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 9 
Short title: Long-lead COVID-19 forecast 10 
 11 
One sentence summary: To support more proactive planning, we develop COVID-19 forecast 12 

methods that substantially improve accuracy with lead time up to 6 months. 13 
 14 
Abstract 15 
Coronavirus disease 2019 (COVID-19) will likely remain a major public health burden; accurate 16 
forecast of COVID-19 epidemic outcomes several months into the future is needed to support 17 

more proactive planning. Here, we propose strategies to address three major forecast 18 
challenges, i.e., error growth, the emergence of new variants, and infection seasonality.  Using 19 
these strategies in combination we generate retrospective predictions of COVID-19 cases and 20 
deaths 6 months in the future for 10 representative US states.  Tallied over >25,000 21 
retrospective predictions through September 2022, the forecast approach using all three 22 

strategies consistently outperformed a baseline forecast approach without these strategies 23 
across different variant waves and locations, for all forecast targets. Overall, probabilistic 24 
forecast accuracy improved by 64% and 38% and point prediction accuracy by 133% and 87% 25 
for cases and deaths, respectively. Real-time 6-month lead predictions made in early October 26 
2022 suggested large attack rates in most states but a lower burden of deaths than previous 27 

waves during October 2022 – March 2023; these predictions are in general accurate compared 28 
to reported data.  The superior skill of the forecast methods developed here demonstrate 29 
means for generating more accurate long-lead forecast of COVID-19 and possibly other 30 
infectious diseases.  31 
   32 
Author Summary 33 

Infectious disease forecast aims to reliably predict the most likely future outcomes during an 34 
epidemic. To date, reliable COVID-19 forecast remains elusive and is needed to support more 35 
proactive planning. Here, we pinpoint the major challenges facing COVID-19 forecast and 36 
propose three strategies.  Comprehensive testing shows the forecast approach using all three 37 
strategies consistently outperforms a baseline approach without these strategies across 38 
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different variant waves and locations in the United States for all forecast targets, improving the 39 
probabilistic forecast accuracy by ~50% and point prediction accuracy by ~100%. The superior 40 
skills of the forecast methods developed here demonstrate means for generating more 41 

accurate long-lead COVID-19 forecasts. The methods may be also applicable to other infectious 42 
diseases.   43 
 44 
Keywords: COVID-19 forecast; long lead-time; error growth; new variants; infection seasonality 45 
 46 

Main text 47 
INTRODUCTION 48 
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, 49 
causing the coronavirus disease 2019 (COVID-19) pandemic. Since its onset, mathematical 50 
modeling has been widely applied to generate projections of potential pandemic trajectories, 51 
including for cases, hospitalizations, and deaths. These model projections are often based on 52 

specific assumptions (i.e., scenarios) regarding critical factors affecting transmission dynamics. 53 
For example, the scenarios often include a combination of public health policies [e.g., non-54 
pharmaceutical interventions (NPIs) including lockdown/reopening and masking, and 55 
vaccinations], population behavior (e.g., adherence to the policies and voluntary preventive 56 
measures), and anticipated changes in the epidemiological properties of SARS-CoV-2 variants 57 

(1-4). While such efforts have provided overviews of the potential outcomes under various 58 
scenarios, they do not assign likelihoods to the scenarios/projected trajectories, and the most 59 
likely trajectory is typically not known until the outcome is observed. That is, scenario 60 
projection is not equivalent to calibrated infectious disease forecast, which aims to reliably 61 
predict the most likely future outcomes during an epidemic. As COVID-19 will likely remain a 62 

major public health burden in the years to come, sensible forecast of the health outcomes 63 
several months in the future is needed to support more proactive planning.   64 
 65 
Compared to forecast of epidemic infections (e.g., influenza), a number of additional challenges 66 
exist for long-lead COVID-19 forecast.  First, SARS-CoV-2 new variants will likely continue to 67 

emerge and remain a major source of uncertainty when generating COVID-19 forecasts (5, 6). 68 
As has been observed for the major variants of concern (VOCs) reported to date (i.e., Alpha, 69 
Beta, Gamma, Delta, and Omicron), future new variants could arise at any time, could quickly 70 
displace other circulating variants, and could be more contagious than pre-existing variants, 71 
and/or erode prior infection- and/or vaccination-induced immunity to affect underlying 72 
population susceptibility. Further, multiple new variants could arise successively to cause 73 

multiple waves during a time span of, e.g., 6 months. Such frequent emergence and fast 74 
turnover of circulating variants is in stark contrast with epidemic infections. Second, many 75 
infections for other respiratory viruses tend to occur during a certain season of the year and as 76 
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such, the seasonality can be incorporated to improve forecast accuracy (7, 8) as well as restrict 77 
the forecast window to the epidemic season (e.g., influenza during the winter in temperate 78 
regions). Potential seasonality for SARS-CoV-2 is still not well characterized. For instance, in the 79 

US, where larger waves have occurred in the winter during 2020-2022, smaller summer waves 80 
have also occurred (e.g. the initial Delta wave and Omicron subvariant waves; Fig 1). Third, 81 
given the unknown timing of new variant emergence, year-round, long-lead COVID-19 forecast 82 
will likely be needed. These unknowns also necessitate wider parameter ranges using a forecast 83 
ensemble to account for the uncertainty, which over long forecast horizons could lead to 84 

greater error growth and poorer predictive accuracy.  85 
 86 
In this study, we aim to address the above challenges and develop sensible approaches that 87 
support long-lead prediction of COVID-19 epidemic outcomes. We propose three strategies for 88 
improving forecast accuracy and test the methods in combination by generating retrospective 89 
forecasts of COVID-19 cases and deaths in 10 representative states in the US (i.e., California, 90 

Florida, Iowa, Massachusetts, Michigan, New York, Pennsylvania, Texas, Washington, and 91 
Wyoming; Fig 1). Relative to a baseline approach, the  forecast approach based on our 92 
strategies largely improves forecast accuracy (64%/38% higher probabilistic log score for 93 
cases/deaths, and 133%/87% higher point prediction accuracy for cases/deaths, tallied over 94 
25,183 evaluations of forecasts initiated during July 2020 – September 2022, i.e., from the end 95 

of the initial wave to the time of this study). These results highlight strategies for developing 96 
and operationalizing long-lead COVID-19 forecasts with greater demonstrated accuracy and 97 
reliability. In addition, we generate real-time COVID-19 forecasts for October 2022 – March 98 
2023 (roughly covering the 2022-2023 respiratory virus season) and evaluate these forecasts 99 
using data reported 6 months later.  100 

 101 
RESULTS 102 
Proposed strategies for long-lead COVID-19 forecast 103 
To address the three challenges noted above, we propose three strategies in combination. 104 
Details are provided in Methods. Here, we summarize the idea behind each strategy. The first 105 

strategy is to constrain error growth during the extended forecast period. As noted above, the 106 
multiple uncertainties regarding SARS-CoV-2 (e.g., new variant properties) necessitate wider 107 
distributions of the state variables (e.g., population susceptibility) and parameters (e.g., virus 108 
transmissibility) at the point of forecast initiation. With a wider forecast ensemble, some 109 
ensemble members could predict earlier, large outbreaks, which if premature, would deplete 110 
modeled susceptibility and incorrectly preclude outbreaks later on. More generally, like other 111 

infections, COVID-19 epidemics often grow exponentially at first, triggering exponential 112 
changes in susceptibility and other state variables, which in turn feed back on the longer 113 
epidemic trajectory. Such infectious disease dynamics imply forecast error can also grow 114 
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exponentially, leading to accelerated degradation of forecast accuracy after the first few weeks. 115 
To counteract this exponential error growth, we propose to apply a multiplicative factor γ <1 to 116 
the covariance of the forecast state variables (e.g., susceptibility) while retaining the ensemble 117 

mean (see Methods). In so doing, we can represent initial uncertainty with a broad forecast 118 
ensemble while countering excessive error growth of the state variables. This strategy is similar 119 
to covariance inflation during system optimization (9, 10), where a γ >1 is applied to the 120 
covariance to counteract over-narrowing of the model ensemble. Since here it acts in the 121 
opposite direction, we refer to this technique as deflation.  Fig 2A shows example forecasts 122 

with deflation compared to without it.  123 
 124 
The second strategy is to anticipate the impact of new variants. Genomic sequencing data can 125 
support prediction of the impact of a new variant a few weeks in the future (see Methods and 126 
the SI); however, variant displacement and competition dynamics can occur unexpectedly 127 
beyond those first few weeks, rendering historical data less relevant. Thus, for weeks farther in 128 

the future, instead of predicting specific new variants, we propose to use a set of heuristic rules 129 
to anticipate their likely emergence timing and impact on population susceptibility and virus 130 
transmissibility. Specifically, for the timing, we reason that new variants are more likely to 131 
emerge/circulate 1) after a large local wave when more infections could lead to more 132 
mutations, which could be timed based on local outbreak intensity during the preceding 133 

months; and 2) during a time when a large part of the world is experiencing a large wave, which 134 
also could lead to new mutations. For instance, in the US, this could be during the winter when 135 
local large waves tend to occur, or the summer when places in the southern hemisphere are 136 
amid their winter waves. As such, this could be timed based on the calendar. For the new 137 
variant impact, we observe that, new variant circulation often results in gradual increases in 138 

susceptibility (e.g., a few percentages per week, based on estimates from New York City during 139 
VOC waves), possibly due to the substantial population immunity accumulated via infections 140 
and vaccinations.  Similarly, changes in transmissibility also tend to occur gradually. As such, we 141 
propose to apply small increases to the model population susceptibility and transmissibility 142 
during those two plausible times. The rationale here is to anticipate the more common, non-143 

major changes so as not to overpredict, because major VOCs causing dramatic changes are 144 
rarer and difficult to predict. Fig 2B shows example forecasts with these new variant settings 145 
compared to without them.  146 
 147 
The third strategy accounts for seasonality. Instead of assuming a specific epidemic timing, we 148 
model the seasonal risk of SARS-CoV-2 infection based on plausible underlying drivers of 149 

infection seasonality for common respiratory viruses. Specifically, studies have shown that 150 
respiratory viruses including SARS-CoV-2 are sensitive to ambient humidity and temperature 151 
conditions, which could in turn modulate their survival and transmission (11-15). Accordingly, 152 
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we developed a climate-forced model that includes both humidity and temperature to capture 153 
the reported virus response and parameterized the model based on long-term epidemic data 154 
observed for influenza (16). When modified and applied to account for SARS-CoV-2 seasonality 155 

in a model-inference framework, the estimated seasonal trends are able to capture the effects 156 
of different climate conditions (e.g., for UK, Brazil, India, and South Africa (17-19)). Here, we 157 
thus propose to apply this model and local climate data to estimate SARS-CoV-2 seasonality in 158 
each location (referred to as “fixed seasonality”; see estimates for the 10 states in Fig S1). In 159 
addition, as the model is parameterized based on influenza data, this estimated seasonality 160 

could differ from the true SARS-CoV-2 seasonality. To test this, we propose an alternative 161 
seasonality form that transforms the fixed seasonality trend to allow a more flexible phase 162 
timing and structure of seasonality (referred to as “transformed seasonality”; see details in the 163 
SI and examples for the 10 states in Fig S1). Fig 2C shows a comparison of the two seasonality 164 
forms and example forecasts with no seasonality and the two seasonality forms.   165 
 166 

We test the above three strategies in combination, including three deflation settings (i.e., 167 
setting γ = 1, 0.95, and 0.9), two new variant settings (i.e., assuming no new variants vs. 168 
anticipating new variants per the rules noted above), and three seasonality settings (i.e., no, 169 
fixed, and transformed seasonality): in total, 12 (= 3 × 2 × 3) forecast approaches. To compare 170 
the performance of the 12 forecast approaches, we generated retrospective forecasts for 10 171 

states, from July 2020 – August 2021 (Pre-Omicron period; 65 weeks in total) and December 172 
2021 – September 2022 (Omicron period; ~37 weeks). For each week, a forecast for the 173 
following 26 weeks (~6 months) is generated after model training using data up to the week of 174 
forecast. We then evaluate the accuracy predicting the weekly number of cases and deaths 175 
during each of the 26 weeks (i.e. 1- to 26-week ahead prediction), as well as the peak timing 176 

(i.e. the week with the highest cases/deaths), peak intensity, cumulative number of cases and 177 
deaths over the 26 weeks.  178 
 179 
For the forecast comparisons below, we evaluated probabilistic forecast accuracy using log 180 
score, i.e., the logarithm of the probability correctly assigned to the true target (see Methods 181 

and SI).  We also evaluated point prediction accuracy – assigning value 1 (i.e., accurate) to a 182 
forecast if the point prediction is within ±25% of the observed case/death count or within ±1 183 
week of the observed peak week, and 0 (i.e., inaccurate) otherwise; as such, when averaged 184 
over all forecasts, this accuracy gives the percentage of forecasts a point prediction is accurate 185 
within these tolerances. Thus, both higher log score and higher point prediction accuracy 186 
indicate superior forecast performance.  187 

 188 
The impact of deflation 189 
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Compared to forecasts with no deflation (γ = 1), applying a small deflation (γ = 0.95 or 0.9) 190 
consistently improves forecast performance (Fig 3, first two panels).  This improvement is 191 
evident across all locations and combinations of the other two model settings (i.e., new variants 192 

and seasonality). The improvement is most pronounced for the long-lead (i.e., 17- to 26-week 193 
ahead) weekly forecasts and overall intensity-related targets (i.e., the totals accumulated over 194 
26 forecast weeks and peak intensity; Figs S2-3), indicating deflation is able to effectively 195 
reduce error growth accumulated over time. We note that, as deflation works by reducing 196 
forecast spread, the forecast ensemble can also become under-dispersed, assign zero 197 

probability to the true target (most notably, for peak week), and in turn produce a lower log 198 
score (see Fig S2, the 3rd row of each heatmap for peak week). Given this trade-off, we did not 199 
test deflation factors <0.9.   200 
 201 
Overall, relative to forecasts without deflation (γ = 1), log scores aggregated over all locations 202 
and targets were 18 – 20% higher for forecasts of cases (range of relative change across all 203 

combinations of the other two model settings; Table S1) and 7 – 8% higher for forecasts of 204 
mortality when a deflation factor γ of 0.95 was applied. The log scores further increased when 205 
using γ = 0.9, to 34 – 43% higher (than γ = 1) for forecasts of cases and 13 – 17% higher for 206 
forecasts of mortality. The improvement of point prediction accuracy was more pronounced. 207 
Aggregated over all locations and targets, point prediction accuracy was 33 – 63% higher for 208 

forecasts of cases and 24 – 40% higher for forecasts of mortality when using a deflation factor γ 209 
of 0.9, relative to using no deflation (Table S1).  As such, we use γ = 0.9 as the best-performing 210 
setting for subsequent analyses.   211 
 212 
Impact of the new variant settings 213 

To ensure consistency and avoid over-fitting, we applied the same set of heuristic rules on new 214 
variant emergence timing and impact, as noted above, throughout the entire study period (i.e., 215 
including weeks before the emergence of SARS-CoV-2 VOCs). We expect the new variant 216 
settings to improve forecast performance during VOC waves but have a less pronounced or no 217 
effect during the 2nd wave (roughly, fall/winter 2020 – 2021), prior to VOC emergence.  Indeed, 218 

overall, for the 2nd wave, forecast systems with the new variant settings (referred to as “new 219 
variant model”) had similar performance as those assuming no new variants (relative changes 220 
in log score and accuracy: -2% to 0.6%, Table S2; Fig 4). However, for the VOC waves, applying 221 
the new variant settings improved forecast performance during the Alpha wave (roughly, spring 222 
2021), Delta wave (roughly, summer/fall 2021), and Omicron wave (after December 2021; note 223 
no further desegregation was made for Omicron subvariant waves due to small sample sizes; 224 

Fig 4).  For forecasts of cases, the improvement was consistently seen for all three VOC waves 225 
(relative changes in log score and accuracy all > 0, Table S2). The relative increases of log score 226 
were up to 119% during the Delta wave and up to 37% during the Omicron wave; the relative 227 
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increases of point prediction accuracies were up to 89% during the Delta wave and up to 96% 228 
during the Omicron wave (Table S2 and Fig 4).  229 
 230 

For forecasts of mortality, the new variant model had higher log scores during the Alpha and 231 
Delta waves, as well as higher point prediction accuracies during all three VOC waves (Table S2). 232 
However, log scores during the Omicron wave were similar for both models (e.g., overall log 233 
scores: -0.22 for the new variant model and -0.17 for the baseline, both assuming no 234 
seasonality); in addition, the log scores were slightly lower for the new variant model, likely due 235 

to the lower COVID-19-associated deaths during the Omicron wave.  236 
 237 
Aggregated over all waves, targets, and locations, the new variant model had 17 – 34% and 3 –238 
8% higher log scores and 23 – 28% and 22 – 25% higher point prediction accuracies for 239 
forecasts of cases and deaths, respectively.  240 
 241 

