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ABSTRACT

Detecting early signs of an outbreak in a viral process is challenging due to its exponential nature, yet crucial given the benefits
to public health it can provide. If available, the network structure where infection happens can provide rich information about the
very early stages of viral outbreaks. For example, more central nodes have been used as social network sensors in biological
or informational diffusion processes to detect early contagious outbreaks. We aim to combine both approaches to detect early
warnings of a biological viral process (influenza-like illness, ILI), using its informational epidemic coverage in public social
media. We use a large social media dataset covering three years in a country. We demonstrate that it is possible to use
highly central users on social media, more precisely high out-degree users from Twitter, as sensors to detect the early warning
outbreaks of ILI in the physical world without monitoring the whole population. We also investigate other behavioral and content
features that distinguish those early sensors in social media beyond centrality. While high centrality on Twitter is the most
distinctive feature of sensors, they are more likely to talk about local news, language, politics, or government than the rest
of the users. Our new approach could detect a better and smaller set of social sensors for epidemic outbreaks and is more
operationally efficient and privacy respectful than previous ones, not requiring the collection of vast amounts of data.

Introduction
For many viral diseases, the early detection of when and where an outbreak will appear is critical. Public administrations
responsible for public health management face public health risks such as the Avian flu1, Zika2, SARS3, 4, Ebola5, 6 or the latest
SARS-COV-27, 8 that can cause millions of deaths in a short period of time at global scale9. Traditional health surveillance
systems require monitoring and detecting symptoms or case incidence in populations. However, their precision sometimes
needs to be improved by the size and delayed testing methods on those populations. Combining those data sources with others
about people’s mobility, the spatial spreading structure of the disease, and even other data sources seem like a promising venue
to establish appropriate warning models in the early epidemic stage10. Novel data streams like related web search queries and
web visits11–15, weather data16 or monitoring multiple digital traces at the same time10 have proven to be complementary and
even advantageous to traditional health monitoring systems. In the same way, social media traces have been demonstrated to be
a good proxy for digital epidemiological forecasting models of ILI17–19. Online user activity exhibits some benefits like broader
spatial and demographic reach or monitoring populations that have no easy access to health services15.

Since some viruses are transmitted by contact on face-to-face social networks, epidemiological methods that exploit the
network structure are more effective in detecting, monitoring, and forecasting contagious outbreaks20, 21, since they allow to
anticipate more accurately the transmission dynamics. Furthermore, these methods can help public health decision-makers
to enhance the adoption of public health interventions22 like social distancing, vaccination, or behavior change campaigns,
identifying those individuals most likely to get infected and spread an infectious disease or behavior (e.g., super-spreaders), or
which places are more likely to be visited by those individuals23. This allows more efficient vaccination campaigns24 when the
vaccination of an entire population is not possible or recommended.

The key idea behind using high-connected individuals to monitor epidemic spreading is that they are more likely to be
reached by the infection. In general, human social sensing, when carefully selected, can help predict and explain social
dynamics better25–27. In the absence of complete detailed data about contact networks, simple approaches like the friendship
paradox28 can be used to identify more connected and central individuals (sensors) in the network that can give early signals
and anticipate the spreading of information, behavior or disease before it reaches a significant fraction of the population. In
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Figure 1. Dynamics of an average ILI season. Average ILI prevalence and ILI-related posts on Twitter across three seasons
from December 2012 to April 2015 in Spain. Time (in weeks) is centered to the peak for each season. Lines are average weekly
incidences for Official ILI rates (Blue) from Instituto Carlos III de Salud and first-person ILI-related mentions rate (Green)
from Twitter. Bands are their confidence intervals.

particular, the friendship paradox has already been found advantageous to identify sensors for detecting influenza29–31 or
COVID-1932. In social media, a previous study demonstrated the detection of global-scale viral outbreaks of information
diffusion33 by monitoring high-degree users on Twitter.

