process yields transmission rates proportional to the expected number of infections at gath-
ering with a given size 𝑛:

425

426

427

428

𝐵group(𝑛, 𝑆, 𝐼, 𝑅) ∝ EΔ𝐼 (𝑛) =
∑

{𝑠,𝑖,𝑟}
𝑠Pgroup(𝑠, 𝑖, 𝑟|𝑆, 𝐼, 𝑅)Pinfect(𝑖)

with probabilities

Pinfect(𝑖) = 1 − (1 − 𝑝𝛽)𝑖,

Pgroup(𝑠, 𝑖, 𝑟|𝑆, 𝐼, 𝑅) =
𝑛!

𝑠!𝑖!𝑟!

( 𝑆
𝑁

)𝑠 ( 𝐼
𝑁

)𝑖 ( 𝑅
𝑁

)𝑟

Transmission only occurs at gatherings when at least one infected and at least one suscep-
tible attend. Hence, only one combination of attendees contributes in the 𝑛 = 2 case:
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432

433

434

435

436

437

438

𝐵group(2, 𝑆, 𝐼, 𝑅) ∝ 1 ×P(𝑠 = 1, 𝑖 = 1, 𝑟 = 0|𝑆, 𝐼, 𝑅)
(

1 − (1 − 𝑝𝛽)1
)

= 2𝑝𝛽
𝑆
𝑁

𝐼
𝑁

439

440

441

442

which is proportional to the bilinear classic SIR model. Note, the emphasis on propor-
tionality, as this from differs from standard presentation of the SIR transmission by a con-
stant factor of 1

𝑁
which can be accounted for by the rate of gathering 𝑟gather. The 𝑛 = 3 case

includes transmission with more combinations of 𝑠,𝑖, and 𝑟 attendees:

443

444
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446

𝐵group(3, 𝑆, 𝐼, 𝑅) ∝
(

1 − (1 − 𝑝𝛽)1
)

[P(𝑠 = 1, 𝑖 = 1, 𝑟 = 1|𝑆, 𝐼, 𝑅) + 2P(𝑠 = 2, 𝑖 = 1, 𝑟 = 0|𝑆, 𝐼, 𝑅)]+
(

1 − (1 − 𝑝𝛽)2
)

P(𝑠 = 1, 𝑖 = 2, 𝑟 = 0|𝑆, 𝐼, 𝑅) =

𝑝𝛽

[

6
( 𝑆
𝑁

)( 𝐼
𝑁

)( 𝑅
𝑁

)

+ 2 × 3
( 𝑆
𝑁

)2 ( 𝐼
𝑁

)

]

+

𝑝𝛽(2 + 𝑝𝛽)
[

3
( 𝑆
𝑁

)( 𝐼
𝑁

)2]

which deviates from a classical SIR model due to higher order nonlinearity.
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449

450

451

risk-SIR R0 derivation452

The basic reproduction number, 𝑅0, is defined as the average number of secondary infec-
tions transmitted by an index case in an otherwise uninfected population. This can be cal-
culated from the dynamics of gathering and the expected number of infections given the
combinatorics of attendance. Because individuals with different risk levels attend different
gatherings, we calculate the basic reproduction number for each risk subpopulation. Three
terms contribute to𝑅0(𝑘): (1) the total number of gatherings at given sizes that an individual
with risk level 𝑘 can attend while infectious, (2) the probability that the individual attends
each gathering, and (3) the average number of infections at each gathering given the infec-
tious individual attends. The average number of gatherings for a given size 𝑛 ≤ 𝑘 that occur
during the average infectious period is:

𝑁gather(𝑛) =
𝑟gather
𝛾

P𝑛
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where 𝑟gather is the rate all gatherings occur, 𝛾 is the recovery rate, and P𝑛 is the probability
a gathering is size 𝑛. The probability an individual with risk level ≥ 𝑛 attends a gathering of
size 𝑛 is:

Pattend(𝑛) = 1 −

(

1 −
𝑛

∏

𝑗=1

∑

𝑚≥𝑛 𝑁𝑚 − 𝑗 − 1 + 1
∑

𝑚≥𝑛 𝑁𝑚 − 𝑗 + 1

)

which is the complement of the probability an infectious individual not being sampled as
any of the 𝑛 attendees from the total individuals with sufficiently high risk levels, 𝑁𝑚. The
expected number of infections at a gathering of size 𝑛when the infectious individual attends
is simply:

EΔ𝐼 (𝑛) = (𝑛 − 1)𝑝𝛽

where 𝑝𝑏𝑒𝑡𝑎 is the pairwise infection probability. We combine these terms, sum over all
possible gathering sizes that the infectious individual with risk level 𝑘 is willing to attend,
and simplify Pattend in the limit of infinite population sizes, 𝑁 → ∞, to get the final result:
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risk: 𝑅0(𝑘) =
𝑘
∑

𝑛=2
𝑁gather(𝑛)EΔ𝐼 (𝑛)Pattend(𝑛) =

𝑟gather
𝛾

𝑘
∑

𝑛=2
P𝑛

𝑝𝛽(𝑛 − 1)𝑛
∑

𝑚≥𝑛 𝑁𝑚

We show this result as a recurrence relation in the text to highlight how it scales with 𝑘.
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Appendix 1—figure 1. Dynamics of a variant with increased transmissibility relative to wildtype
emerging in different risk subpopulations.
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Appendix 1—figure 2. Equilibrium risk distribution for exponentially growing epidemics in societies
with transmission heterogeneity as the amount of cross transmission between two subpopulation
varies.
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Appendix 1—figure 3. Dynamics of the variance of the probability density function over risk
distributions for a growing epidemic with two subpopulations. It initially increases because we
initialize the population at a specific risk distribution (delta distribution) and it eventually decreases as
the risk distribution drifts less for larger populations.
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Appendix 1—figure 4. Growth rate bias, 𝜌, for epidemics initialized with different population sizes,
𝑁0, of infected distributed by the equilibrium risk distribution (here 𝑓𝐻 = .6. Epidemics were run for
75 populations changes and the vertical line delineates epidemics that stochastic extinction can affect
(smaller initial populations). (inset) Focusing on epidemics where not enough population changes
have occurred for stochastic extinction to occur.
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