Impact of seasonality forms 242 
Based on the above results, we focus on forecasts generated using the new variant model with 243 
a deflation factor of 0.9 to examine the three approaches to forecasting the effects of 244 
seasonality. As noted above, seasonality aims to capture changes in infection risk in response to 245 
environmental conditions (here, ambient humidity and temperature); for common respiratory 246 

viruses (e.g., influenza), infection risk in temperate regions is often higher during cold-dry 247 
winter months (i.e., respiratory virus season, roughly mid-October to mid-April in the US), and 248 
lower during the rest of the year (i.e., off season). Both the fixed and transformed seasonality 249 
models consistently improved forecast performance during the respiratory virus season relative 250 
to the no seasonality approach across all locations and targets (Fig 5A for log score and 5B for 251 

point prediction accuracy, first two panels; Table S3). However, if only analyzing the off season, 252 
both models had worse performance compared to the model assuming no seasonality (Fig 5, 4th 253 
and 5th panels). Segregating the forecasts made for the off season by wave shows that both 254 
seasonality models continued to outperform the no seasonality model during summer/fall 2020 255 
(grouped with the 2nd wave); worse performance occurred during summer/fall 2021 (the Alpha 256 

and Delta waves) and summer 2022 (Omicron subvariants; Table S3). These results suggest that 257 
the seasonality models are able to capture the seasonal risk of SARS-CoV-2 infection, and that 258 
the degraded performance during the off season may be due to challenges anticipating the 259 
initial surge of VOCs occurring during those times.   260 
 261 
Tallied over all time periods, in general, the seasonality models outperformed the no 262 

seasonality model (Table S3 for all locations combined and Table S4 for each location). 263 
Comparing the two seasonality forms, the transformed seasonality model outperformed the 264 
fixed seasonality model overall (Table S3). Compared to the no seasonality model, the 265 
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transformed seasonality had 14% higher log score for forecasts of mortality, and 26% and 18% 266 
higher point prediction accuracies for cases and mortality, respectively (Table S3). As noted 267 
above, the improvement during the respiratory virus season was more substantial (Tables S3 268 

and S4; Fig 5).  269 
 270 
Combined impact of deflation, new variant settings, and seasonality forms 271 
We now examine the forecast performance using the combined best-performing approach (i.e., 272 
applying deflation with γ = 0.9, the new variant rules, and the transformed seasonality form), 273 

compared to the baseline approach (i.e., no deflation, no new variants, and no seasonality). In 274 
addition to the large uncertainties surrounding SARS-CoV-2 (e.g., new variants), there are also 275 
large spatial heterogeneities. For example, across the 10 states included here, population 276 
density ranged from 6 people per square mile in Wyoming to 884 per square mile in 277 
Massachusetts (2020 data (20)); climate conditions span temperate (e.g., New York) and 278 
subtropical climates (e.g., Florida; Fig S1). Given the uncertainties and spatial heterogeneities, 279 

the robustness of any forecast approach is particularly important.  280 
 281 
First, we examine the consistency of forecast performance over different variant periods. 282 
During the pre-Omicron period (here, July 2020 – Dec 2021), the combined approach 283 
consistently outperformed the baseline approach across all states, for both forecasts of cases 284 

and deaths (Fig 6A); log scores improved by 85% overall for cases (range from 39% in 285 
Washington to 134% in Florida) and by 62% overall for deaths (range from 24% in Washington 286 
to 117% in Florida; Table 1). During the Omicron period (here, Dec 2021 – September 2022), 287 
improvements were smaller but consistent across the 10 states for forecast of cases (Fig 6A; 288 
note that only 16-20 forecasts of long-lead targets were evaluated here, as observations are 289 

incomplete); as noted above, due to the much lower mortality during the Omicron period, both 290 
the best-performing and baseline forecasts of mortality had similar log scores (e.g., median 291 
difference = -0.02, Table 1). The overall consistency of the performance indicates that the best-292 
performing forecast approach is robust for forecasting long-lead COVID-19 epidemic outcomes 293 
for different variants.  294 

 295 
Second, we examine the forecast performance during the US respiratory virus season (here, 296 
mid-October to mid-April) when larger COVID-19 waves have occurred. Tallied over all weeks 297 
during the respiratory virus season, the best-performing approach outperformed the baseline 298 
approach for all 10 states (Fig 6B); log scores increased by 105% for cases (range from 32% in 299 
Washington to 213% in Massachusetts) and by 85% for mortality (range from 19% in 300 

Washington to 158% in Iowa; Table 1). During the off season, the best-performing approach 301 
also generally outperformed the baseline approach (Table 1).  302 
 303 
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Third, we examine the accuracy predicting different epidemic targets. The best-performing 304 
forecast approach consistently improved point prediction accuracy for all targets for all 10 305 
states (Fig 7 and Table 2). In addition, the improvement was more substantial for long-lead 306 

targets (e.g., 9- to 16-week ahead and 17- to 26-week ahead forecasts, peak week, peak 307 
intensity, and the cumulative totals). For instance, the best-performing approach increased 308 
accuracy from 24% to 42% (35% to 56%) predicting the peak week of cases (deaths), from 20% 309 
to 40% (30% to 50%) predicting the peak intensity of cases (deaths), roughly a 2-fold 310 
improvement for these two long-lead targets. The improvements were even more substantial 311 

for 17-26 week ahead forecasts and the cumulative totals over the entire 26 weeks (by 3- to 22-312 
fold, Fig 7 and Table 2).  We note the forecasts here were generated retrospectively with 313 
information that may not be available in real time and thus likely are more accurate as a result. 314 
Nonetheless, with the same information provided to both forecast approaches, the comparison 315 
here demonstrates the large improvement in forecast accuracy using the best-performing 316 
forecast approach. 317 

  318 
Forecast performance compared with ARIMAX models 319 
To benchmark the performance of the forecast approaches developed here, we also generated 320 
retrospective forecasts using Auto-Regressive Integrated Moving Average (ARIMA) models. 321 
Compared to the best-performing ARIMAX model (identified from 5 models with different 322 

settings; see Methods and Table S5), our baseline approach (i.e., no deflation, no new variants, 323 
and no seasonality) performed similarly well whereas our best-performing approach (i.e., 324 
applying deflation with γ = 0.9, the new variant rules, and the transformed seasonality form) 325 
had much superior performance (Table S6). 326 
  327 

Forecast for the 2022 – 2023 respiratory virus season 328 
Figs 8-9 present real-time forecasts of October 2022 – March 2023 for the 10 states, and Table 329 
S7 shows a preliminary accuracy assessment based on data obtained on March 31, 2023. 330 
Accounting for under-detection, large numbers of infections (i.e., including undocumented 331 
asymptomatic or mild infections) were predicted in the coming months for most states; 332 

predicted attack rates over the 6-month prediction period ranged from 16% (IQR: 7 – 31%) in 333 
Florida to 30% (IQR: 15 – 47%) in Massachusetts (Fig 9). Relatively low case numbers and fewer 334 
deaths at levels similar to or lower than previous waves were forecast, assuming case 335 
ascertainment rates and infection-fatality risks similar to preceding weeks (Fig 9). Compared to 336 
data reported 6 months later (i.e., not used in the forecasts), the weekly forecasts in general 337 
captured trajectories of reported weekly cases over the 6 months for all 10 states (Fig 8, middle 338 

column for each state) but under-predicted deaths for half of the states (i.e., New York, 339 
Massachusetts, Michigan, Wyoming, and Florida; Fig 8, right column for each state). For the 340 
cumulative totals, predicted IQRs covered reported tallies in all 10 states for cases and the 341 
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majority of states for deaths, while the 95% predicted intervals covered reported cumulative 342 
cases and deaths in all states (Fig 9).  343 
 344 

DISCUSSION 345 
Given the uncertainties surrounding future SARS-CoV-2 transmission dynamics, it is immensely 346 
challenging to accurately predict long-lead COVID-19 epidemic outcomes. Here, we have 347 
proposed three strategies for sensibly improving long-lead COVID-19 forecast. Retrospective 348 
forecast accuracy is substantially improved using the three strategies in combination during 349 

both the pre-Omicron and Omicron periods, including for long-lead targets 6 months in the 350 
future. This improvement is consistent among 10 representative states across the US, indicating 351 
the robustness of the forecast method.  352 
 353 
Our first strategy addresses the accumulation of forecast error over time. The simple deflation 354 
method proposed here substantially improves forecast accuracy across different model settings 355 

(here, different new variant and seasonality forms), time periods (pre-Omicron vs Omicron), 356 
and locations (different states). This consistent improvement indicates that deflation is 357 
effective in constraining outlier ensemble trajectories. Albeit possibly a severer issue for SARS-358 
CoV-2 due to larger uncertainties and less constrained parameter estimates, error growth is a 359 
common challenge in forecasts of infectious diseases not limited to COVID-19 (21, 22). Future 360 

work could examine the utility of deflation in improving forecast accuracy for other infectious 361 
diseases.  362 
 363 
Another challenge facing COVID-19 forecast derives from the uncertainty associated with new 364 
variant emergence. Based on past epidemiological dynamics of and population response to 365 

SARS-CoV-2 VOCs, we proposed a simple set of heuristic rules and applied them universally 366 
across time periods and locations. Despite their simplicity, the results here show that these 367 
heuristics substantially improved forecast accuracy compared to forecasts generated without 368 
them. These findings suggest that, while it is challenging to forecast the emergence of specific 369 
variants, the timing of future variant emergence and the impacts on key epidemiological 370 

characteristics (i.e., population susceptibility and virus transmissibility) can be learned from 371 
past VOC waves and used to support more accurate forecast. Much uncertainty remains 372 
regarding future SARS-CoV-2 genomic evolution and population immunity; however, the 373 
heuristics proposed here represent a first step anticipating the dynamic interplay of SARS-CoV-2 374 
new variants and population immunity. Continued work to test the robustness of these 375 
heuristics as SARS-CoV-2 and population immunity continue to co-evolve is thus warranted.   376 

 377 
The third focus of this study is seasonality. Several prior studies have examined the potential 378 
seasonality of COVID-19, using methods such as time series analyses, regression models, and 379 
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sinusoidal functions (23-25). However, the underlying mechanisms and likely nonlinear 380 
response to seasonal drivers are not fully characterized. Several concurrent changes including 381 
case ascertainment rate, NPIs and voluntary behavioral changes, and new variants further 382 

complicate such characterization.  Here, we used local weather data along with a mechanistic 383 
model previously developed for influenza (16, 17) to capture the nonlinear response of 384 
respiratory virus survival/transmission to humidity and temperature. In addition, we tested an 385 
alternative seasonality form given the likely differences between SARS-CoV-2 and influenza 386 
(e.g., likely higher infection risk for SARS-CoV-2 than influenza during the summer).  When 387 

incorporated in a model-inference framework and forecast system, forecasts with both 388 
seasonality forms outperformed their counterpart without seasonality. Importantly, 389 
improvements during the respiratory season were consistent throughout the pandemic, 390 
including for the VOC waves, as well as for all 10 states with diverse climate conditions (Table 391 
S4 and Fig S1). These findings indicate the robustness of the seasonality functions and the 392 
importance of incorporating seasonality in COVID-19 forecast. More fundamentally, the results 393 

support the idea that a common set of seasonal environmental/climate conditions influence 394 
the transmission dynamics of respiratory viruses, including but not limited to SARS-CoV-2 and 395 
influenza. Among the 10 states tested here, the transformed seasonality function tended to 396 
outperform the fixed seasonality function based on parameters estimated for influenza, except 397 
for Massachusetts and Michigan (Table S4). This difference in performance suggests there are 398 

likely nuances in the seasonality of different respiratory viruses despite shared general 399 
characteristics.  400 
   401 
To focus on the above three challenges, in our retrospective forecasts, we used data/estimates 402 
to account for several other factors shaping COVID-19 dynamics. These included behavioral 403 

changes (including those due to NPIs), vaccination uptake, changing detection rates and hence 404 
case ascertainment rate, as well as changes in infection fatality risk due to improvement of 405 
treatment, vaccination, prior infection, and differences in the innate virulence of circulating 406 
variants. For real-time forecast, such data and estimates would likely not be available and thus 407 
forecast accuracy would likely be degraded. Nonetheless, as societies emerge from the acute 408 

pandemic phase, many of these factors would likely reach certain norms (e.g., a relative stable 409 
fraction of the population may continue to adopt preventive measures and detection rates may 410 
stay low), reducing these uncertainties.  Thus, though demonstrated mainly retrospectively, the 411 
superior skill of the forecast methods developed here demonstrate means for generating more 412 
accurate and sensible long-lead COVID-19 forecasts.   413 
 414 

METHODS 415 
Data used for model calibration 416 
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We used COVID-19 case and mortality data (26) – adjusted for circulating variants (27, 28) – to 417 
capture transmission dynamics, mobility data (29) to represent concurrent NPIs, and 418 
vaccination data (30, 31) to account for changes in population susceptibility due to vaccination.  419 

For models including seasonality, we used weather data (i.e., temperature and humidity)(32, 420 
33) to estimate the infection seasonality trends.  See detailed data sources and processing in 421 
the SI.  422 
 423 
Model calibration before forecast generation (i.e. inference)  424 

The model-inference system is similar to systems we developed to estimate changes in 425 
transmissibility and immune erosion for SARS-CoV-2 VOCs including Alpha, Beta, Gamma, Delta, 426 
and Omicron (17-19). However, to account for the fast waning of vaccine protection against 427 
infection and differential vaccine effectiveness (VE) against different variants, here we 428 
additionally accounted for variant-specific VE and waning vaccine protection against infection 429 
per Eqn 1: 430 

 431 
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(Eqn 1) 432 

 433 
where S, E, I, R are the number of susceptible, exposed (but not yet infectious), infectious, and 434 

recovered/deceased individuals; N is the population size; and ε is the number of travel-435 
imported infections. To account for changes due to circulating variants, Eqn 1 includes a time-436 
varying transmission rate G', latency period Zt, infectious period Dt, and immunity period Lt. To 437 
account for the impact of NPIs, Eqn 1 uses the relative population mobility (mt) to adjust the 438 
transmission rate and a scaling factor (et) to account for potential changes in effectiveness. To 439 
account for vaccination and waning, V is the number of individuals vaccinated and protected 440 

from infection, H;,'  is the number of individuals immunized after the k-th dose at time t and ρτ 441 

is the probability of losing vaccine protection τ days post vaccination (see SI and Table S5). As 442 

described below, I'  is the seasonal infection risk at time t, depending on the seasonality 443 
setting.  We further computed the number of cases and deaths each week to match with the 444 
observations using the model-simulated number of infections occurring each day (see the SI).  445 
 446 
We ran the model jointly with the ensemble adjustment Kalman filter (EAKF (34)) and weekly 447 

COVID-19 case and mortality data to estimate the model state variables (e.g., S, E, and I) and 448 
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parameters (e.g., G', Zt, Dt, Lt, et). Briefly, the EAKF uses an ensemble of model realizations 449 
(n=500 here), each with initial parameters and variables randomly drawn from a prior range 450 
(Table S5). After model initialization, the system integrates the model ensemble forward in time 451 

for a week (per Eqn 1) to compute the prior distribution for each model state variable, as well 452 
as the model-simulated number of cases and deaths for that week.  The system then combines 453 
the prior estimates with the observed case and death data for the same week to compute the 454 
posterior per Bayes' theorem (34). In addition, as in (17-19), during the filtering process, we 455 
applied space-reprobing (35), i.e., random replacement of parameter values for a small fraction 456 

of the model ensemble, to explore a wider range of parameter possibilities (Table S5). The 457 
space-reprobing algorithm, along with the EAKF, allows the system to capture potential 458 
changes over time (e.g., increased detection for variants causing more severe disease, or 459 
increases in population susceptibility and transmission rate due to a new variant).  460 
 461 
Variations in forecast systems (deflation, new variant, and seasonality settings)  462 

In total, 12 forecast approaches were tested (3 deflation levels × 2 new variants settings × 3 463 
seasonality forms). The deflation algorithm is patterned after covariance inflation, as used in 464 
filtering methods (9, 10). However, unlike inflation applied during filtering (i.e., the model 465 
training period via data assimilation), deflation is applied during the forecast period.  As the 466 
state variables change dynamically per the epidemic model (i.e., Eqn 1), the error of some 467 

epidemic trajectories can amplify exponentially over time.  Thus, here we applied deflation only 468 
to the state variables (i.e., not to the model parameters), per: 469 

JK
%.L = M(JK − J̅) + J̅, Q = 1,… , T  (Eqn 2) 470 

where xi is i-th ensemble member of a given state variable (here, S, E, or I) at each time step 471 

during the forecast period, before the deflation; JK
%.L is the corresponding “deflated” value; γ is 472 

the deflation factor; and J̅ is the ensemble mean of the state variable. Per Eqn 2, deflation 473 
retains the ensemble mean, while reducing the ensemble spread to constrain error 474 
accumulation.  In this study, we tested three levels of deflation, by setting γ to 1 (i.e., no 475 
deflation), 0.95, and 0.9, separately.  476 

 477 
To anticipate and account for potential surges and their impact on COVID-19 epidemic 478 
outcomes, we tested two approaches. The first, baseline approach simply assumes there are no 479 
changes in the circulating variant during the forecast period. For this approach, the forecasts 480 
were generated using the latest population susceptibility and transmission parameter estimates 481 

at the point of forecast initiation. For the second, new variant approach, we devised a set of 482 
heuristics to anticipate the likely timing and impact of new variant emergence during the 483 
forecast period, as detailed in the SI.  484 
 485 
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Seasonality is incorporated in the epidemic model (Eqn 1) and applied throughout the model 486 
calibration (i.e., inference) and forecast periods.  Here, we tested three seasonality settings. 487 
The first assumes no changes in seasonal risk of infection, by setting bt in Eqn 1 to 1 for all 488 

weeks (referred to as “no seasonality”). The second seasonality form (termed “fixed 489 
seasonality) estimates the relative seasonality trend (bt, same as in Eqn 1) using local humidity 490 
and temperature data, based on the dependency of respiratory virus survival, including that of 491 
SARS-CoV-2, to temperature and humidity (12, 17, 18, 36); see Eqn 3 and details in the SI.  The 492 
third seasonality setting (termed “transformed seasonality”) transforms the bt estimates to 493 

allow flexibility in the seasonal trend, including the peak timing, the number of weeks during a 494 
year with elevated infection risk, and the lowest risk level (see Eqn 4 and details in the SI). Due 495 
to the lack of SARS-CoV-2 data to inform the parameter estimates, here we opted to optimize 496 
the range for each parameter and used the best parameter ranges (see the SI and Fig S5) in the 497 
transformed seasonality model in the main analysis.   498 
 499 