In this work, we address the question of how we can use sensors for information propagation in online social media to get
better early warning signals of a biological epidemic. We hypothesize that social media connectivity and activity are a proxy of
social interactions in the real world. Thus, highly-connected users in social media (online sensors) also mirror highly-connected
individuals (offline sensors) in the physical contact network. This hypothesis is based on the wealth of literature showing that
online networks mimic offline contacts’ connections, similarity, and spatial organization25, 34, 35. Furthermore, we study if it
is possible to identify better social media sensors automatically based on their centrality (degree) and mobility, and content
behavior. We found that social media sensors can serve as early warning predictors of the exponential growth of an epidemic
several weeks before the peak. The current global pandemic threads make it vital to improve the efficiency of Early Warning
Epidemiological Systems (EWES) by using operationally efficient methods to anticipate the exponential growth of a virus in
a community, region, or country without compromising the citizens’ privacy. Our method provides such a system in a fully
privacy-preserving framework.

Results
We used social media traces obtained from the micro-blogging site Twitter, where we collected more than 250 million tweets
from December 2012 to April 2015 on Spain’s mainland. Using Natural Language processing techniques, we only included
first-person ILI-related posts, summing up a population of 19696 users with at least one first-person ILI-related mention, which
comprised a total of 23975 tweets (Methods & SM Appendix section 1 discusses our methodology). We also made use of official
ILI cases from the surveillance system for influenza in Spain (ScVGE)36 managed by the Instituto Carlos III de Salud36. This
system reported weekly ILI cases in Spain for each province with two weeks of delay in the state of the seasonal flu epidemic
based on the current European Union proposal that regulates ILI surveillance37. Our dataset of official ILI cases ranges from
December 2012 to April 2015 and includes three different seasons of influenza outbreaks in Spain.

Figure 1 shows a generalized ILI season from the average of ILI cases and ILI-related mentions for the three seasons.
ILI cases and ILI-related mentions time series have a Pearson correlation of 0.87 (CI [0.79,0.93] and pvalue < 0.001). Since
different outbreaks happen at different times of the year, we have shifted each influenza outbreak to the time of its peak. We can
see that ILI-related mentions precede the official ILI cases at the beginning of the growth stages before the peak. Previous
studies have proved this17–19. Mentions of the outbreak in social media seem to precede the exponential growth in the total
population. ILI-related posts peak at -15 weeks could be related to the start of the cold season and users mixing ILI symptoms
with cold symptoms, stating that they are suffering from ILI. We found a similar pattern in Google trends data.

Validating high-degree individuals as sensors
However, here, we want to go a step further. Can we subset the users posting ILI-related posts to get better earlier warnings
about the outbreak than monitoring the whole social network platform? Similarly to29, and33, high-degree users could be

2/13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2023. ; https://doi.org/10.1101/2022.11.15.22282355doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.15.22282355
http://creativecommons.org/licenses/by-nc-nd/4.0/


500 2000 10000 50000

0.
01

0.
05

0.
20

1.
00

Total Weekly Out−Degree,  Dout

PD
F

After Peak
All
Before peak

Figure 2. Total weekly out-degree before and after the peak. Total weekly out-degree, Dt , power law distributions for the
whole season (Green), weeks before (Yellow) peak and weeks after peak groups (Purple). Horizontal axis, total weekly
out-degree, Dt . Vertical axis probability distribution functions.