Retrospective forecast 500 
We tested the above 12 model-inference and forecast approaches (3 deflation levels × 2 new 501 
variants settings × 3 seasonality forms) for 10 states, i.e., California, Florida, Iowa, 502 
Massachusetts, Michigan, New York, Pennsylvania, Texas, Washington, and Wyoming. The 10 503 
states span the 10 Health and Human Services (HHS) regions across the US, representing a wide 504 

range of population characteristics and COVID-19 pandemic dynamics (Fig 1). For all states, we 505 
generated retrospective forecasts of weekly cases and deaths 26 weeks (i.e., 6 months) into the 506 
future for the non-Omicron period and the Omicron period, separately. For the non-Omicron 507 
period, we initiated forecasts each week from the week of July 5, 2020 (i.e., after the initial 508 
wave) through the week of August 15, 2021. Note that because each forecast spans 6 months, 509 

the last forecasts initiated in mid-August 2021 extend to mid-Feb 2022, covering the entire 510 
Delta wave (see Supplemental text for details). For the Omicron period, we initiated forecasts 511 
starting 5 weeks after local detection of Omicron BA.1 (roughly in early December 2021, 512 
depending on local data) through the week of September 25, 2022 (i.e., the last week of this 513 
study).   514 

 515 
To generate a forecast, we ran the model-inference system until the week of forecast, halted 516 
the inference, and used the population susceptibility and transmissibility of the circulating 517 
variant estimated at that time to predict cases and deaths for the following 26 weeks (i.e., 6 518 
months). Because the infection detection rate and infection-fatality risk are linked to 519 
observations of cases and deaths (see the SI), changes of these quantities during the forecast 520 

period could obscure the underlying infection rate and forecast accuracy. Thus, for these two 521 
parameters specifically, we used available model-inference estimates for corresponding 522 
forecast period weeks to allow comparison of model-forecast cases and deaths with the data 523 
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while focusing on testing the accuracy of different model settings (e.g., seasonality and new 524 
variant settings). For the same reason, we used all available mobility and vaccination data 525 
including those for the forecast period, which would not be available in real time. For weeks in 526 

the future without data/estimates, we used the latest estimates instead.  To account for model 527 
and filter stochasticity, we repeated each forecast 10 times, each time with initial parameters 528 
and state variables randomly drawn from the same prior ranges.  529 
 530 
To evaluate forecast performance, we computed both the log score based on the probabilistic 531 

forecast and the accuracy of point prediction for 1) 1- to 26-week ahead prediction, and 2) peak 532 
week, 3) peak intensity, and 4) cumulative total over the 26-week forecast period, for cases and 533 
deaths, separately. Details are provided in the SI.  Here, in brief, to compute the log score, we 534 
first binned the forecast ensemble to generate the forecast probability distribution Pr(J), and 535 
took the logarithm of the sum of Pr(J) across all related bins including the one including the 536 
observation (IQT∗) and two adjacent ones (IQT∗9? and IQT∗X?):  537 

log \]^_` = log[Pr(J)b∈-Kd∗ + Pr(J)b∈-Kd∗ef + Pr(J)b∈-Kd∗gf]  (Eqn 5) 538 
 539 
For the accuracy of point prediction, we deemed a forecast accurate (assigned a value of 1) if 540 

the median of the forecast ensemble is within ±1 week of the observed peak week or within 541 
±25% of the observed case/death count, and inaccurate (assigned a value of 0) otherwise. As 542 
noted above, when aggregated over multiple forecasts, the average would represent the 543 
percentage of time a point prediction is accurate within these tolerances. 544 
 545 
We compared the performance of each forecast approach (i.e., each of the 12 combinations of 546 

deflation, new variant setting, and seasonality form) overall or by forecast target, segregated by 547 
time period or respiratory virus season.  To compute the overall score for each stratum, we 548 
took the arithmetic mean of the log score or point prediction accuracy of forecasts generated 549 
by each forecast system, either across all forecast targets or for each target, over 1) all forecast 550 
weeks during the entire study period (i.e., July 2020 – September 2022), 2) the pre-Omicron 551 

period and Omicron period, separately, 3) the respiratory virus season (mid-October to mid-552 
April, 6 months) and off season (the remaining 6 months), separately.  553 
 554 
For pairwise comparison of forecast approaches, we computed the difference of log score or 555 
accuracy by simple subtraction of the two arithmetic-means. Relative difference was also 556 

computed. For the log score, the percent relative difference was computed as: 557 
%	_`jklQ:`	mQnn`_`T]`	QT log \]^_` =558 

opq	(/.rd	 stu vwxy.	xL	vzv'./	r)9opq	(/.rd stu vwxy.	xL	vzv'./	-)

opq	(/.rd stu vwxy.	xL	vzv'./	-)
× 100%  (Eqn 6) 559 

As noted in (37), the exponent of the mean log score (Eqn 5) can be interpreted as the 560 
probability correctly assigned to the bins containing the observations; thus Eqn 6 gives the 561 
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relative difference in the correctly assigned forecast probability. The percent relative difference 562 
in accuracy of point prediction was computed as: 563 

%	_`jklQ:`	mQnn`_`T]`	QT	k]]}_k]~ = 564 
/.rd	rww�yrwz	xL	vzv'./	r9/.rd	rww�yrwz	xL	vzv'./	-

/.rd	rww�yrwz	xL	vzv'./	-
× 100% (Eqn 7) 565 

 566 
In addition, we also computed the pair-wised difference of log score or accuracy (paired by 567 
forecast week for each target and location) and used boxplots to examine the distributions 568 
(see, e.g., Fig 6). We used the Wilcoxon rank sum test, a non-parametric statistical method, to 569 

test whether there is a difference in the median of the pair-wised differences (38).   570 
 571 
ARIMAX model forecast for comparison with approaches developed in this study 572 
Auto-Regressive Integrated Moving Average (ARIMA) models and ARIMAX models (X represents 573 
external predictors) are commonly used to forecast different outcomes. For comparison with 574 
the approaches developed here, we also tested five ARIMA(X) models and used them to 575 

generate retrospective forecasts per the same procedure described above. The first model (i.e., 576 
simple ARIMA model) used weekly case or mortality data alone for model training. The 577 
remaining four models were ARIMAX models: 1) using case/mortality data and mobility data 578 
including for the forecast period (i.e., X = mobility; referred to as “ARIMAX.MOB”); 2) using 579 
case/mortality data and the estimated seasonal trend from the fixed seasonal model (i.e., X = 580 

seasonality; referred to as “ARIMAX.SN”); 3) using case/mortality data, mobility data, and the 581 
estimated seasonal trend (i.e., X = mobility and seasonality; referred to as “ARIMAX.MS”); and 582 
4) using case/mortality data, mobility data, the estimated seasonal trend, and vaccination data 583 
(i.e., X = mobility, seasonality, and vaccination; referred to as “ARIMAX.FULL”). For vaccination, 584 
to account for the impact accumulated over time, we used cumulative vaccinations (here, in the 585 

past 3 months for cases, and the past 9 months for deaths).  For model optimization, we used 586 
the “auto.arima” function of the “forecast” R package (39), which searches all possible models 587 
within the specified order constraints (here, we used the default settings) to identify the best 588 
ARIMA(X) model (here, based on the corrected Akaike information criterion by default).   589 
 590 

For the five model forms, the ARIMAX.FULL model (i.e., including mobility, seasonality, and 591 
vaccination) was only able to generate forecasts for less than half of the study weeks as the 592 
auto.arima function was unable to identify parameters for this model. The other four models 593 
were able to generate forecasts for most study weeks and across the entire study period, the 594 
ARIMAX.SN (i.e., seasonality included) performed the best (see Table S5). As such, we used the 595 
ARIMX.SN model as a benchmark model for comparison with approaches developed in this 596 

study.   597 
 598 
Preliminary assessment of real-time forecasts for the 2022 – 2023 respiratory virus season.  599 
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The last forecasts in this study were generated using all available data up to the week starting 600 
October 2, 2022 and spanned 6 months through the week starting March 26, 2023. These were 601 
real-time forecasts generated without future information. We assess these real-time forecasts 602 

using data downloaded on March 31, 2023 (1 day after the data release). Since these data may 603 
be revised in the future (n.b. data revision after the initial release has been common), we 604 
consider the assessment preliminary. As detailed in the SI, we used case and mortality data 605 
from the New York Times (NYT; (26)) for model calibration prior to generating the forecasts. 606 
However, in the six months since the initial study, NYT data have become more irregular for 607 

some states, likely due to infrequent data reporting and updating. As such, for this preliminary 608 
assessment, we instead used data from the Centers for Disease Control and Prevention 609 
(CDC)(40), except for mortality in Washington State for which the CDC data appeared to be 610 
misdated whereas NYT data and mortality data from the Center for Systems Science and 611 
Engineering (CSSE) at Johns Hopkins University (41) were consistent with each other. In 612 
addition, the CDC data were aggregated for each week from Thursday to Wednesday, rather 613 

than Sunday to Saturday. To enable the comparison, we thus shifted the dates of the CDC data 614 
3 days.  615 
 616 
All inference, forecast, and statistical analyses were carried out using the R language 617 
(https://www.r-project.org).  618 
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Figure and Table Captions 
Fig 1. Geospatial distribution of the 10 states and overall COVID-19 outcomes. Heatmaps show 
reported cumulative COVID-19 incidence rates (A) and COVID-19-associated mortality rates (B) 
in the 10 states included in this study. Line plots show reported weekly number of COVID-19 
cases (C) and COVID-19-associated deaths (D) during the study period, for each state.  
 

Fig 2. Example forecasts. Vertical dashed lines indicate the week of forecast. Dots show 
reported weekly cases per 1 million people; only those to the left of the vertical lines are used 
to calibrate the model and those to the right of the vertical lines are plotted for comparison. 
Blue lines and blue areas (line = median; darker blue = 50% CI; lighter blue = 80% CI) show 
model training estimates.  Red lines and red areas (line = median; dark red = 50% CI; lighter red 
= 80% CI) show model forecasts using model settings as labeled in the subtitles. 
 
Fig 3. Impact of deflation on forecast performance. Heatmaps show the differences in mean log 
score (A) or point prediction accuracy (B) between all forecast approaches with different 
deflation settings (deflation factor γ = 0.95 vs none in the 1st column, 0.9 vs none in the 2nd 
column, and 0.9 vs 0.95 in the 3rd column; see panel subtitles). Results are aggregated for each 
forecast approach (see specific settings of new variants and seasonality in the y-axis labels) and 
location (x-axis) over all forecast targets and forecast weeks, for cases (1st row) and deaths (2nd 
row), separately.  For each pairwise comparison (e.g., 0.95 vs none), a positive difference in log 
score or point prediction accuracy indicates the former approach (e.g., 0.95) outperforms the 
latter (e.g., none). 
 
Fig 4. Impact of new variant settings on forecast performance. Heatmaps show the differences 
in mean log score (A) or point prediction accuracy (B) between forecast approaches with vs 
without anticipation of new variant emergence. All forecasts here were generated using a 
deflation factor of 0.9. Results are aggregated for each forecast approach (see specific setting of 
seasonality in panel subtitles), variant wave (y-axis), and location (x-axis) over all forecast 
targets and forecast weeks for cases (1st row) and deaths (2nd row), separately.  A positive 
difference indicates superior performance of the forecast approach with anticipation of new 
variant emergence.  
 
Fig 5. Impact of seasonality settings on forecast performance. Heatmaps show the differences 
in mean log score (A) or point prediction accuracy (B), between pairs of forecast approaches 
with different seasonality settings (see panel subtitles). All forecasts here were generated using 
a deflation factor of 0.9 and the new variant setting. Results are aggregated for each forecast 
target (y-axis) and location (x-axis), over either the respiratory virus season (first 3 columns) or 
the off season (last 3 columns), for cases (1st row) and deaths (2nd row), separately.  For each 
pairwise comparison (e.g., fixed vs no seasonality), a positive difference in log score or point 
prediction accuracy indicates the former approach (e.g., with fixed seasonality) outperforms 
the latter (e.g., with no seasonality). 
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Fig 6. Probabilistic forecast accuracy of the best-performing and baseline forecast approaches. 
Boxplots show the distributions of pair-wise difference in log score by variant period (A) or 
respiratory virus season (B; see panel subtitles). Results are aggregated by location (color-coded 
for each state) and forecast target (x-axis), for cases and deaths (see panel subtitles), 
separately. The numbers show the range of number of evaluations of each forecast target (e.g., 
59 predictions of peak week during the pre-Omicron period, for each state; 16-20 predictions of 
peak week during the Omicron period, depending on the timing of Omicron detection in each 
state). A positive difference indicates superior log score of the best-performing forecast 
approach. 
 

Fig 7. Point prediction accuracy of the best-performing and baseline forecast systems. Points 
show the average accuracy over all forecast weeks (A) or respiratory virus season (B). Results 
are aggregated by location (x-axis) and forecast target (panel subtitles) for cases (1st row) and 
deaths (2nd row, see panel subtitles) separately. Filled dots show the mean accuracy of 
forecasts generated using the baseline system; filled triangles show the accuracy of forecasts 
generated using the best-performing forecast system. The lines linking the two accuracies show 
the changes (mostly increases, as the triangles are more often above the dots), due to the 
combined application of the three proposed strategies (deflation, new variants, and 
transformed seasonality settings). Note all forecasts were generated retrospectively; to enable 
comparison of the model settings, mobility and vaccination data and estimates of infection 
detection rate and infection fatality risk during the forecast period were used (see main text for 
detail).  
 
Fig 8. Real-time forecasts for the 2022-2023 respiratory virus season. The states are arranged 
based on accuracy of historical forecast (higher accuracy for those in the left panel and those 
on the top). In each panel, each row shows estimates and forecasts of weekly numbers of 
infections (1st column), cases (2nd column), or deaths (3rd column) for each state.  Vertical 
dashed lines indicate the week of forecast initiation (i.e., October 2, 2022). Dots show reported 
weekly cases or deaths, including for the forecast period. Blue lines and blue areas (line = 
median; darker blue = 50% CI; lighter blue = 95% CI) show model training estimates.  Red lines 
and red areas (line = median; dark red = 50% Predictive Interval; lighter red = 95% Predictive 
Interval) show model forecasts using the best-performing approach.  
 

Fig 9. Real-time forecasts of cumulative infections, cases, and deaths during the 2022-2023 
respiratory virus season. Box plots show distributions of predicted total number of infections 
(1st panel, scaled to population size; i.e. attack rate), cases (2nd panel, scaled to population size), 
and deaths (3rd panel, scaled per 1 million persons) from the week starting 10/2/2022 to the 
week starting 3/26/2023. Thick line = median; box edge = interquartile range; whisker = 95% 
prediction interval. The states (x-axis label) are arranged according to accuracy of historical 
forecast (higher accuracy from left to right).  Red asterisks (*) show reported cumulative cases 
and deaths during the forecast period.   
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Table 1.  Comparison of probabilistic forecast accuracy by the best-performing and the baseline 
forecast approaches. Numbers show the relative difference in mean log score computed using 
Eqn 6, the median of pairwise difference in log score (95% CI of the median); asterisk (*) 
indicates if the median is significantly >0 or <0 at the α = 0.05 level, per a Wilcoxon rank sum 
test.  Positive numbers indicate superior performance of the best-performing forecast 
approach.  
 
Table 2.  Comparison of point prediction accuracy by the best-performing and the baseline 
forecast approaches. Numbers show the mean point prediction accuracy of forecasts generated 
using the baseline v. the best-performing forecast approach; asterisk (*) indicates if the median 
of pairwise accuracy difference is significantly >0 or <0 at the α = 0.05 level, per a Wilcoxon rank 
sum test. Note all forecasts were generated retrospectively; to enable comparison of forecast 
approaches, mobility and vaccination data and estimates of infection detection rate and 
infection fatality risk during the forecast period were used (see main text for detail).  
 
Supporting Information (SI) 
Supplemental methods. Addition details on 1) Data sources and processing; 2) Modeling of 
variant-specific vaccine effectiveness and waning vaccine protection against infection; 3) 
Observation model to account for under-detection and time-lags in COVID-19 outcomes; 4) 

Settings for anticipating the impact of new variants (the new variant approach); 5) The fixed 
seasonality model; 6) The transformed seasonality model; and 7) The retrospective forecast and 
forecast evaluation.  
 
Fig S1. Comparison of seasonality forms. For each state (each panel), the blue line shows the 
estimated trend of seasonal infection risk using Eqns 3a-b and location weather data 
(temperature and humidity). Grey lines show 100 examples of the transformed seasonal trends 
per Eqns 4a-d with parameters randomly sampled from the best parameter ranges (Fig S4); the 
black line shows the mean of the 100 example trends.  
 
Fig S2. Impact of deflation on probabilistic forecast of different targets. Heatmaps show 
differences in mean log score for cases (A) and deaths (B), between each forecast approach 
with different deflation settings (deflation factor γ = 0.95 vs none in the 1st row, 0.9 vs none in 
the 2nd row, and 0.9 vs 0.95 in the 3rd row; see panel subtitles). Results are aggregated over all 
forecast weeks for each type of target (y-axis), forecast approach (see specific settings of new 
variants and seasonality in subtitles), and location (x-axis).  For each pairwise comparison (e.g., 
0.95 vs none), a positive difference indicates the former approach (e.g., 0.95) outperforms the 
latter (e.g., none). 
 
Fig S3. Impact of deflation on point estimate accuracy of different targets. Heatmaps show 
differences in forecast accuracy of point estimates for cases (A) and deaths (B), between each 
forecast approach with different deflation settings (deflation factor γ = 0.95 vs none in the 1st 
row, 0.9 vs none in the 2nd row, and 0.9 vs 0.95 in the 3rd row; see panel subtitles). Results are 
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aggregated over all forecast weeks for each type of target (y-axis), forecast approach (see 
specific settings of new variants and seasonality in subtitles), and location (x-axis).  For each 
pairwise comparison (e.g., 0.95 vs none), a positive difference indicates the former approach 
(e.g., 0.95) outperforms the latter (e.g., none). 
 
Fig S4. Comparison of forecast performance using the transformed seasonality function, with 
different parameter ranges. The parameter ranges are shown in x-axis labels for the three 
parameters in Eqn4a-d (from bottom to top: pshift, δ, and bt, lwr). ‘x’s indicate the best parameter 
ranges for the corresponding state.  
 
Table S1.  Impact of deflation.  Numbers show the relative difference in mean log score 
computed using Eqn 6, or relative difference in mean point prediction accuracy computed using 
Eqn 7. For each pairwise comparison (e.g., 0.95 vs none), a positive difference indicates the 
former approach (e.g., 0.95) outperforms the latter (e.g., none). 
 

Table S2. Impact of new variants settings.  Numbers show the relative difference in mean log 
score computed using Eqn 6, or relative difference in mean point prediction accuracy computed 
using Eqn 7, by variant wave. A positive number indicates superior performance of the forecast 
approach with anticipation of new variant emergence.  
 
Table S3. Impact of seasonality, aggregated over all 10 states. Numbers show the relative 
difference in mean log score or point prediction accuracy, the median of pair-wise difference in 
log score (95% CI of the median); asterisk (*) indicates if the median is significantly >0 or <0 at 
the α = 0.05 level, per a Wilcoxon rank sum test. A positive difference indicates superior log 
score or point prediction accuracy of the first listed approach; a negative difference indicates 
superior log score or point prediction accuracy of the second listed approach. 
 
Table S4. Impact of seasonality, by state. Numbers show the relative difference in mean log 
score or point prediction accuracy, the median of pair-wise difference in log score (95% CI of 
the median); asterisk (*) indicates if the median is significantly >0 or <0 at the α = 0.05 level, per 
a Wilcoxon rank sum test. A positive difference indicates superior log score or point prediction 
accuracy of the first listed approach; a negative difference indicates superior log score or point 
prediction accuracy of the second listed approach. 
 
Table S5.  Comparison of forecast performance of the ARIMAX models. Only four models (see 
the top row for model names) are shown here because the fifth model (ARIMAX.FULL with 
vaccination included) was only able to generate forecasts for less than half of the study weeks; 
see details on the models in the main text. Numbers show the mean log score or point 
prediction accuracy of forecasts (specified in the “metric” column), aggregated across the entire 
study period and all locations for all forecast targets combined or individual forecast targets 
(specified in the “target” column). Bolded fonts indicate best performance (highest log score or 
accuracy).  
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Table S6.  Comparison of forecast performance of the approaches developed in this study with 
the best-performing ARIMAX model. Numbers show the mean log score or point prediction 
accuracy of forecasts (specified in the “metric” column), aggregated across the entire study 
period and all locations for all forecast targets combined or individual forecast targets (specified 
in the “target” column). Bolded fonts indicate best performance (highest log score or accuracy).  
 
Table S7. Preliminary assessment of the real-time forecasts initiated the week of October 2, 
2022 for October 2022 – March 2023. The log score and accuracy were computed using 
reported case and mortality data downloaded on March 31, 2023 (see further details in the 
main text). As shown in Fig 8, COVID-19 mortality data in some states (e.g., Wyoming) were 
highly irregular during the forecast period, likely an artifact of reporting. Due to these potential 
data inaccuracies, the mortality-related log score and point prediction accuracy for these states 
are likely lower than the true values (to be obtained once more complete mortality data are 
available). 
 
Table S8. Prior ranges for the parameters and variables used in the model-inference system. 
Parameters/state variables are initialized by drawing from uniform distributions specified in the 
rows labeled “Initialization”. During the filtering process, space-reprobing is applied to explore 
the state space, i.e., a small fraction of the ensemble members are randomly replaced with 
values drawn from the uniform distributions specified in the rows labeled with “Space-
reprobing”.  
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Figures 
Fig 1. Geospatial distribution of the 10 states and overall COVID-19 outcomes. Heatmaps show 
reported cumulative COVID-19 incidence rates (A) and COVID-19-associated mortality rates (B) 
in the 10 states included in this study. Line plots show reported weekly number of COVID-19 
cases (C) and COVID-19-associated deaths (D) during the study period, for each state.  
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Fig 2. Example forecasts. Vertical dashed lines indicate the week of forecast. Dots show 
reported weekly cases per 1 million people; only those to the left of the vertical lines are used 
to calibrate the model and those to the right of the vertical lines are plotted for comparison. 
Blue lines and blue areas (line = median; darker blue = 50% CI; lighter blue = 80% CI) show 
model training estimates.  Red lines and red areas (line = median; dark red = 50% CI; lighter red 
= 80% CI) show model forecasts using model settings as labeled in the subtitles. 
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Fig 3. Impact of deflation on forecast performance. Heatmaps show the differences in mean log 
score (A) or point prediction accuracy (B) between all forecast approaches with different 
deflation settings (deflation factor γ = 0.95 vs none in the 1st column, 0.9 vs none in the 2nd 
column, and 0.9 vs 0.95 in the 3rd column; see panel subtitles). Results are aggregated for each 
forecast approach (see specific settings of new variants and seasonality in the y-axis labels) and 
location (x-axis) over all forecast targets and forecast weeks, for cases (1st row) and deaths (2nd 
row), separately.  For each pairwise comparison (e.g., 0.95 vs none), a positive difference in log 
score or point prediction accuracy indicates the former approach (e.g., 0.95) outperforms the 
latter (e.g., none). 
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Fig 4. Impact of new variant settings on forecast performance. Heatmaps show the differences 
in mean log score (A) or point prediction accuracy (B) between forecast approaches with vs 
without anticipation of new variant emergence. All forecasts here were generated using a 
deflation factor of 0.9. Results are aggregated for each forecast approach (see specific setting of 
seasonality in panel subtitles), variant wave (y-axis), and location (x-axis) over all forecast 
targets and forecast weeks for cases (1st row) and deaths (2nd row), separately.  A positive 
difference indicates superior performance of the forecast approach with anticipation of new 
variant emergence.  
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Fig 5. Impact of seasonality settings on forecast performance. Heatmaps show the differences 
in mean log score (A) or point prediction accuracy (B), between pairs of forecast approaches 
with different seasonality settings (see panel subtitles). All forecasts here were generated using 
a deflation factor of 0.9 and the new variant setting. Results are aggregated for each forecast 
target (y-axis) and location (x-axis), over either the respiratory virus season (first 3 columns) or 
the off season (last 3 columns), for cases (1st row) and deaths (2nd row), separately.  For each 
pairwise comparison (e.g., fixed vs no seasonality), a positive difference in log score or point 
prediction accuracy indicates the former approach (e.g., with fixed seasonality) outperforms 
the latter (e.g., with no seasonality). 
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Fig 6. Probabilistic forecast accuracy of the best-performing and baseline forecast approaches. 
Boxplots show the distributions of pair-wise difference in log score by variant period (A) or 
respiratory virus season (B; see panel subtitles). Results are aggregated by location (color-coded 
for each state) and forecast target (x-axis), for cases and deaths (see panel subtitles), 
separately. The numbers show the range of number of evaluations of each forecast target (e.g., 
59 predictions of peak week during the pre-Omicron period, for each state; 16-20 predictions of 
peak week during the Omicron period, depending on the timing of Omicron detection in each 
state). A positive difference indicates superior log score of the best-performing forecast 
approach. 
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Fig 7. Point prediction accuracy of the best-performing and baseline forecast systems. Points 
show the average accuracy over all forecast weeks (A) or respiratory virus season (B). Results 
are aggregated by location (x-axis) and forecast target (panel subtitles) for cases (1st row) and 
deaths (2nd row, see panel subtitles) separately. Filled dots show the mean accuracy of 
forecasts generated using the baseline system; filled triangles show the accuracy of forecasts 
generated using the best-performing forecast system. The lines linking the two accuracies show 
the changes (mostly increases, as the triangles are more often above the dots), due to the 
combined application of the three proposed strategies (deflation, new variants, and 
transformed seasonality settings). Note all forecasts were generated retrospectively; to enable 
comparison of the model settings, mobility and vaccination data and estimates of infection 
detection rate and infection fatality risk during the forecast period were used (see main text for 
detail).  
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Fig 8. Real-time forecasts for the 2022-2023 respiratory virus season. The states are arranged 
based on accuracy of historical forecast (higher accuracy for those in the left panel and those 
on the top). In each panel, each row shows estimates and forecasts of weekly numbers of 
infections (1st column), cases (2nd column), or deaths (3rd column) for each state.  Vertical 
dashed lines indicate the week of forecast initiation (i.e., October 2, 2022). Dots show reported 
weekly cases or deaths, including for the forecast period. Blue lines and blue areas (line = 
median; darker blue = 50% CI; lighter blue = 95% CI) show model training estimates.  Red lines 
and red areas (line = median; dark red = 50% Predictive Interval; lighter red = 95% Predictive 
Interval) show model forecasts using the best-performing approach.  
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Fig 9. Real-time forecasts of cumulative infections, cases, and deaths during the 2022-2023 
respiratory virus season. Box plots show distributions of predicted total number of infections 
(1st panel, scaled to population size; i.e. attack rate), cases (2nd panel, scaled to population size), 
and deaths (3rd panel, scaled per 1 million persons) from the week starting 10/2/2022 to the 
week starting 3/26/2023. Thick line = median; box edge = interquartile range; whisker = 95% 
prediction interval. The states (x-axis label) are arranged according to accuracy of historical 
forecast (higher accuracy from left to right).  Red asterisks (*) show reported cumulative cases 
and deaths during the forecast period.   
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Tables 
Table 1.  Comparison of probabilistic forecast accuracy by the best-performing and the baseline forecast approaches. Numbers show 
the relative difference in mean log score computed using Eqn 6, the median of pairwise difference in log score (95% CI of the 
median); asterisk (*) indicates if the median is significantly >0 or <0 at the α = 0.05 level, per a Wilcoxon rank sum test.  Positive 
numbers indicate superior performance of the best-performing forecast approach.  
State Measure All Pre-Omicron period Omicron period Respiratory season Off season 
All Cases 63.6%, 0.34 (0.33, 0.35) * 85.3%, 0.43 (0.42, 0.44) * 27.2%, 0.21 (0.2, 0.22) * 105%, 0.53 (0.51, 0.54) * 40.6%, 0.22 (0.21, 0.23) * 
All Deaths 38%, 0.07 (0.06, 0.08) * 61.7%, 0.25 (0.24, 0.27) * 0.184%, -0.018 (-0.02, -

0.016) * 
84.5%, 0.42 (0.41, 0.44) * 13.7%, 0 (0, 0) * 

California Cases 46.3%, 0.18 (0.16, 0.21) * 65.8%, 0.26 (0.22, 0.32) * 15.9%, 0.11 (0.08, 0.14) * 93.7%, 0.35 (0.27, 0.43) * 21.2%, 0.13 (0.1, 0.15) * 
California Deaths 29.9%, 0.01 (0, 0.01) * 50.6%, 0.06 (0.04, 0.1) * -1.26%, -0.028 (-0.032, -

0.024) * 
91.4%, 0.34 (0.26, 0.42) * 0.225%, -0.0095 (-0.013, -

0.006) * 
Florida Cases 119%, 0.51 (0.46, 0.55) * 134%, 0.42 (0.37, 0.49) * 90.7%, 0.63 (0.57, 0.68) * 48.9%, 0.23 (0.2, 0.27) * 183%, 0.77 (0.71, 0.83) * 
Florida Deaths 84.5%, 0.23 (0.2, 0.26) * 117%, 0.28 (0.24, 0.33) * 33.6%, 0.11 (0.06, 0.18) * 58.5%, 0.27 (0.24, 0.31) * 104%, 0.17 (0.12, 0.26) * 
Iowa Cases 69.8%, 0.4 (0.37, 0.44) * 108%, 0.59 (0.55, 0.63) * 10.6%, 0.09 (0.06, 0.13) * 172%, 0.84 (0.77, 0.89) * 24.7%, 0.19 (0.16, 0.22) * 
Iowa Deaths 50.6%, 0.19 (0.16, 0.22) * 86.4%, 0.43 (0.39, 0.47) * -4.49%, -0.024 (-0.03, -

0.018) * 
158%, 0.71 (0.66, 0.77) * 5.74%, 0 (0, 0.01) * 

Massachusetts Cases 84.1%, 0.42 (0.38, 0.46) * 131%, 0.66 (0.61, 0.72) * 17.6%, 0.17 (0.13, 0.2) * 213%, 0.91 (0.83, 0.99) * 29%, 0.16 (0.14, 0.19) * 
Massachusetts Deaths 40.1%, 0.04 (0.03, 0.06) * 68.9%, 0.28 (0.23, 0.34) * -3.32%, -0.031 (-0.041, -

0.022) * 
130%, 0.61 (0.55, 0.67) * 0.439%, -0.005 (-0.009, -

0.002) * 
Michigan Cases 76.4%, 0.48 (0.45, 0.51) * 86.9%, 0.49 (0.45, 0.52) * 55.9%, 0.46 (0.4, 0.51) * 119%, 0.62 (0.57, 0.68) * 53.2%, 0.39 (0.35, 0.42) * 
Michigan Deaths 36.9%, 0.12 (0.09, 0.14) * 60.9%, 0.32 (0.28, 0.35) * -2.89%, -0.029 (-0.036, -

0.022) * 
85.6%, 0.48 (0.44, 0.52) * 12.2%, -0.0044 (-0.0095, -

0.00048) * 
New York Cases 60.7%, 0.37 (0.34, 0.4) * 79.6%, 0.47 (0.44, 0.5) * 28.8%, 0.22 (0.19, 0.25) * 117%, 0.63 (0.57, 0.69) * 31.1%, 0.21 (0.18, 0.24) * 
New York Deaths 20.6%, 0.01 (0.01, 0.02) * 35.5%, 0.09 (0.06, 0.15) * -4.31%, -0.025 (-0.032, -

0.019) * 
61.1%, 0.37 (0.33, 0.4) * -0.7%, -0.0056 (-0.009, -

0.0029) * 
Pennsylvania Cases 49.2%, 0.32 (0.3, 0.35) * 72.4%, 0.45 (0.42, 0.48) * 12.1%, 0.16 (0.13, 0.18) * 94.9%, 0.56 (0.52, 0.6) * 24.7%, 0.18 (0.16, 0.2) * 
Pennsylvania Deaths 30.5%, 0.12 (0.09, 0.15) * 51.7%, 0.3 (0.27, 0.33) * -3.29%, -0.024 (-0.034, -

0.016) * 
71.9%, 0.41 (0.38, 0.44) * 8.45%, 0.01 (0, 0.01) * 

Texas Cases 74.3%, 0.32 (0.29, 0.36) * 120%, 0.51 (0.46, 0.57) * 9.88%, 0.07 (0.04, 0.12) * 158%, 0.64 (0.56, 0.71) * 34%, 0.18 (0.15, 0.21) * 
Texas Deaths 59.3%, 0.17 (0.14, 0.21) * 103%, 0.47 (0.42, 0.52) * -1.88%, -0.012 (-0.015, -

0.009) * 
141%, 0.67 (0.6, 0.74) * 20.5%, 0.01 (0.01, 0.02) * 

Washington Cases 38.5%, 0.26 (0.23, 0.28) * 38.8%, 0.24 (0.21, 0.27) * 37.8%, 0.28 (0.25, 0.32) * 31.7%, 0.28 (0.24, 0.32) * 43.3%, 0.24 (0.2, 0.26) * 
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Washington Deaths 13.8%, 0 (-0.0015, 0)  24.1%, 0.04 (0.02, 0.08) * -4.22%, -0.028 (-0.034, -
0.022) * 

19.1%, 0.07 (0.03, 0.13) * 10.4%, -0.001 (-0.0029, 
0.00093)  

Wyoming Cases 34.5%, 0.21 (0.19, 0.23) * 45.7%, 0.25 (0.23, 0.28) * 13.4%, 0.11 (0.07, 0.15) * 73.8%, 0.42 (0.38, 0.46) * 13.7%, 0.09 (0.07, 0.12) * 
Wyoming Deaths 26.8%, 0.05 (0.04, 0.08) * 42.7%, 0.19 (0.17, 0.22) * -1.53%, -0.014 (-0.019, -

0.01) * 
73.9%, 0.36 (0.33, 0.41) * 3.06%, 0 (0.00094, 0.01) 

* 
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Table 2.  Comparison of point prediction accuracy by the best-performing and the baseline forecast approaches. Numbers show the 
mean point prediction accuracy of forecasts generated using the baseline v. the best-performing forecast approach; asterisk (*) 
indicates if the median of pairwise accuracy difference is significantly >0 or <0 at the α = 0.05 level, per a Wilcoxon rank sum test. 
Note all forecasts were generated retrospectively; to enable comparison of forecast approaches, mobility and vaccination data and 
estimates of infection detection rate and infection fatality risk during the forecast period were used (see main text for detail).  