better than the average individual on the platform. To test whether high centrality or degree correlates with early signals, we
measure the total weekly out-degree, Dt , of users having social ILI-related mentions before and after the peak. Figure 2 shows
distributions for Dt before the peak, after the peak and for the whole season. There is a statistically significant difference in the
mean (pvalue < 0.01). The average total weekly out-degree is 31108 (Confidence Interval, CI [21539.03,40677.32]) before the
peak, while it is only 14373 (CI [11202.94,18455.78]) after the peak. The difference is also present in extreme values. We
modelled large values of Dt as power laws with an exponent of 2.56 (CI [2.51,2.62]) for the whole period. For the weeks before
the peak, it follows an exponent of 2.10 (CI [1.91,2.29]). Finally, for the weeks after the peak, it follows an exponent of 2.86
(CI [2.48,3.25]). Thus, on the aggregated level, we indeed see that the users in social media that have ILI mentions before
the peak have more social connections than after the peak. This result signals the possibility of using high-connected users as
potential early sensors. This result is robust against other aggregated degree centrality variables (see SM Appendix, section 2).
For selecting sensors, we selected each individual with an out-degree greater that 1000 (see SM Appendix, section 3).

Figure 3.A compares Twitter’s cumulative ILI-related mentions of our control and sensor groups against the official
ILI-related cases. As we said before, the activity in social media for both the control and sensor groups anticipates the
cumulative incidence of ILI cases by one or two weeks. For each user i we define t post

i as the time in which she has an
ILI-related post on social media. Figure 3.B shows confidence intervals for ILI-related posting times for each group and
ILI season, relative to the peak t post

i − t peak. For all ILI seasons, the control group has an average ILI-related posting time
of ∆tC = 〈t post

i − t peak〉i∈C = -5.35 (CI [−5.54,−5.17]) weeks before the peak. The sensor group has an average ILI-related
posting time of ∆tS = 〈t post

i − t peak〉i∈S = -6.72 (CI [−7.42,−6.02]) weeks before the peak. This yields that sensors are posting
on average ∆tS−∆tC =−1.37 (CI [−2.08,−0.64] and pvalue < 0.01) weeks before the control group, during the exponential
growth phase, between 8 to 4 weeks for all seasons. In more detail, the 2012-2013 season has a ∆tS−∆tC = −0.62 (CI
[−1.58,−0.84] and pvalue > 0.1), the 2013-2014 season has a ∆tS−∆tC =−2.46 (CI [−3.45,−0.36] and pvalue < 0.01) and
the 2014-2015 season has a ∆tS−∆tC =−1.54 (CI [−2.45,−0.63] and pvalue < 0.01). As we can see, the ILI-related mentions
of sensors could anticipate the epidemic’s growth by 1 or 2 weeks with respect to other users in the platform.

Autoregressive models with sensors and its theoretical validation
To quantify statistically how valid our sensors in social media could be in a potential EWES model, we built an autoregressive
model that considered different epidemiological and social media features (see Methods section). The models considered
different combinations of the total number of weekly ILI cases at time t, It , the total weekly out-degree of all users from the
social media platform (DT,t ) that posted ILI-related mentions, and the total weekly out-degree of the subset of those users in the
sensor group (DS,t ). We have also considered different temporal week lags, t−δ , for each variable to test their potential role as
early warning signals. As a baseline, we have considered a model that only incorporates the ILI cases and their autoregressive
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Figure 3. Cumulative incidence between real ILI, all Twitter, and only Twitter sensors. (A) Empirical cumulative
distribution differences in official ILI cases (Yellow), control ILI-related mentions on Twitter (Purple), and sensor ILI-related
mentions on Twitter (Green). Horizontal axis measures weeks since the peak on ILI cases. Inset. weekly incidence for ILI
cases, control ILI-related mentions and sensor ILI-related mentions on Twitter. (B) Confidence intervals for ILI-related posting
times relative to the peak t post

i − t peak for control (Purple) and sensors (Green) groups for each ILI season. 2012-2013 (Circle),
2013-2014 (Triangle), 2014-2015 (Square) and all seasons (Cross).

power at t−1. As we see in Table 1, that simple model is already quite accurate in explaining the evolution of the weekly ILI
rate. On top of that baseline model, we built four others, including the degree centrality of all users and the sensor group at
different lags. For each model, we predict the It number of ILI-related cases using the information of the It−1 cases and the total
out-degree of all users and sensors with ILI-related mentions at time t and t−δ . We ran all models using a step-wise approach
to keep only statistically significant regressors for δ = 1,2,3,4. Due to multicollinearity problems between variables, we also
monitor the variance inflation factor (VIF) for each to choose the best δ . Results in Table 1 and Figure 4A quantitatively show
the importance of social media ILI-related mentions, especially those from the sensor group. As we can see, the predicting
power (adjusted R2) on next week’s official ILI rate after incorporating social media mentions increases significantly (and we
also reduced collinearity), especially at three- or four-week lags. In all those cases, the total degree of sensors at time T and
time t−δ has a significant regression coefficient and role (in R2) in the prediction. That is, social sensors can help anticipate
official ILI cases three to four weeks before, a result consistent with previous similar analyses of ILI contagious outbreaks
in small settings29 or of information spreading in social media33. We also note that the signs of the variables of all users and
sensors have different effects. For example, a higher total degree of sensors at times t− δ predicts more ILI-related cases
(positive coefficient) at time t for δ > 0, but a smaller number of cases (negative coefficient) for δ = 0. As we will see below,
this apparent contradiction comes from the high auto-correlation of the time series of ILI-related cases and the total degree of
users.

We investigated the predicting power of high-degree sensors in a synthetic model to validate that sensors anticipate ILI
cases because social media connectivity mirrors social connections in the real world. Specifically, we built a base agent-based
susceptible-infected-recovery (SIR) epidemic spreading on a random network mimicking real (face-to-face) social contacts
between people (see Methods for details about the network and simulations details). Apart from their physical contacts, we also
assumed that each person has acted on a social media platform and that the degree in both the real and online networks are
correlated moderately. Assuming that agents post on social media when they are infected, we also constructed the time series
D̂T,t and D̂S,t for the model and their autoregressive fits as in Table 1. Our results once again show that high-degree agents
(sensors) carry some predicting power on the epidemic spreading.

Furthermore, the coefficients for the different models show the same regression structure as the empirical models in 1, see
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Figure 4. Results for the Empirical and Theoretical ILI auto-regression models. (A) Normalized coefficients for the
different autoregressive models for It , see Eq. (4) for different time lags δ . Model regressors for each δ are the number of cases
one week in the past It−1, the total out-degree at time t, DT,t , the total out-degree at time t−δ , DT,t−δ , and the total out degree
of sensors at time t, DS,t and at time t−δ , DS,t−δ . We show the normalized coefficient and their confidence intervals (shaded
area). (B) Same as in (A) but for the agent-based model of ILI disease and information diffusion.

Figure 4A. We can see that both coefficient structures are nearly the same, including their magnitude and signs. Although
this is not direct proof of our hypothesis that the online and offline centrality of real users is similar, it shows that under that
assumption, we not only get that the effect of sensors is the same as we found in our empirical analysis, but even the structure
of coefficients (magnitude and sign) is similar. These results support the idea that sensors in an informational epidemic that
mirrors a biological epidemic are also sensors of a biological epidemic, like ILI, that we can trace on Twitter.

Identification of sensors beyond out-degree
So far, we have seen that high out-degree users in social media can be early sensors of ILI cases. However, can we identify
a better group of sensors beyond high degrees by looking at other traits? Are individuals that signal the epidemic’s early
stages defined just by their centrality degree, or do they have other behavioral or content traits? To do that, we define a
sensor functionally as every user who posts an ILI-related tweet from fifteen weeks to two weeks before the epidemic’s peak
(−15≤ t ≤−2). On the other hand, a control user was a random user who did not talk about ILI during the same period. (see
Methods contextual features for more details).