State Measure 1-8wk ahead 9-16wk ahead 17-26wk ahead peak week peak intensity total 
All Cases 26% v 38% * 4% v 20% * 1% v 16% * 24% v 42% * 20% v 40% * 7% v 33% * 
All Deaths 39% v 48% * 7% v 25% * 1% v 16% * 35% v 56% * 30% v 50% * 9% v 36% * 
California Cases 27% v 36% * 8% v 17% * 3% v 12% * 26% v 34%  20% v 28% * 13% v 30% * 
California Deaths 38% v 45% * 10% v 23% * 4% v 11% * 37% v 56% * 23% v 29%  13% v 26% * 
Florida Cases 25% v 43% * 4% v 16% * 1% v 8% * 23% v 35% * 19% v 28% * 9% v 18% * 
Florida Deaths 40% v 51% * 6% v 25% * 1% v 8% * 27% v 31%  28% v 41% * 8% v 22% * 
Iowa Cases 24% v 37% * 1% v 25% * 0% v 21% * 32% v 41% * 22% v 38% * 6% v 44% * 
Iowa Deaths 37% v 47% * 4% v 26% * 0% v 23% * 34% v 58% * 22% v 41% * 6% v 46% * 
Massachusetts Cases 30% v 36% * 5% v 20% * 1% v 16% * 23% v 61% * 24% v 43% * 5% v 25% * 
Massachusetts Deaths 44% v 50% * 8% v 24% * 1% v 15% * 34% v 67% * 36% v 60% * 8% v 34% * 
Michigan Cases 28% v 40% * 2% v 21% * 0% v 19% * 15% v 37% * 20% v 30% * 1% v 27% * 
Michigan Deaths 43% v 52% * 4% v 26% * 0% v 18% * 38% v 43%  33% v 43% * 3% v 28% * 
New York Cases 30% v 42% * 2% v 24% * 0% v 18% * 26% v 59% * 24% v 59% * 3% v 39% * 
New York Deaths 44% v 51% * 7% v 28% * 0% v 20% * 44% v 79% * 40% v 78% * 7% v 47% * 
Pennsylvania Cases 27% v 37% * 4% v 22% * 0% v 23% * 24% v 32% * 20% v 59% * 4% v 50% * 
Pennsylvania Deaths 40% v 48% * 9% v 25% * 1% v 23% * 33% v 70% * 35% v 67% * 9% v 53% * 
Texas Cases 24% v 38% * 5% v 22% * 1% v 16% * 20% v 50% * 20% v 51% * 8% v 44% * 
Texas Deaths 39% v 49% * 7% v 26% * 1% v 19% * 34% v 46% * 33% v 61% * 13% v 50% * 
Washington Cases 24% v 37% * 6% v 17% * 1% v 17% * 22% v 24%  17% v 46% * 7% v 30% * 
Washington Deaths 39% v 51% * 7% v 25% * 2% v 18% * 32% v 45% * 24% v 57% * 9% v 31% * 
Wyoming Cases 23% v 32% * 5% v 19% * 0% v 10% * 28% v 42% * 15% v 20% * 8% v 25% * 
Wyoming Deaths 26% v 32% * 9% v 22% * 1% v 10% * 38% v 64% * 23% v 28% * 13% v 23% * 
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 2 

SUPPLEMENTAL METHODS 1 

Data sources and processing 2 

For model calibration, we used reported COVID-19 case and mortality data to capture 3 

transmission dynamics, mobility data to represent concurrent NPIs, and vaccination data to 4 

account for changes in population susceptibility due to vaccination. State level COVID-19 case 5 

and mortality data were sourced from the New York Times (NYT) (1) and included all variants. In 6 

our previous studies, overall case/mortality data were sufficient to estimate key 7 

epidemiological parameters when different VOC waves were separated in time (2-4); however, 8 

in the US, the Omicron BA.1 wave overlapped substantially with the Delta wave during 9 

November 2021 – January 2022, making inference challenging.  Thus, here we separated the 10 

forecasts into two periods (i.e., a pre-Omicron period combining all non-Omicron variants, and 11 

an Omicron period combining all Omicron subvariants) and used variant-specific case and 12 

mortality data for model training and forecast evaluation for each period. Specifically, we used 13 

variant proportion data sourced from GISAID (5) and compiled by CoVariants.org (6) to 14 

compute the weekly number of cases and deaths due to non-Omicron variants and Omicron, 15 

separately (for simplicity, loosely referred to as variant-specific case and mortality data). 16 

Because only biweekly variant proportion data at the state level were available from 17 

CoVariants.org, we used a spline function to impute weekly variant proportion. To compute 18 

weekly variant-specific cases, we multiplied the NYT weekly case data by the estimated weekly 19 

variant proportion for the same week. To compute weekly variant-specific deaths, we 20 

multiplied the NYT weekly mortality data by the estimated weekly variant proportion three 21 

weeks later (i.e., assuming a 3-week lag from case detection to death; note the 3-week lag was 22 

based on the approximate time lag between the peaks of incidence and mortality time series).  23 

 24 

Mobility data were derived from Google Community Mobility Reports (7); we aggregated all 25 

business-related categories (i.e., retail and recreational, grocery and pharmacy, transit stations, 26 

and workplaces) in all locations in each state to weekly intervals. State level COVID-19 27 

vaccination data were sourced from Our World in Data (8, 9). For models including seasonality, 28 

weather data (i.e., temperature and humidity) were used to estimate infection seasonality 29 

trends.  Hourly surface station temperature and relative humidity came from the Integrated 30 

Surface Dataset (ISD) maintained by the National Oceanic and Atmospheric Administration 31 

(NOAA) and are accessible using the “stationaRy” R package (10, 11). We computed specific 32 

humidity using temperature and relative humidity per the Clausius-Clapeyron equation (12).  33 

We then aggregated these data for all weather stations in each state with measurements since 34 

2000 and calculated the average for each week of the year during 2000-2020.  35 

 36 

 37 
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 3 

Modeling variant-specific vaccine effectiveness (VE) and waning vaccine protection against 38 

infection 39 

As noted in the main text, the epidemic model in Eqn 1 includes vaccination and waning vaccine 40 

protection. Specifically, vaccination including boosters is represented using the term ∑ "#,%#&'
#&( , 41 

where )#,%  is the number of individuals immunized at time t, after the k-th dose (k = 1,…,3 for 2 42 

primary and 1 booster dose here, excluding those immunized after previous doses). We 43 

computed )#,%  using vaccination data and adjusted for the delay in antibody development 44 

(here, 14 days for the 1st dose and 7 days for subsequent doses) and variant specific VE (13-17).  45 

Note that while the 2nd booster dose has been administered for a subset of the population, 46 

such data have not been made publicly available and thus not included in our model. Further, 47 

given the 2nd dose and 3rd dose (i.e. 1st booster) were administered ~6 months apart (i.e., 48 

beyond the estimated VE duration against infection (16)), here we combined data for these two 49 

doses. In doing so, we have simplified the model and implicitly assumed that the 3rd dose 50 

resumed VE against infection to a level similar to the 2nd dose, as the same VE was applied 51 

(Table S8).  52 

 53 

The model further accounts for waning of vaccine protection against infection, using the term 54 

∑ *+,%-++&.
+&/ . We computed the total number who were vaccinated τ days ago and lost 55 

protection on day-t (Vt-τ) per the VE waning probability (ρτ). The probabilities ρτ for time τ =0, …, 56 

T (T= the maximum duration from the earliest vaccination rollout; Table S8) were calculated 57 

using VE duration data (16) and Vt-τ was computed per line 5 of Eqn 1. 58 

 59 

Observation model to account for under-detection and time-lags in COVID-19 outcomes 60 

We computed the number of cases and deaths each week using the model-simulated number 61 

of infections occurring each day to match with the observations, as done in Yang et al. (18). 62 

Briefly, we included 1) a time-lag from infectiousness to detection (i.e., an infection being 63 

diagnosed as a case), drawn from a gamma distribution with a mean of Td,mean days and a 64 

standard deviation of Td, sd days, to account for delays in detection; 2) an infection-detection 65 

rate (rt), i.e. the fraction of infections (including subclinical or asymptomatic infections) 66 

reported as cases, to account for under-detection; 3) a time-lag from infectiousness to death; 67 

and 4) an infection-fatality risk (IFRt). Each week, the infection-detection rate (rt), infection-68 

fatality risk (IFRt), and the two time-to-detection parameters (Td, mean and Td, sd) were estimated 69 

along with other parameters (see main text). The time-lag from infectiousness to death during 70 

the pre-Omicron period was drawn from a gamma distribution with a mean of 14 days and a 71 

standard deviation of 14 days, roughly based on data from New York City (unpublished work). 72 

For the Omicron period, many deaths were identified posthumously; thus, it is difficult to 73 

estimate the time-lag from infection to death for Omicron infections. Here, based on the 74 

slightly longer time-lag between the peaks of case and mortality time series during the Omicron 75 
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period, we assumed a gamma distribution with a mean of 24 days (i.e., assuming an additional 76 

10-day lag) and a standard deviation of 14 days.  77 

 78 

To compute the model-simulated number of new cases each week, we multiplied the model-79 

simulated number of new infections per day by the infection-detection rate, and further 80 

distributed these simulated cases in time per the distribution of time-from-infectiousness-to-81 

detection. Similarly, to compute the model-simulated deaths per week and account for delays 82 

in time to death, we multiplied the simulated-infections by the IFR and then distributed these 83 

simulated deaths in time per the distribution of time-from-infectious-to-death. We then 84 

aggregated these daily numbers to weekly totals to match with the weekly case and mortality 85 

data for model inference, as described in the main text. 86 

 87 

Settings for anticipating the impact of new variants (the new variant approach)  88 

The uncertainty due to the possible emergence or surge of new variants in the future is a major 89 

challenge for long-lead COVID-19 forecast. To address this challenge, we devised a set of 90 

heuristics to anticipate the likely timing and impact of new variant emergence during the 91 

forecast period (i.e., the new variant approach). For the very near future (1- to 5 weeks), we 92 

used available genomic sequencing data (see “Data sources and processing”). Specifically, we 93 

first estimated the growth rate for each circulating variant based on variant proportion 6- to 2 94 

weeks prior to the week of forecast initiation (i.e., assuming a 2-week lag for genomic data 95 

collection); for simplicity, we used a log-linear model [i.e., log(variant proportion during week-t) 96 

~ week-t]. If any variant had a high growth rate (here, arbitrarily set to 10% per week), we 97 

deemed it a rising variant that could further affect the population susceptibility and overall 98 

virus transmissibility. To anticipate its impact, we then used a smoothing spline to 1) project 99 

when the variant would reach a 100% proportion and 2) project the number of weeks for the 100 

variant to grow from 0% to 100%. The first estimate was then used to set the timing of the 101 

continued impact and the second estimate was used to scale the increases in population 102 

susceptibility. Here, arbitrarily, we assumed a baseline of 1.5 – 4.5% increase in susceptibility 103 

for each week the new variant increased in proportion; however, if the estimated growth rate 104 

(g) was >20%, to account for the faster growth, we scaled that baseline by a factor of (1+g)/1.2.  105 

While the growth advantage of a new variant could also come from increased transmissibility, 106 

for simplicity, here we opted to solely adjust for population susceptibility.  In addition, given the 107 

fast displacement of new variants, we opted not to use projected estimates 5 weeks beyond 108 

the forecast week, i.e. these changes were only applied to the first 5 weeks of a forecast.    109 

 110 

When genomic data could not be used (i.e. beyond the first 5 forecast weeks or when genomic 111 

data were not available), we used the following heuristics to anticipate the likely timing and 112 

impact of a new variant surge:  113 
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i)  New variants tend to emerge after a recent large wave (here, defined arbitrarily as a 25% 114 

attack rate over 3 months for the non-Omicron period, and a 33% attack rate over 2 months 115 

for the Omicron period). We identified these times using estimated/forecasted infection 116 

rates during the preceding months and the forecast period.  117 

ii)  New variants tend to emerge and/or become widespread during northern hemisphere 118 

winter (December – February), southern hemisphere winter (June – August), and/or the 119 

monsoon season (e.g. June – September in India) and could be introduced to the US during 120 

these months. We identified these times using calendar month.  121 

iii) During the above times with potential new variant emergence, the population susceptibility 122 

and virus transmissibility could increase.  Accordingly, to account for susceptibility changes, 123 

we resampled half of the model ensemble to increase the population susceptibility by 2-9% 124 

for weeks flagged per the conditions described in i and ii. However, this susceptibility 125 

increase was only triggered when the mean population susceptibility was below 40% to 126 

avoid over-adjustment. Similarly, to avoid the system being trapped in an outbreak-begets-127 

outbreak cycle, no further adjustments were made to susceptibility if a wave had been 128 

forecast the prior weeks or the cumulative adjustment had exceeded a threshold (here, set 129 

to 40% of the population over 26 weeks for pre-Omicron period and 60% for the Omicron 130 

period).  To account for transmissibility changes, we expanded the variance of the 131 

transmission rate (i.e., 0%  in Eqn 1) by applying an inflation factor of 1.3 (pre-Omicron 132 

period) or 1.1 (Omicron period) to ensemble members falling between the 50th and 95th/90th 133 

(pre-Omicron/Omicron period) percentiles (i.e., the ones with higher but not too extreme 134 

values) for weeks identified per the conditions described in i and ii.  135 

 136 

The fixed seasonality model 137 

The fixed seasonality model represents the dependency of respiratory virus survival, including 138 

that of SARS-CoV-2, to temperature and humidity (19, 20) per the following equations: 139 

1/(3) = [7/89(3) + 7(8(3) + 79][
<=
<(%)

]<>?@ (Eqn 3a) 140 

A% =
BC(%)
BC(%)DDDDDDDD    (Eqn 3b) 141 

 142 

As described previously (3, 4), the seasonality function in Eqn 3a assumes that humidity has a 143 

bimodal effect on seasonal risk of infection, with both low and high humidity conditions 144 

favoring transmission [i.e., the parabola in the 1st set of brackets, where q(t) is weekly specific 145 

humidity measured by local weather stations and t = 1,…,52, i.e., week 1 to week 52 of the 146 

year]; this effect is further modulated by temperature, with low temperatures promoting 147 

transmission and temperatures above a certain threshold limiting transmission [i.e., the 2nd set 148 

of brackets, where T(t) is weekly temperature measured by local weather stations and Tc is the 149 

threshold]. As SARS-CoV-2 specific parameters (7/, 7(, 79, Tc, and Texp in Eqn 3a) are not 150 

available, we used parameters estimated for influenza (21) and scaled the weekly outputs [i.e., 151 

1/(3)] by the annual mean (i.e., 1/DDD) per Eqn 3b, as done in Yang and Shaman (4). In doing so, 152 

the scaled outputs (bt) are no longer specific to influenza; rather, they represent the relative, 153 
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seasonality-related transmissibility by week, general to viruses sharing similar seasonal 154 

responses. The estimated relative seasonal trend, bt, is then used to adjust the relative 155 

transmission rate at time t in Eqn 1.   156 

 157 

The transformed seasonality model 158 

The transformed seasonality model transforms the bt estimates from Eqn 3b to allow flexibility 159 

in the seasonal trend. To do so, we include three parameters to fine tune the peak of the 160 

seasonal trend (EFGHI% ; i.e., the number of weeks earlier or later than the peak estimated for 161 

influenza), the number of weeks during a year with bt >1 (J; i.e., the duration with elevated 162 

infection risk), and another parameter A%,KLM  that adjusts the lowest bt value. Specifically, the 163 

transformation first adjusts values of bt greater than 1, by shifting the timing by EFGHI%  weeks 164 

and adjusting the duration with elevated infection risk to J, per 165 

A%{OPQ(}
S =

OP{TPUV}W@XYZ[P
\TPUV
]

    (Eqn 4a) 166 

where ^OPQ( is the number of weeks with bt >1 during the 1-year cycle. For weeks with bt ≤1, 167 

the transformation adjusts the values, by shifting the timing by EFGHI%  weeks and adjusting the 168 

duration with lower infection risk to 52 − J, per 169 

A%{OPb(}
S =

OP{TPcV}W@XYZ[P
dTPcV/(f9-g)

    (Eqn 4b) 170 

The approach then further scales A%{OPb(}
S

 to increase the relative infection risk, per 171 

A%{OPb(}
SS = 1 − (1 − A%{OPb(}

S )(ij^ k1,
lmnoOP{TPcV}

p q

OP,rst
u) (Eqn 4c) 172 

A%{OPQ(}
SS ≡ A%{OPQ(}

S
 and A%{OPb(}

SS
 are then pooled together and scaled to have a mean of 1 over 173 

the 1-year cycle, per 174 

A%SSS =
OPpp

OPppDDDD (Eqn 4d) 175 

 176 

There could be multiple combinations of the three parameters (i.e., EFGHI% , J, and A%,KLM). Due 177 

to the lack of SARS-CoV-2 data to inform the parameter estimates, here we opted to optimize 178 

the range for each parameter (as opposed to estimate specific best-fit parameters). Briefly, we 179 

tested 2 levels (low vs. high) for each parameter and thus 8 in combination for each state (Fig 180 

S5). We then identified the best range for each state based on forecast performance during the 181 

2nd wave, i.e., before the surge of SARS-CoV-2 VOCs to minimize potential confounding. The 182 

best parameter ranges (Fig S5) were then used in the transformed seasonality model in the 183 

main analysis.   184 

 185 

Additional details on the retrospective forecast and forecast evaluation 186 
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 7 