To characterize users’ content, behavior, and network traits in both groups, we analyzed every tweet they posted 30 days
before their first ILI-related tweet (sensors) or a randomly chosen tweet (control). Specifically, we identify three groups of traits
for each user. Firstly, we extract the content of each user’s tweets and classify them into topics like sports, politics, entertainment
and many other categories using the TextRazor classifier (see Methods). Secondly, since our tweets are geolocalized, we extract
the mobility features of each user, in particular, the radius of gyration, which measures the size of the area covered while
moving around38. The radius of gyration could proxy the number of different and diverse people the user is in daily contact.
Thus it might serve to estimate potential exposure to infected people39. Lastly, we also use their activity (number of posts) and,
as before, their out-degree in the social network.

To test how relevant those groups of traits are to define a sensor, we developed a straightforward logistic regression model
(see Methods) to classify users into the sensor or control groups using different variables. As we can see in Figure 5, the
accuracy of our models is above the primary level (0.5). While Network and Content groups independently achieve similar
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Figure 5. Detecting better sensors. (A) Normalized β coefficients from logistic models [see Eq. (7)] for each group of
features for explaining sensors: content topics they posted (yellow), their network features (green), their mobility by the radius
of gyration (blue) and all group variables together (purple). (B) Accuracy metrics for each group of variables: topics (yellow),
network (green), mobility (blue), and all variables (purple).

accuracies (∼ 0.61) than the Mobility group (∼ 0.62), we get better accuracy, including all types of traits (∼ 0.64). This result
signals that even different traits carry complementary information about who could be sensors in the social media platform. To
understand this further, we looked into each trait’s (normalized) coefficients in our model. As shown in Figure 4A, the most
crucial variable to predict a user in the sensor group is still the out-degree in the social network, even after controlling for the
number of posts. This is important because it shows that our simple method of using high-connected Twitter users as sensors
works much better than other traits. We also see a small but significant effect on the radius of gyration, meaning, all things
equal, users that move further are more likely to be sensors. Regarding the content, we see a structure of topics that users in the
sensor group are more likely to discuss, like National, Language, Politics, and Government. On the contrary, users that talk
about Sports, Popular topics, or Entertainment are less likely to be in the sensor group. This finding could signal and be related
to other unobserved user traits like income or educational attainment level, which also are known to be related to the activity in
social media40 and amount of real offline contacts41.

Discussion
Early warning epidemiological systems (EWES) detect outbreaks weeks in advance to help public health decision-makers
make more efficient allocations of public resources to avoid or minimize an overflood of contagious in the healthcare system.
EWES are undergoing significant investments and changes due to the COVID-19 disruption. However, most of them harvest
vast amounts of data and do not exploit the explanatory and predictive power of the network heterogeneity where a disease-
informational epidemic is spreading.

In this study, we demonstrated that social media traces, like Twitter, could be used as a source of social-behavioral data to
monitor disease-informational epidemics that mirror offline biological contagious disease epidemics, like ILI, by exploiting
the network heterogeneity whenever social centrality measures of the network are available. By having a simple centrality
metric, such as the out-degree, we can define suitable sensors for the disease-informational epidemic in the network. When
aggregated correctly, we can use sensors to feed autoregressive models that could yield signals of an outbreak up to four weeks
in advance. Although previous studies showed the advantage of using social network metrics to detect, monitor, and forecast
contagious outbreaks20, 21. The usage of sensors in a network to detect early warnings of an outbreak in a biological disease
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contagious epidemic29, 30, or informational epidemics33, our study is the first to combine the use of sensors in social media
to anticipate epidemics in real life. Our results are based on the hypothesis that social media networks are related to offline
contact networks, which has been validated directly in other works25, 34, 35. Our empirical and theoretical results show that
instead of harvesting large amounts of data and metrics from social networks19, we can track and anticipate early outbreaks of a
disease-informational epidemic by inexpensively looking at a small set of specific users (sensors).

We also demonstrated that sensors could be profiled and detected automatically from social media raw data by using their
topological network properties and based on the content posted by individuals and their mobility patterns. Explicitly, we found
that sensors talk more about some topics like National, Politics, and Government and less about Sports and Entertainment.
The fact that those topics could also be related to their income, educational attainment40, but also to other traits like more
extroversion personality traits42 opens the possibility to investigate the potential overlapping reasons why sensors not only
are more prone to get infected earlier but also that they would like to post about it on social media. For instance, the Music
topic requires further investigation; previous literature suggests individual differences in personality in the way we use and
experience music43, possibly having a social component.

Finally, our method uses the out-degree in the social media platform as a proxy for centrality. Better knowledge of the
network structure could yield more optimized methods to detect highly-central users. Our approach also has other limitations.
For example, our data corresponded only to a given epidemic in a given country and were not tested against more global
epidemics like the COVID-19 pandemic. However, given that our findings rely on the collective behavior of people in social
media and the observed relationship between offline and online networks44, 45, we think that our findings could be extrapolated
to other epidemiological situations. We hope our research can help study the role of sensors in other pandemics, specially
COVID-19, where more information about real-world offline contact networks exists due to better mobility data46 or contact
tracing applications.

In summary, this study proposes a feasible approach to exploit the network heterogeneity underneath social media sites,
like Twitter, to detect more efficiently and earlier outbreaks from a disease-informational epidemic that mirror a biological
disease contagious epidemic, like ILI. Furthermore, the sensors approach we used to detect early outbreaks within informational
epidemics and biological contagious disease epidemics, but this is the first time in a disease-informational epidemic as we have
done in this study. Finally, novel epidemiological systems have been developed for other pathogens such as Zika, SAR, or
COVID-19, among others, in addition to influenza, using conventional and non-conventional data sources such as the official
public cases, online searches, or health forums. For instance, for the COVID-19 pandemic, some studies used social media
traces to try to predict the dynamics of the pandemic47, 48. Such approaches, along with our findings about the power of the
network structure, could improve the results of their predictions.

Also, health systems and health organizations initiatives, like the Global Outbreak Alert and Response Network (GOARN)49

from WHO that is composed of 250 technical institutions and networks globally and projects like the Integrated Outbreak
Analytics (IOA)50, Epidemic Intelligence from Open Sources (EIOS)51, and Epi-Brain52 that respond to acute public health
events. This network is already moving in a double direction of incorporating early warnings from Big Data, social sciences
techniques and behavioral data into epidemic response systems53 to control outbreaks and public health emergencies across
the globe. Also, syndromic surveillance platforms like InfluenzaNet could ask for Twitter profiles or the number of people an
individual interacted with in the last week to reweight the impact of different users in the prediction. Our innovative approach
might help detect early outbreaks without having to monitor and harvest data from a whole population, making EWES more
accurate in time prediction of an outbreak, more efficient in resources, and more respectful regarding citizens’ data privacy.

Methods
Data collection
We extracted Twitter data through their streaming API54 that allowed us to collect data programmatically on the Spanish
mainland. The official ILI rate data was extracted through a web crawler built ad-hoc for the web of the Institute Carlos III of
Health since there was no access to the raw data from an open data portal or a programmatic interface.

ILI-related keywords based search and tweets classification
To get ILI-related mentions from users in the social media platform, we first filtered tweets by keeping those that mentioned
simple terms like “flu“ or other ILI-related words (see SM Appendix). After that, we only kept first-person ILI-related mentions
to exclude general or not directly-related posts like ’The Spanish flu was an unusually deadly influenza pandemic’. This was
done using Natural Language Processing methods. We applied a text classifier using a scikit-learn implementation55. We
handpicked and labeled a set of 7836 tweets to train our classifier, containing 3918 true positive (first-person) tweets and 3918
true negative tweets. Using that labeled data, our classifier achieved an accuracy of (∼ 0.94). We then applied our classifier
to identify first-person mentions in the remaining tweets (see SM Appendix for more details about our pipeline). After this
process, we ended up with N = 19696 users and 23975 tweets classified as first-person ILI-related posts.
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ILI-related post time series
We added up and normalized the number of weekly users mentioning the flu by the total number of users in the system. We
followed equation

x̂users,t =
xILI Users,t

xTotal Users,t
, (1)

where t is the week. This time series is shown in Figure 1, together with the prevalence of ILI cases.