As noted in the main text, retrospective forecasts for the non-Omicron period were done 187 

through the week of August 15, 2021. We stopped initiating the non-Omicron forecasts in mid-188 

August 2021 to allow at least a few weeks of Delta-related data to calibrate the model before 189 

forecasting the Delta wave. However, a 6-month forecast initiated during mid-June – mid-190 

August 2021 would extend to mid-December 2021 – mid-Feb 2022, when Omicron BA.1 had 191 

become predominant, depending on location; this overlap would lead to lower forecast 192 

accuracy, since here we did not account for the emergence of Omicron BA.1 and fast 193 

displacement of Delta.  Given the low number of Delta-associated cases/deaths in 2022, weekly 194 

targets (i.e., 1- to 26- week ahead prediction) for weeks in 2022 were excluded from the 195 

evaluation; however, as Delta was the main circulating variant during the 6-month period for 196 

these forecasts, all the overall targets (i.e., peak week, peak intensity, and cumulative total) 197 

were evaluated based on Delta-specific data and included in the analysis. 198 

 199 

Both the model inference and forecast were run with n = 500 model realizations (i.e., ensemble 200 

members). The ensemble and its distribution provided probabilistic forecasts for 4 types of 201 

targets here, i.e., 1-to 26-week ahead prediction, peak intensity, peak week, and cumulative 202 

totals over the entire 26-week forecast period. For example, for the 1-week ahead prediction 203 

(w%x(), the fraction of ensemble members falling in a given bin [wH, wHx() can be used to 204 

represent the forecast probability density, i.e., Pr(w%x( ∈ [wH, wHx()) = ^{|PWV}|Z	&	|PWVÄ|ZWV}/^. 205 

Similarly, for the peak week prediction, predicted peak week by individual ensemble members 206 

(pw = 1, 2, …, 26) can be aggregated and the distribution can be used to represent the 207 

probability distribution of the forecast, i.e., Pr(EL = Å) = ^{Çs&L}/^.  208 

 209 

The forecast probabilities can then be used to compute the log score for evaluation. To do so, 210 

we first binned the forecast ensemble to generate the forecast probability distribution Pr(É), 211 

e.g., Pr(w%x() for 1-week ahead prediction and Pr(EL) for peak week. Here, for cases, bins of 212 

the weekly targets were set to [0, 0.05%), [0.05%, 0.1%), …, [0.95,1%), and [1%, 100%] (i.e., 213 

increments of 0.05%, or 500 per million people, up to 1% of the population; and the rest 214 

combined in the last bin); bins of  cumulative cases over 26 weeks were set to [0, 2%), 215 

[2%, 4%), …, [8%, 10%), [10%, 15%), [15%, 20%),…,[45%, 50%),	and	[50%, 100%] (i.e., 216 

increments of 2% up to 10%, then increments of 5% up to 50% of the population; and the rest 217 

combined in the last bin). For mortality, bins of the weekly targets were set to [0, 0.001%), 218 

[0.001,0.002), …, [0.019%, 0.02%),	and [0.02%, 100%] (i.e., increments of 0.001%, or 10 per 219 

million people, up to 0.02% of the population; and the rest combined in the last bin); bins of 220 

cumulative deaths over 26 weeks were set to [0, 0.02%), [0.02%, 0.04%), …,[0.08%, 0.1%), 221 

[0.1%, 0.15%), [0.15%, 0.2%),…, [0.45%, 0.5%), and [0.5%, 100%] (i.e., increments of 0.02% 222 

up to 0.1%, then increments of 0.05% up to 0.5% of the population; and the rest combined in 223 
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 8 

the last bin). For the peak week of both cases and deaths, the bin size was set to 1 week.  The 224 

log score was then computed as: 225 

 226 

log êwëíì = log[Pr(É)î∈OHd∗ + Pr(É)î∈OHd∗ñV + Pr(É)î∈OHd∗WV]  (Eqn 5) 227 

 228 

where Pr(É) is the forecast probability for target É; Aj^∗ is the bin that contains the observed 229 

value for that target (see bin specifications above) and Aj^∗-( and Aj^∗x( are the two adjacent 230 

bins.  Note that, here we used smaller bins and deemed ensemble members falling within the 231 

bin covering the observation and its two adjacent bins accurate, which is equivalent to using a 232 

single larger bin spanning all those smaller bins. However, as the probabilistic forecasts (i.e., 233 

probabilities in each bin) were generated and stored before the final evaluation, using smaller 234 

bins allowed more flexible post processing and evaluation if needed (e.g., the log score can be 235 

computed based on a single small bin if preferred).   236 

 237 
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Fig S1. Comparison of seasonality forms. For each state (each panel), the blue line shows the 

estimated trend of seasonal infection risk using Eqns 3a-b and location weather data 

(temperature and humidity). Grey lines show 100 examples of the transformed seasonal trends 

per Eqns 4a-d with parameters randomly sampled from the best parameter ranges (Fig S4); the 

black line shows the mean of the 100 example trends.  
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Fig S2. Impact of deflation on probabilistic forecast of different targets. Heatmaps show 

differences in mean log score for cases (A) and deaths (B), between each forecast approach 

with different deflation settings (deflation factor γ = 0.95 vs none in the 1st row, 0.9 vs none in 

the 2nd row, and 0.9 vs 0.95 in the 3rd row; see panel subtitles). Results are aggregated over all 

forecast weeks for each type of target (y-axis), forecast approach (see specific settings of new 

variants and seasonality in subtitles), and location (x-axis).  For each pairwise comparison (e.g., 

0.95 vs none), a positive difference indicates the former approach (e.g., 0.95) outperforms the 

latter (e.g., none). 
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Fig S3. Impact of deflation on point estimate accuracy of different targets. Heatmaps show 

differences in forecast accuracy of point estimates for cases (A) and deaths (B), between each 

forecast approach with different deflation settings (deflation factor γ = 0.95 vs none in the 1st 

row, 0.9 vs none in the 2nd row, and 0.9 vs 0.95 in the 3rd row; see panel subtitles). Results are 

aggregated over all forecast weeks for each type of target (y-axis), forecast approach (see 

specific settings of new variants and seasonality in subtitles), and location (x-axis).  For each 

pairwise comparison (e.g., 0.95 vs none), a positive difference indicates the former approach 

(e.g., 0.95) outperforms the latter (e.g., none). 
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Fig S4. Comparison of forecast performance using the transformed seasonality function, with 

different parameter ranges. The parameter ranges are shown in x-axis labels for the three 

parameters in Eqn4a-d (from bottom to top: pshift, δ, and bt, lwr). ‘x’s indicate the best parameter 

ranges for the corresponding state.  
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Table S1.  Impact of deflation.  Numbers show the relative difference in mean log score computed using Eqn 6, or relative difference 
in mean point prediction accuracy computed using Eqn 7. For each pairwise comparison (e.g., 0.95 vs none), a positive difference 
indicates the former approach (e.g., 0.95) outperforms the latter (e.g., none). 

Metric Measure 
New variant 
setting Seasonality setting 

Pairwise comparison of deflation settings 

 0.95 vs none 0.9 vs none 0.9 vs 0.95 

Log score Cases No new variants No seasonality 20.1% 43.3% 19.4% 
Log score Cases No new variants Fixed seasonality 18.1% 34.2% 13.6% 
Log score Cases No new variants Transformed seasonality 19% 36.8% 15% 
Log score Cases New variants No seasonality 20.2% 38.7% 15.4% 
Log score Cases New variants Fixed seasonality 19.7% 35% 12.8% 
Log score Cases New variants Transformed seasonality 20% 35.9% 13.3% 
Log score Deaths No new variants No seasonality 7.67% 17.2% 8.85% 
Log score Deaths No new variants Fixed seasonality 7.8% 13.3% 5.1% 
Log score Deaths No new variants Transformed seasonality 7.94% 14.2% 5.75% 
Log score Deaths New variants No seasonality 7.43% 15.1% 7.19% 
Log score Deaths New variants Fixed seasonality 8.23% 13% 4.45% 
Log score Deaths New variants Transformed seasonality 8.4% 13.2% 4.45% 
Accuracy Cases No new variants No seasonality 28% 46.5% 14.4% 
Accuracy Cases No new variants Fixed seasonality 30.5% 38.6% 6.23% 
Accuracy Cases No new variants Transformed seasonality 47.8% 63.2% 10.4% 
Accuracy Cases New variants No seasonality 20.5% 32.5% 10% 
Accuracy Cases New variants Fixed seasonality 38.3% 47.2% 6.45% 
Accuracy Cases New variants Transformed seasonality 47% 55% 5.44% 
Accuracy Deaths No new variants No seasonality 15.5% 27% 9.98% 
Accuracy Deaths No new variants Fixed seasonality 20% 24.6% 3.84% 
Accuracy Deaths No new variants Transformed seasonality 26.8% 36% 7.22% 
Accuracy Deaths New variants No seasonality 14.7% 24.1% 8.18% 
Accuracy Deaths New variants Fixed seasonality 26.1% 34.1% 6.36% 
Accuracy Deaths New variants Transformed seasonality 31.2% 39.9% 6.62% 
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Table S2. Impact of new variants settings.  Numbers show the relative difference in mean log score computed using Eqn 6, or 
relative difference in mean point prediction accuracy computed using Eqn 7, by variant wave. A positive number indicates superior 
performance of the forecast approach with anticipation of new variant emergence.  

Metric Measure Seasonality setting 2nd wave Alpha Delta Omicron 

Log score Cases No seasonality -2.09% 0.0271% 66.9% 10.5% 
Log score Cases Fixed seasonality -0.573% -0.33% 119% 36.6% 
Log score Cases Transformed seasonality -1.07% -1.03% 93.7% 34.1% 
Log score Deaths No seasonality -1.7% 0.00306% 19.1% -5.31% 
Log score Deaths Fixed seasonality -0.387% -0.291% 34.1% -2.27% 
Log score Deaths Transformed seasonality -0.918% -0.651% 27.8% -2.73% 
Accuracy Cases No seasonality -1.52% -0.11% 89.1% 37.1% 
Accuracy Cases Fixed seasonality 0.578% 2.16% 16.8% 95.8% 
Accuracy Cases Transformed seasonality -1.33% 1.96% 26.1% 77.8% 
Accuracy Deaths No seasonality -1.45% 0.121% 69.9% 40.2% 
Accuracy Deaths Fixed seasonality -0.278% 2.73% 15.9% 67.7% 
Accuracy Deaths Transformed seasonality -1.31% 2.47% 22.5% 63.2% 
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Table S3. Impact of seasonality, aggregated over all 10 states. Numbers show the relative difference in mean log score or point 
prediction accuracy, the median of pair-wise difference in log score (95% CI of the median); asterisk (*) indicates if the median is 
significantly >0 or <0 at the α = 0.05 level, per a Wilcoxon rank sum test. A positive difference indicates superior log score or point 
prediction accuracy of the first listed approach; a negative difference indicates superior log score or point prediction accuracy of the 
second listed approach. 
Wave Season Metric Measure Fixed vs no seasonality Transformed vs no 

seasonality 
Transformed vs fixed 
seasonality 

All All Log score Cases -4.45%, -0.0075 (-0.012, -
0.0034)* 

-2.8%, -0.006 (-0.01, -0.002)* 1.73%, 0.01 (0, 0.01)* 

All All Log score Deaths 12.7%, 0.04 (0.04, 0.04)* 14.2%, 0.04 (0.04, 0.04)* 1.32%, -0.0015 (-0.002, -
0.00054)* 

All All Accuracy Cases 20.4%, 10% (10%, 10%) 26.3%, 10% (10%, 10%) 4.92%, 0% (0%, 5%)* 
All All Accuracy Deaths 15.8%, 10% (9.99%, 10%) 18.2%, 10% (10%, 10%) 2.09%, 0% (0%, 0%)* 
All Respiratory 

season 
Log score Cases 39.8%, 0.19 (0.18, 0.2) 42.3%, 0.2 (0.18, 0.21) 1.8%, 0.01 (0, 0.01)* 

All Respiratory 
season 

Log score Deaths 37.4%, 0.16 (0.15, 0.17) 41.1%, 0.17 (0.15, 0.18) 2.64%, 0.01 (0, 0.01)* 

All Respiratory 
season 

Accuracy Cases 60.3%, 20% (20%, 25%) 75.3%, 25% (25%, 30%) 9.38%, 5.01% (5%, 5%) 

All Respiratory 
season 

Accuracy Deaths 47.3%, 25% (20%, 25%) 54.3%, 25% (25%, 30%) 4.76%, 5% (0%, 5%) 

All Off season Log score Cases -25.9%, -0.14 (-0.14, -0.13)* -24.6%, -0.14 (-0.16, -0.13)* 1.68%, 0 (0, 0.01)* 
All Off season Log score Deaths -1.3%, 0.02 (0.02, 0.03)* -0.86%, 0.02 (0.02, 0.02)* 0.444%, -0.0031 (-0.0036, -

0.0025)* 
All Off season Accuracy Cases -5.95%, -5% (-5%, 0%)* -6.04%, 0% (-4.99%, 0%)* -0.0987%, 0% (0%, 0.01%)* 
All Off season Accuracy Deaths -6.77%, -5% (-5%, -4.99%)* -7.64%, -4.99% (-5%, -5%)* -0.94%, 0% (0%, 0.01%)* 
2nd 
wave 

Off season Log score Cases 32%, 0.22 (0.2, 0.24) 23.5%, 0.16 (0.14, 0.17) -6.42%, -0.056 (-0.063, -
0.051)* 

2nd 
wave 

Off season Log score Deaths 23.9%, 0.17 (0.16, 0.19) 17.1%, 0.13 (0.12, 0.14) -5.5%, -0.048 (-0.052, -
0.043)* 

2nd 
wave 

Off season Accuracy Cases 37.6%, 15% (15%, 20%) 35.6%, 20% (15%, 20%) -1.43%, -0.01% (-5%, 0%)* 
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2nd 
wave 

Off season Accuracy Deaths 45.6%, 25% (20%, 30%) 28.1%, 20% (15%, 20%) -12%, -10% (-15%, -10%)* 

Alpha Off season Log score Cases -9.35%, 0.01 (0, 0.01)* -24.7%, -0.052 (-0.11, 0)* -16.9%, -0.087 (-0.11, -
0.052)* 

Alpha Off season Log score Deaths -3.33%, 0.01 (0.01, 0.01)* -10.8%, 0.01 (0.01, 0.02)* -7.74%, 0 (0, 0)* 
Alpha Off season Accuracy Cases -42.4%, -30% (-35%, -25%)* -39.8%, -30% (-35%, -25%)* 4.52%, 5% (-0.01%, 5.01%) 
Alpha Off season Accuracy Deaths -28.5%, -25% (-25%, -20%)* -33.8%, -30% (-30%, -25%)* -7.53%, -5.01% (-10%, 0%)* 
Delta Off season Log score Cases -49.6%, -0.57 (-0.61, -0.55)* -35.4%, -0.32 (-0.35, -0.3)* 28.2%, 0.25 (0.23, 0.26) 
Delta Off season Log score Deaths -12%, 0.02 (0.02, 0.02)* -6.52%, 0.02 (0.02, 0.02)* 6.28%, -0.0024 (-0.003, -

0.0015)* 
Delta Off season Accuracy Cases -55.8%, -25% (-25%, -20%)* -50%, -20% (-25%, -20%)* 13.1%, 4.99% (0%, 5%)* 
Delta Off season Accuracy Deaths -50.3%, -25% (-25%, -20%)* -43.2%, -20% (-20%, -15%)* 14.5%, 5% (4.99%, 10%) 
Omicron Off season Log score Cases -19.5%, -0.15 (-0.16, -0.14)* -24%, -0.16 (-0.17, -0.15)* -5.68%, -0.013 (-0.017, -

0.0085)* 
Omicron Off season Log score Deaths 4.77%, 0.03 (0.03, 0.03)* 3.84%, 0.02 (0.02, 0.03)* -0.887%, -0.0035 (-0.0041, -

0.003)* 
Omicron Off season Accuracy Cases 4.46%, 0.01% (0%, 5%)* 2.52%, 0% (0%, 5%)* -1.86%, -0.01% (0%, 0%)* 
Omicron Off season Accuracy Deaths -1.59%, 0% (0%, 0%)* -1.78%, 0% (0%, 0%)* -0.191%, -0.01% (0%, 0%)* 

 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2022.11.14.22282323doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.14.22282323


 18 

Table S4. Impact of seasonality, by state. Numbers show the relative difference in mean log score or point prediction accuracy, the 
median of pair-wise difference in log score (95% CI of the median); asterisk (*) indicates if the median is significantly >0 or <0 at the 
α = 0.05 level, per a Wilcoxon rank sum test. A positive difference indicates superior log score or point prediction accuracy of the 
first listed approach; a negative difference indicates superior log score or point prediction accuracy of the second listed approach. 
State Season Metric Measure Fixed vs no seasonality Transformed vs no 

seasonality 
Transformed vs fixed 
seasonality 

California All Log score Cases -7.14%, -0.042 (-0.062, -
0.024)* 

-1.53%, -0.028 (-0.045, -
0.013)* 

6.04%, 0.02 (0.01, 0.02)* 

California All Log score Deaths 16.7%, 0.04 (0.04, 0.05)* 21.4%, 0.04 (0.03, 0.04)* 3.96%, 0 (0, 0.01)* 
California All Accuracy Cases 13.1%, 5% (0%, 9.99%) 11.3%, 5% (0%, 10%) -1.6%, 0% (0%, 0%)* 
California All Accuracy Deaths 4.74%, 0% (0.01%, 5%)* 1.86%, 0% (-0.01%, 5%)* -2.75%, 0% (-4.99%, 0%)* 
California Respiratory 

season 
Log score Cases 42.5%, 0.17 (0.13, 0.22) 56.7%, 0.24 (0.19, 0.3) 9.96%, 0.05 (0.04, 0.06)* 