Centrality features
Each tweet at time t has information about the out-degree (followees), dout,i,t , and in-degree (followers), din,i,t , for each Twitter
user i posting it. We used them as proxies of the network centrality for each user. Only 5% of used have more than one
ILI-related mention and their in and out degrees do not change dramatically so we take dout,i,t ' dout,i (similarly for din,i,t ) with
t being their first (or most of the times only) ILI-related mention. We tested out several aggregated centrality features for the
selection of sensors. We calculated the weekly total, mean, median, maximum and minimum out-degree of individuals before
and after the peak making first-person ILI-related mentions to test which centrality metric had more explanatory power. We
found that the weekly total out-degree was the best centrality metric to apply. See SM Appendix, section 2 for further details.
The weekly total out-degree is defined by

DT,t = ∑
i∈Ωt

dout,i (2)

where Ωt is the set of users that made an ILI-related mention at week t.
Sensors are selected as the group of users with dout,i > 1000. For that group, we also define the time series of their centrality

as

DS,t = ∑
i∈Ω∗t

dout,i (3)

where Ω∗t is the set of users in the sensor group that made an ILI-related mention at week t.

Linear autoregressive model
The following equation represents a linear autoregressive model for explaining and nowcasting the dependent variable, It , being
the Official ILI rate for each week. DT,t are total weekly out-degree for the whole twitter population, and DS,t , are total weekly
out-degree for the whole sensor population. We followed

It = β0 +β1It−1 + ∑
δ≥0

(αδ DT,t−δ + γδ DS,t−δ )+ εt . (4)

Agent-based model of ILI disease and information diffusion
To understand our empirical findings, we compare them with the simulations of epidemic spreading on a physical and online
network through an agent-based model (ABM). We model the offline (physical) contacts using a random heavy-tailed network.
Specifically, we created a synthetic population of N = 150k agents with are connected through a scale-free network with degree
distribution P(k)∼ k−3 obtained through the Barabasi-Albert model.56. The network was built using the R package igraph
57.

At the same time, we supposed that each agent participates in a social media platform. We hypothesize that the online
degree of the agents is related to the offline degree in the complex network. To account for some variability, we assumed that
the degree in the social media platform was modified by a random uniform distributed number (See SM Appendix section 4 for
more details). Thus, the degree in the social media platform is given by dTwitter

out,i = dOffline
out,i (1+νi), where νi is a random number

uniformly distributed between 0 and 1. This way we account for potential variability between offline and online degrees.
We simulate the ILI spreading using a simple Susceptible-Infected-Recovered (SIR) epidemic model. In particular, at

each time-step t, the infectious (I) agents can transmit the disease to their susceptible (S) neighbors in the contact network
with probability β . If the transmission is successful, the susceptible node will move to the (I) state. An individual will move
independently to the recovery (R) state with a probability α . We initialized the model with two initial infected seeds. After
getting infected, we assumed that the agent immediately posted an ILI-related tweet on the social media platform. In our model,
we considered a user to be sensors if she has an out-degree in the platform higher than four times the average degree in the
Barabasi-Albert model. We also calibrated the time unit in this model so that the epidemic curves have a similar time scale as
the real ILI rate (See SM Appendix section 4 for further details on the simulation’s parameters).
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User traits
To characterize the different traits of Twitter users, we analyzed each user’s tweets during a time window of 30 days before the
initial event. For the sensor group, we selected individuals with an out-degree dout,i ≥ 1000 and that made at least an ILI-related
mention during the weeks −15≤ t ≤−2 before the peak of the epidemic. The initial event is their first post with the ILI-related
mention. For the control group, we picked individuals that made an ILI-related mention after the−15≤ t ≤−2, then we picked
a random post of them as an initial event in weeks −15≤ t ≤−2, before the peak of the epidemic. Using that 30 days period,
we computed different Mobility, Content, and Network traits to characterize each user.

Mobility traits
We worked out the mobility pattern from a user by looking at geolocations from tweets. To characterize their mobility, we used
the radius of gyration38, which measures the size of the area covered while moving around:

Ri
g =

√
1
N

N

∑
i=1

(ri− rmean). (5)

Content topics
We extracted topics from the texts in each user’s tweets. To this end, we use the TextRazor classifier trained against the
IPTC news-codes58, which classify each tweet into approximately 1400 high-level categories organized into a three-level tree
hierarchy. Each tweet is given a probability of containing such a topic. Thus each user is characterized by a content vector of n
topics

Ci = {Ci
1,C

i
2, . . . ,C

i
n} (6)

where the components Ci
m are the aggregated probability of topic m in all her tweets.

Network traits
Apart from the out-degree for each user i we also took into account the total user activity in the social network platform by
computing the number of tweets generated during the observation period. This variable is called the number of posts.

Linear logistic regression model
The following equation represents a linear logistic regression model for explaining the probability of an individual being a
sensor by different features, where {Mi} are the mobility features (we only consider the radius of gyration variable, Rg), {Ni}
the group of network variables, out-degree, dout,i, and the number of posts, and {Ci} is the group of content variables for each
individual i. Our model is

Pr(i ∈Ω
∗) = logit−1[β0 +∑

l
αlMi

l +∑
n

βnNi
n +∑

m
γmCi

m] (7)

where Ω∗ is the set of users defined as sensors, and logit−1(x) = ex/(1+ ex). In the model, each individual variable in the
different groups is standardized to have zero mean and unit variance.
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Official weekly ILI rate, It

I I+T+S I+T+S I+T+S I+T+ S
δ = t−1 δ = t−2 δ = t−3 δ = t−4

(1) (2) (3) (4) (5)

It−1 0.924∗∗∗ 0.789∗∗∗ 0.856∗∗∗ 0.849∗∗∗ 0.800∗∗∗

(0.041) (0.047) (0.049) (0.045) (0.044)
DT,t 0.717∗∗∗ 0.634∗∗∗ 0.580∗∗∗ 0.561∗∗∗

(0.0003) (0.0002) (0.0002) (0.0002)
DT,t−1 −0.281∗∗∗

(0.0003)
DT,t−2 −0.344∗∗∗

(0.0003)
DT,t−3 −0.313∗∗∗

(0.0002)
DT,t−4 −0.217∗∗∗

(0.0002)
DS,t −0.443∗∗∗ −0.393∗∗∗ −0.348∗∗∗ −0.339∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003)
DS,t−1 0.211∗∗∗

(0.0005)
DS,t−2 0.227∗∗∗

(0.0004)
DS,t−3 0.186∗∗∗

(0.0003)
DS,t−4 0.132∗∗∗

(0.0003)
Constant 0.000 0.000 0.000 0.000 0.000

(4.627) (4.093) (4.071) (4.123) (4.516)

Observations 87 87 86 85 84
R2 0.854 0.925 0.932 0.935 0.929
Adjusted R2 0.852 0.920 0.928 0.931 0.924
Maximum VIF NA 15.16 9.36 6.77 5.28
Residual Std. Error 34.092 25.042 23.951 23.529 24.741
F Statistic 497.040∗∗∗ 199.556∗∗∗ 218.885∗∗∗ 226.755∗∗∗ 203.163∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1. Empirical ILI regression models. Regression table with normalized beta coefficients for each group of variables,
Official (I)LI, (T)witter and (S)ensors, where Xt are weekly ILI related variables for each group. DT,t and DS,t are weekly total
out-degree variables from Twitter (T) and Sensors (S).
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