California Respiratory 
season 

Log score Deaths 48.4%, 0.21 (0.15, 0.3) 60%, 0.27 (0.19, 0.37) 7.8%, 0.03 (0.02, 0.04)* 

California Respiratory 
season 

Accuracy Cases 51.9%, 20% (15%, 20%) 58.9%, 20% (15%, 25%) 4.61%, 4.99% (-0.01%, 
5%)* 

California Respiratory 
season 

Accuracy Deaths 27.9%, 15% (10%, 20%) 22.4%, 10% (5%, 15%) -4.33%, -5% (-10%, 0%)* 

California Off season Log score Cases -30.3%, -0.17 (-0.2, -0.14)* -27.9%, -0.19 (-0.23, -0.16)* 3.49%, -0.0024 (-0.013, 
0)* 

California Off season Log score Deaths -0.598%, 0.03 (0.02, 0.03)* 0.856%, 0.02 (0.02, 0.03)* 1.46%, -1e-05 (-0.0014, 
0.00098)* 

California Off season Accuracy Cases -11%, -5% (-10%, 0%)* -18.4%, -9.99% (-15%, -
5.01%)* 

-8.21%, -5% (-10%, 0%)* 

California Off season Accuracy Deaths -8.26%, -5% (-10%, 0%)* -9.65%, -5% (-10%, -5%)* -1.52%, 0% (-4.99%, 5%)* 
Florida All Log score Cases -12.6%, -0.02 (-0.032, -

0.01)* 
-6.11%, 0.001 (-0.0085, 
0.01)* 

7.47%, 0.03 (0.02, 0.04)* 

Florida All Log score Deaths 0.697%, 0.02 (0.01, 0.02)* 4.42%, 0.02 (0.02, 0.03)* 3.7%, 0.01 (0.01, 0.01)* 
Florida All Accuracy Cases 8.52%, 5% (5%, 10%) 11.5%, 5% (5%, 10%) 2.74%, 0% (0%, 5%)* 
Florida All Accuracy Deaths 3.73%, 5% (0%, 5.01%) 4.9%, 5% (0%, 5.01%) 1.14%, 0% (0%, 0%)* 
Florida Respiratory 

season 
Log score Cases -2.01%, 0.03 (0.02, 0.05)* 1.72%, 0.04 (0.02, 0.05)* 3.81%, 0.02 (0.01, 0.04)* 
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Florida Respiratory 
season 

Log score Deaths 2.77%, 0.05 (0.04, 0.06) 8.52%, 0.06 (0.04, 0.07) 5.59%, 0.03 (0.02, 0.04)* 

Florida Respiratory 
season 

Accuracy Cases 19%, 10% (9.99%, 15%) 20.7%, 15% (10%, 20%) 1.44%, 0% (-5%, 5%)* 

Florida Respiratory 
season 

Accuracy Deaths 11.8%, 10% (9.99%, 15%) 12.9%, 10% (5%, 15%) 0.958%, 0% (-5%, 4.99%)* 

Florida Off season Log score Cases -19.1%, -0.066 (-0.088, -
0.046)* 

-11%, -0.02 (-0.037, -
0.0059)* 

10%, 0.03 (0.02, 0.05)* 

Florida Off season Log score Deaths -0.675%, 0.01 (0.01, 0.01)* 1.75%, 0.01 (0.01, 0.02)* 2.44%, 0 (0.00049, 0)* 
Florida Off season Accuracy Cases 2.1%, 0% (0%, 5%)* 5.84%, 5% (0%, 5%) 3.66%, 0% (0.01%, 5%)* 
Florida Off season Accuracy Deaths -1.82%, 0% (-5%, 0%)* -0.565%, 0% (0%, 4.99%)* 1.28%, 0.01% (0%, 

4.99%)* 
Iowa All Log score Cases 1.02%, 0.02 (0.01, 0.03)* 6.96%, 0.03 (0.02, 0.04)* 5.89%, 0.02 (0.01, 0.03)* 
Iowa All Log score Deaths 23.6%, 0.07 (0.06, 0.08) 25.7%, 0.06 (0.05, 0.07) 1.64%, -0.001 (-0.0031, 

5e-04)* 
Iowa All Accuracy Cases 12.9%, 5% (0%, 10%) 28.3%, 10% (10%, 15%) 13.7%, 10% (5%, 10%) 
Iowa All Accuracy Deaths 17.8%, 10% (5%, 10%) 22.7%, 10% (10%, 15%) 4.19%, 5% (0.01%, 5.01%) 
Iowa Respiratory 

season 
Log score Cases 77.8%, 0.47 (0.4, 0.53) 77.4%, 0.48 (0.42, 0.54) -0.246%, 0.01 (-0.003, 

0.02)* 
Iowa Respiratory 

season 
Log score Deaths 72.9%, 0.38 (0.31, 0.46) 76.2%, 0.44 (0.36, 0.5) 1.95%, 0.01 (-0.001, 

0.02)* 
Iowa Respiratory 

season 
Accuracy Cases 71.5%, 25% (20%, 25%) 112%, 35% (30%, 40%) 23.4%, 15% (9.99%, 15%) 

Iowa Respiratory 
season 

Accuracy Deaths 81%, 35% (30%, 35%) 88.7%, 35% (30%, 40%) 4.26%, 5% (0.01%, 10%) 

Iowa Off season Log score Cases -30.2%, -0.11 (-0.14, -
0.076)* 

-23.2%, -0.076 (-0.1, -0.05)* 10.1%, 0.02 (0.01, 0.03)* 

Iowa Off season Log score Deaths -0.723%, 0.03 (0.03, 0.04)* 0.71%, 0.03 (0.03, 0.03)* 1.44%, -0.0035 (-0.0055, -
0.0025)* 

Iowa Off season Accuracy Cases -17.6%, -10% (-15%, -5%)* -14.9%, -10% (-10%, -
4.99%)* 

3.29%, 0% (0%, 5%)* 

Iowa Off season Accuracy Deaths -18.8%, -10% (-15%, -10%)* -15.5%, -10% (-15%, -
5.01%)* 

4.1%, 0% (0%, 5%)* 
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Massachusetts All Log score Cases 8.31%, 0.05 (0.03, 0.07) 4.64%, 0.02 (0, 0.03)* -3.39%, -0.03 (-0.038, -
0.023)* 

Massachusetts All Log score Deaths 30%, 0.11 (0.1, 0.12) 28.8%, 0.08 (0.07, 0.09) -0.937%, -0.015 (-0.018, -
0.012)* 

Massachusetts All Accuracy Cases 49.1%, 20% (15%, 25%) 33.5%, 15% (10%, 15%) -10.4%, -10% (-10%, -
5%)* 

Massachusetts All Accuracy Deaths 34.7%, 20% (15%, 20%) 28.1%, 15% (10%, 20%) -4.87%, -5% (-5%, 0%)* 
Massachusetts Respiratory 

season 
Log score Cases 83.6%, 0.5 (0.44, 0.57) 78%, 0.45 (0.39, 0.52) -3.05%, -0.034 (-0.044, -

0.023)* 
Massachusetts Respiratory 

season 
Log score Deaths 72.7%, 0.42 (0.34, 0.49) 71%, 0.41 (0.35, 0.48) -0.976%, -0.021 (-0.028, -

0.015)* 
Massachusetts Respiratory 

season 
Accuracy Cases 121%, 35% (35%, 40%) 99.7%, 35% (30%, 40%) -9.73%, -10% (-10%, -

5%)* 
Massachusetts Respiratory 

season 
Accuracy Deaths 68.3%, 30% (25%, 35%) 56.7%, 25% (25%, 30%) -6.9%, -5% (-10%, -5%)* 

Massachusetts Off season Log score Cases -24%, -0.074 (-0.11, -
0.046)* 

-26.8%, -0.18 (-0.24, -0.14)* -3.62%, -0.026 (-0.036, -
0.017)* 

Massachusetts Off season Log score Deaths 7.39%, 0.05 (0.04, 0.06)* 6.42%, 0.03 (0.03, 0.04)* -0.91%, -0.012 (-0.014, -
0.0096)* 

Massachusetts Off season Accuracy Cases 3.66%, 0% (0%, 5%)* -8.13%, -4.99% (-10%, 0%)* -11.4%, -5% (-10%, -5%)* 
Massachusetts Off season Accuracy Deaths 7.54%, 5% (0.01%, 9.99%) 5.05%, 5% (0%, 5%) -2.31%, 0% (-5%, 0%)* 
Michigan All Log score Cases 0.571%, -0.0055 (-0.024, 

0.01)* 
-9.27%, -0.034 (-0.054, -
0.015)* 

-9.79%, -0.03 (-0.038, -
0.023)* 

Michigan All Log score Deaths 16.8%, 0.06 (0.05, 0.08) 7.52%, 0.04 (0.03, 0.05)* -7.95%, -0.032 (-0.036, -
0.028)* 

Michigan All Accuracy Cases 26.8%, 10% (9.99%, 15%) 20.5%, 10% (5%, 10%) -5.01%, -5% (-5%, 0%)* 
Michigan All Accuracy Deaths 21.6%, 10% (9.99%, 15%) 10.2%, 5% (5%, 9.99%) -9.42%, -5% (-9.99%, -

5%)* 
Michigan Respiratory 

season 
Log score Cases 38.8%, 0.24 (0.19, 0.29) 29.1%, 0.19 (0.15, 0.24) -7.03%, -0.036 (-0.044, -

0.027)* 
Michigan Respiratory 

season 
Log score Deaths 38.7%, 0.19 (0.15, 0.24) 33%, 0.16 (0.12, 0.2) -4.09%, -0.036 (-0.043, -

0.028)* 
Michigan Respiratory 

season 
Accuracy Cases 116%, 35% (30%, 40%) 84.3%, 25% (25%, 30%) -14.6%, -10% (-15%, -

5%)* 
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Michigan Respiratory 
season 

Accuracy Deaths 83.9%, 40% (35%, 40%) 44.1%, 25% (20%, 25%) -21.6%, -20% (-20%, -
15%)* 

Michigan Off season Log score Cases -18.6%, -0.14 (-0.18, -0.11)* -28%, -0.21 (-0.24, -0.16)* -11.6%, -0.029 (-0.042, -
0.017)* 

Michigan Off season Log score Deaths 4.38%, 0.04 (0.03, 0.05)* -6.47%, 0.02 (0.01, 0.03)* -10.4%, -0.028 (-0.032, -
0.024)* 

Michigan Off season Accuracy Cases -16.4%, -10% (-10%, -5%)* -10.6%, -5.01% (-9.99%, 
0%)* 

7.01%, 5% (0%, 10%) 

Michigan Off season Accuracy Deaths -18%, -10% (-15%, -10%)* -11.4%, -5% (-10%, 0%)* 8.01%, 5.01% (0%, 10%) 
New York All Log score Cases -3.26%, 0.01 (5.9e-06, 

0.02)* 
-4.56%, -0.002 (-0.02, 0.01)* -1.34%, -0.0065 (-0.014, 

6.4e-05)* 
New York All Log score Deaths 19%, 0.08 (0.07, 0.09) 17.9%, 0.06 (0.05, 0.07) -0.852%, -0.011 (-0.014, -

0.0086)* 
New York All Accuracy Cases 30.7%, 15% (10%, 15%) 51%, 20% (20%, 25%) 15.6%, 10% (5%, 15%) 
New York All Accuracy Deaths 21.7%, 10% (10%, 15%) 32.1%, 20% (15%, 20%) 8.58%, 10% (5%, 10%) 
New York Respiratory 

season 
Log score Cases 44.9%, 0.24 (0.21, 0.28) 44.3%, 0.24 (0.2, 0.28) -0.435%, -0.007 (-0.019, 

0)* 
New York Respiratory 

season 
Log score Deaths 37.8%, 0.21 (0.18, 0.25) 37.8%, 0.21 (0.17, 0.24) -0.00206%, -0.0056 (-

0.014, 0)* 
New York Respiratory 

season 
Accuracy Cases 62.7%, 25% (20%, 30%) 100%, 35% (30%, 40%) 22.9%, 15% (10%, 20%) 

New York Respiratory 
season 

Accuracy Deaths 51.3%, 25% (20%, 30%) 80.5%, 40% (35%, 40%) 19.3%, 15% (15%, 20%) 

New York Off season Log score Cases -26.3%, -0.11 (-0.14, -
0.085)* 

-27.7%, -0.2 (-0.25, -0.15)* -1.94%, -0.0074 (-0.017, 
2.2e-05)* 

New York Off season Log score Deaths 7.78%, 0.05 (0.05, 0.06) 6.25%, 0.04 (0.03, 0.04)* -1.42%, -0.012 (-0.014, -
0.01)* 

New York Off season Accuracy Cases 6.51%, 5% (-0.01%, 10%) 14%, 5% (0%, 10%) 7.02%, 5% (0%, 10%) 
New York Off season Accuracy Deaths -0.706%, -0.01% (-4.99%, 

5%)* 
-4.44%, -5% (-10%, 0%)* -3.76%, -5% (-5%, 0%)* 

Pennsylvania All Log score Cases -5.3%, -0.008 (-0.026, 
0.01)* 

-5.72%, 0.01 (-0.0085, 0.02)* -0.438%, -0.0039 (-0.011, 
0)* 

Pennsylvania All Log score Deaths 13.8%, 0.07 (0.06, 0.08) 12.9%, 0.06 (0.05, 0.07) -0.791%, -0.012 (-0.016, -
0.009)* 
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Pennsylvania All Accuracy Cases 29.7%, 10% (10%, 15%) 47.5%, 20% (15%, 20%) 13.7%, 10% (5%, 10%) 
Pennsylvania All Accuracy Deaths 29.4%, 15% (10%, 20%) 36.4%, 20% (15%, 20%) 5.39%, 5% (0%, 9.99%) 
Pennsylvania Respiratory 

season 
Log score Cases 38.5%, 0.18 (0.14, 0.22) 38.6%, 0.2 (0.17, 0.23) 0.0339%, -0.003 (-0.016, 

0.01)* 
Pennsylvania Respiratory 

season 
Log score Deaths 36.2%, 0.15 (0.12, 0.18) 35.4%, 0.14 (0.11, 0.16) -0.636%, -0.017 (-0.028, -

0.006)* 
Pennsylvania Respiratory 

season 
Accuracy Cases 48.9%, 20% (15%, 25%) 99.6%, 35% (30%, 40%) 34.1%, 20% (15%, 25%) 

Pennsylvania Respiratory 
season 

Accuracy Deaths 50.6%, 25% (20%, 30%) 76.7%, 40% (35%, 40%) 17.4%, 15% (10%, 20%) 

Pennsylvania Off season Log score Cases -26.7%, -0.18 (-0.23, -0.14)* -27.2%, -0.19 (-0.24, -0.14)* -0.754%, -0.0046 (-0.012, 
0)* 

Pennsylvania Off season Log score Deaths 0.845%, 0.05 (0.04, 0.06)* -0.0572%, 0.04 (0.04, 0.05)* -0.895%, -0.011 (-0.014, -
0.0085)* 

Pennsylvania Off season Accuracy Cases 13%, 5% (0.01%, 9.99%) 2.05%, 0% (-0.01%, 4.99%)* -9.71%, -5.01% (-10%, -
4.99%)* 

Pennsylvania Off season Accuracy Deaths 11.1%, 5% (0%, 10%) 1.46%, 0% (-4.99%, 5%)* -8.66%, -5% (-10%, -5%)* 
Texas All Log score Cases -9.81%, -0.02 (-0.043, -

0.00054)* 
1.82%, 0.01 (-0.0066, 0.02)* 12.9%, 0.06 (0.05, 0.07) 

Texas All Log score Deaths 6.34%, 0.03 (0.02, 0.03)* 15.6%, 0.03 (0.02, 0.03)* 8.68%, 0.01 (0.01, 0.01)* 
Texas All Accuracy Cases 11.1%, 5% (0.01%, 5%) 33.5%, 15% (10%, 15%) 20.2%, 10% (10%, 15%) 
Texas All Accuracy Deaths 9.13%, 5% (0%, 5%) 27.6%, 15% (10%, 15%) 16.9%, 10% (9.99%, 15%) 
Texas Respiratory 

season 
Log score Cases 59.4%, 0.34 (0.26, 0.42) 77.3%, 0.43 (0.36, 0.51) 11.3%, 0.05 (0.04, 0.07) 

Texas Respiratory 
season 

Log score Deaths 51.9%, 0.3 (0.23, 0.37) 68%, 0.42 (0.35, 0.49) 10.6%, 0.07 (0.05, 0.08) 

Texas Respiratory 
season 

Accuracy Cases 50.1%, 20% (15%, 25%) 96.9%, 30% (25%, 35%) 31.2%, 20% (15%, 25%) 

Texas Respiratory 
season 

Accuracy Deaths 47%, 25% (20%, 25%) 91.5%, 40% (35%, 40%) 30.2%, 25% (20%, 25%) 

Texas Off season Log score Cases -38.5%, -0.22 (-0.27, -0.18)* -29.9%, -0.13 (-0.17, -0.096)* 14%, 0.06 (0.05, 0.08) 
Texas Off season Log score Deaths -16.3%, 0.02 (0.02, 0.02)* -10.1%, 0.01 (0.01, 0.02)* 7.43%, -1.8e-06 (-

0.00099, 0.00049)* 
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Texas Off season Accuracy Cases -16%, -10% (-15%, -5.01%)* -10.5%, -5% (-10%, -5%)* 6.57%, 5% (0.01%, 5%) 
Texas Off season Accuracy Deaths -18.8%, -15% (-15%, -10%)* -19.6%, -15% (-15%, -10%)* -0.909%, 0% (-0.01%, 

0%)* 
Washington All Log score Cases -14%, -0.092 (-0.11, -

0.078)* 
-13.5%, -0.098 (-0.11, -
0.084)* 

0.577%, 0.01 (0, 0.01)* 

Washington All Log score Deaths -4.44%, -0.002 (-0.007, 
0.00092)* 

-1.65%, 0 (-0.0015, 0)* 2.92%, 0.01 (0.01, 0.01)* 

Washington All Accuracy Cases 16.5%, 5% (4.99%, 10%) 13.5%, 5% (0.01%, 10%) -2.54%, 0% (0%, 0.01%)* 
Washington All Accuracy Deaths 11%, 5.01% (0%, 10%) 11.3%, 5.01% (5%, 9.99%) 0.291%, 0% (-0.01%, 0%)* 
Washington Respiratory 

season 
Log score Cases 0.837%, -0.026 (-0.046, -

0.0079)* 
3.75%, -0.0025 (-0.018, 
0.01)* 

2.89%, 0.03 (0.02, 0.03)* 

Washington Respiratory 
season 

Log score Deaths 0.291%, -0.05 (-0.068, -
0.032)* 

2.95%, -0.032 (-0.046, -
0.017)* 

2.65%, 0.02 (0.01, 0.02)* 

Washington Respiratory 
season 

Accuracy Cases 27%, 10% (5%, 15%) 25.6%, 10% (5.01%, 15%) -1.03%, 0% (-0.01%, 0%)* 

Washington Respiratory 
season 

Accuracy Deaths 23.9%, 10% (10%, 15%) 29.2%, 15% (10%, 20%) 4.31%, 4.99% (0%, 5%)* 

Washington Off season Log score Cases -22.7%, -0.15 (-0.17, -0.13)* -23.4%, -0.19 (-0.22, -0.17)* -0.949%, -0.01 (-0.018, -
0.0035)* 

Washington Off season Log score Deaths -7.49%, 0.01 (0.01, 0.01)* -4.62%, 0.01 (0.01, 0.01)* 3.1%, 0 (0, 0)* 
Washington Off season Accuracy Cases 5.51%, 0.01% (0%, 5.01%)* 0.819%, 0.01% (0%, 5%)* -4.45%, 0% (-5%, 0%)* 
Washington Off season Accuracy Deaths -1.29%, -0.01% (-5%, 0%)* -5.72%, -5% (-5%, 0%)* -4.5%, -5% (-5%, 0%)* 
Wyoming All Log score Cases 0.44%, -0.00092 (-0.007, 0)* 1.31%, 0 (-0.0045, 0.01)* 0.869%, 0.01 (0.01, 0.01)* 
Wyoming All Log score Deaths 8.84%, 0.03 (0.02, 0.03)* 12.6%, 0.03 (0.02, 0.03)* 3.47%, 0 (0, 0.01)* 
Wyoming All Accuracy Cases 6.6%, 4.99% (0%, 5%)* 14.4%, 5% (5%, 10%) 7.28%, 5% (0.01%, 5.01%) 
Wyoming All Accuracy Deaths 3.37%, 0.01% (0%, 5%)* 7.98%, 5% (0%, 5%) 4.46%, 0% (-0.01%, 5%)* 
Wyoming Respiratory 

season 
Log score Cases 40.7%, 0.19 (0.16, 0.22) 42.9%, 0.17 (0.15, 0.2) 1.51%, -0.0036 (-0.013, 

0)* 
Wyoming Respiratory 

season 
Log score Deaths 34.1%, 0.18 (0.14, 0.21) 39.6%, 0.16 (0.13, 0.19) 4.1%, 8.3e-05 (-0.0084, 

0.01)* 
Wyoming Respiratory 

season 
Accuracy Cases 57.9%, 20% (15%, 25%) 70.8%, 25% (20%, 30%) 8.14%, 5% (0.01%, 10%) 
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Wyoming Respiratory 
season 

Accuracy Deaths 29.6%, 15% (10%, 20%) 41.1%, 20% (15%, 25%) 8.87%, 5% (0%, 10%) 

Wyoming Off season Log score Cases -19.5%, -0.15 (-0.18, -0.12)* -19.1%, -0.13 (-0.16, -0.093)* 0.454%, 0.02 (0.01, 0.02)* 
Wyoming Off season Log score Deaths -5.06%, 0.01 (0.01, 0.01)* -2.16%, 0.01 (0.01, 0.02)* 3.05%, 0.01 (0, 0.01)* 
Wyoming Off season Accuracy Cases -20%, -10% (-15%, -5%)* -14.9%, -5% (-10%, 0%)* 6.39%, 5% (0%, 10%) 
Wyoming Off season Accuracy Deaths -14.2%, -9.99% (-10%, -

5.01%)* 
-14.2%, -9.99% (-10%, -5%)* 0%, 0% (-0.01%, 5%)* 
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Table S5.  Comparison of forecast performance of the ARIMAX models. Only four models (see 

the top row for model names) are shown here because the fifth model (ARIMAX.FULL with 

vaccination included) was only able to generate forecasts for less than half of the study weeks; 

see details on the models in the main text. Numbers show the mean log score or point 

prediction accuracy of forecasts (specified in the “metric” column), aggregated across the entire 

study period and all locations for all forecast targets combined or individual forecast targets 

(specified in the “target” column). Bolded fonts indicate best performance (highest log score or 

accuracy).  

target metric measure 

Models 

ARIMA ARIMAX.MOB ARIMAX.SN ARIMAX.MS 

all Log score Cases -2.64 -2.53 -2.75 -3.03 

all Log score Deaths -1.77 -1.73 -1.64 -1.71 

all Accuracy Cases 13% 15% 18% 15% 

all Accuracy Deaths 14% 17% 21% 17% 

1-8wk ahead Log score Cases -2.08 -2 -2.04 -2.08 

1-8wk ahead Log score Deaths -1.34 -1.36 -1.27 -1.34 

1-8wk ahead Accuracy Cases 22% 25% 26% 24% 

1-8wk ahead Accuracy Deaths 22% 25% 28% 23% 

9-16wk ahead Log score Cases -2.86 -2.62 -2.8 -3.14 

9-16wk ahead Log score Deaths -1.89 -1.8 -1.64 -1.68 

9-16wk ahead Accuracy Cases 8% 11% 14% 11% 

9-16wk ahead Accuracy Deaths 8% 12% 18% 12% 

17-26wk ahead Log score Cases -2.89 -2.77 -3.26 -3.77 

17-26wk ahead Log score Deaths -1.82 -1.75 -1.72 -1.76 

17-26wk ahead Accuracy Cases 8% 10% 12% 10% 

17-26wk ahead Accuracy Deaths 10% 12% 16% 12% 

peak intensity Log score Cases -3.87 -4.45 -4.39 -4.57 

peak intensity Log score Deaths -3.14 -3.38 -3.18 -3.5 

peak intensity Accuracy Cases 14% 15% 19% 18% 

peak intensity Accuracy Deaths 15% 18% 23% 21% 

peak week Log score Cases -2.63 -2.66 -3.01 -3.21 

peak week Log score Deaths -2.54 -2.53 -2.36 -2.45 

peak week Accuracy Cases 11% 12% 20% 21% 

peak week Accuracy Deaths 11% 13% 23% 23% 

total Log score Cases -2.37 -2.36 -2.54 -2.5 

total Log score Deaths -2.22 -2.27 -2.29 -2.56 

total Accuracy Cases 10% 12% 13% 13% 
total Accuracy Deaths 12% 13% 17% 19% 
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Table S6.  Comparison of forecast performance of the approaches developed in this study with 

the best-performing ARIMAX model. Numbers show the mean log score or point prediction 

accuracy of forecasts (specified in the “metric” column), aggregated across the entire study 

period and all locations for all forecast targets combined or individual forecast targets (specified 

in the “target” column). Bolded fonts indicate best performance (highest log score or accuracy).  

  Log score   Accuracy   

target measure ARIMAX.SN Baseline 

Best-

performing ARIMAX.SN Baseline 

Best-

performing 

all Cases -2.75 -1.95 -1.46 18% 11% 26% 
all Deaths -1.64 -0.97 -0.65 21% 17% 31% 
1-8wk ahead Cases -2.04 -1.08 -0.91 26% 26% 38% 
1-8wk ahead Deaths -1.27 -0.42 -0.35 28% 39% 48% 
9-16wk ahead Cases -2.8 -1.86 -1.49 14% 4% 20% 
9-16wk ahead Deaths -1.64 -0.83 -0.64 18% 7% 25% 
17-26wk 

ahead Cases -3.26 -2.8 -1.87 12% 1% 16% 
17-26wk 

ahead Deaths -1.72 -1.43 -0.8 16% 1% 16% 
peak intensity Cases -4.39 -2.43 -2.01 19% 20% 40% 
peak intensity Deaths -3.18 -1.69 -1.36 23% 30% 51% 
peak week Cases -3.01 -3.51 -2.73 20% 24% 42% 
peak week Deaths -2.36 -2.61 -1.53 23% 35% 56% 
total Cases -2.54 -1.05 -0.75 13% 7% 33% 
total Deaths -2.29 -0.99 -0.67 17% 9% 36% 
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Table S7. Preliminary assessment of the real-time forecasts initiated the week of October 2, 

2022 for October 2022 – March 2023. The log score and accuracy were computed using 

reported case and mortality data downloaded on March 31, 2023 (see further details in the 

main text). As shown in Fig 8, COVID-19 mortality data in some states (e.g., Wyoming) were 

highly irregular during the forecast period, likely an artifact of reporting. Due to these potential 

data inaccuracies, the mortality-related log score and point prediction accuracy for these states 

are likely lower than the true values (to be obtained once more complete mortality data are 

available).  

State target 

Log score  Accuracy  

Cases Deaths Cases Deaths 

All all -0.45 -0.2 56% 23% 

All 1-8wk ahead -0.31 -0.06 56% 22% 

All 9-16wk ahead -0.71 -0.17 46% 20% 

All 17-26wk ahead -0.25 -0.12 64% 28% 

All peak intensity -0.84 -0.32 48% 6% 

All peak week -1.21 -2.3 52% 41% 

All total -0.21 -0.13 78% 7% 

California all -0.52 -0.1 60% 52% 

California 1-8wk ahead -0.31 -0.04 55% 32% 

California 9-16wk ahead -0.99 -0.11 41% 74% 

California 17-26wk ahead -0.24 -0.06 73% 43% 

California peak intensity -1.39 -0.1 90% 60% 

California peak week -0.72 -0.86 100% 100% 

California total -0.24 -0.1 60% 60% 

Florida all -0.38 -0.19 28% 8% 

Florida 1-8wk ahead -0.06 -0.02 5% 0% 

Florida 9-16wk ahead -0.66 -0.2 9% 14% 

Florida 17-26wk ahead -0.31 -0.16 56% 13% 

Florida peak intensity -1.2 -0.54 0% 0% 

Florida peak week -0.74 -1.6 90% 0% 

Florida total -0.16 -0.05 50% 0% 

Iowa all -0.37 -0.12 53% 29% 

Iowa 1-8wk ahead -0.2 -0.05 86% 12% 

Iowa 9-16wk ahead -0.59 -0.09 42% 24% 

Iowa 17-26wk ahead -0.2 -0.07 29% 49% 

Iowa peak intensity -0.71 -0.11 80% 0% 

Iowa peak week -1.37 -1.38 60% 70% 

Iowa total -0.26 -0.05 70% 0% 

Massachusetts all -0.64 -0.31 61% 9% 

Massachusetts 1-8wk ahead -0.7 -0.06 41% 18% 

Massachusetts 9-16wk ahead -0.86 -0.46 72% 6% 
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Massachusetts 17-26wk ahead -0.36 -0.2 78% 0% 

Massachusetts peak intensity -1.33 -0.61 0% 0% 

Massachusetts peak week -0.95 -1.62 0% 70% 

Massachusetts total -0.26 -0.7 80% 0% 

Michigan all -0.32 -0.32 51% 17% 

Michigan 1-8wk ahead -0.3 -0.2 45% 25% 

Michigan 9-16wk ahead -0.46 -0.21 64% 12% 

Michigan 17-26wk ahead -0.11 -0.22 41% 19% 

Michigan peak intensity -0.35 -0.12 100% 0% 

Michigan peak week -1.81 -3.59 0% 0% 

Michigan total -0.06 -0.05 90% 0% 

New York all -0.76 -0.14 66% 17% 

New York 1-8wk ahead -0.68 -0.07 52% 14% 

New York 9-16wk ahead -1.27 -0.05 48% 0% 

New York 17-26wk ahead -0.34 -0.05 98% 37% 

New York peak intensity -0.97 -0.11 30% 0% 

New York peak week -1.76 -2.31 10% 0% 

New York total -0.24 -0.06 90% 0% 

Pennsylvania all -0.49 -0.12 59% 37% 

Pennsylvania 1-8wk ahead -0.33 -0.05 81% 25% 

Pennsylvania 9-16wk ahead -0.75 -0.1 34% 30% 

Pennsylvania 17-26wk ahead -0.34 -0.08 62% 53% 

Pennsylvania peak intensity -0.73 -0.16 0% 0% 

Pennsylvania peak week -1.09 -1.33 100% 90% 

Pennsylvania total -0.21 -0.08 80% 0% 

Texas all -0.37 -0.08 64% 10% 

Texas 1-8wk ahead -0.22 -0.03 78% 4% 

Texas 9-16wk ahead -0.67 -0.05 60% 19% 

Texas 17-26wk ahead -0.18 -0.04 50% 3% 

Texas peak intensity -0.75 -0.09 70% 0% 

Texas peak week -0.83 -1.22 100% 70% 

Texas total -0.26 -0.05 80% 0% 

Washington all -0.26 -0.3 78% 31% 

Washington 1-8wk ahead -0.21 -0.04 75% 65% 

Washington 9-16wk ahead -0.35 -0.1 62% 12% 

Washington 17-26wk ahead -0.15 -0.07 92% 26% 

Washington peak intensity -0.52 -0.08 90% 0% 

Washington peak week -0.76 -6.85 60% 0% 

Washington total -0.22 -0.06 90% 10% 

Wyoming all -0.35 -0.29 44% 21% 
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Wyoming 1-8wk ahead -0.14 -0.03 40% 25% 

Wyoming 9-16wk ahead -0.47 -0.3 29% 9% 

Wyoming 17-26wk ahead -0.27 -0.21 63% 33% 

Wyoming peak intensity -0.42 -1.29 20% 0% 

Wyoming peak week -2.1 -2.23 0% 10% 

Wyoming total -0.21 -0.04 90% 0% 
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Table S8. Prior ranges for the parameters and variables used in the model-inference system. Parameters/state variables are 
initialized by drawing from uniform distributions specified in the rows labeled “Initialization”. During the filtering process, space-
reprobing is applied to explore the state space, i.e., a small fraction of the ensemble members are randomly replaced with values 
drawn from the uniform distributions specified in the rows labeled with “Space-reprobing”.  

Type Parameters/ 
variables 

Symbol Range Note 

Initialization Initial 
susceptible 

S(t=0) All locations: non-Omicron period, U[99%, 100%] population; Omicron period, U[50%, 
90%] population 

n/a 

Initialization Initial 
exposed 

E(t=0) All locations: U[5, 50] ´ no. cases during 1st week n/a 

Initialization Initial 
infectious 

I(t=0) All locations: U[5,50] ´ no. cases during 1st week n/a 

Initialization Infectious 
period 

D All locations: U[2, 5] days n/a 

Initialization Latency 
period 

Z All locations: U[2, 5] days n/a 

Initialization Duration of 
immunity 
(from prior 
infection) 

L All locations: non-Omicron period, U[2, 3] years; Omicron period: U[1, 3] years n/a 

Initialization Time-to-
detection, 
mean 

Td, 
mean 

All locations: U[5, 8] days n/a 

Initialization Time-to-
detection, sd 

Td, sd All locations: U[1, 3] days To allow variation in 
time to 
diagnosis/reporting 

Initialization Scaling of 
NPI 
effectiveness 

e All locations: U[0.5, 1.5] Around 1, with a 
large bound to be 
flexible 

Initialization Vaccine 
efficacy (VE) 

n/a All locations: before Delta, VE1=85%, VE2 = 95%; Delta, VE1 = 50%, VE2 = 80%; Omicron, 
VE1 = 10%, VE2 (combined 2nd and 3rd doses) = 70% 

Used higher VE 
values, as the 
observations 
included both 
cases/infections and 
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deaths; i.e., here VE 
is for both 
infections and 
mortality 

Initialization VE waning ρ rho(t) = 1/(1+exp(-k * (t - tm.imm/2); for wildtype: k = 0.026; tm.imm = 322; for Delta: k 
= 0.025; tm.imm = 280; for Omicron: k = 0.024; tm.imm = 256 

Parameter in the 
logistic function 
fitted based on data 
from UKHSA 

Initialization Infection-
detection 
rate 

r all locations: U [0.01, 0.05] n/a 

Initialization Infection-
fatality risk 

IFR all locations: U [0.005, 0.015] n/a 

Initialization Transmission 
rate 

β Wyoming: U [0.41, 0.6]; Iowa, Texas, Washington: U [0.44, 0.75]; California, Florida, 
Massachusetts, Michigan, New York, Pennsylvania: U [0.45, 0.75] 

n/a 

Space-
reprobing 

Transmission 
rate 

β Alpha (2021-02-14 to 2021-06-19): Wyoming, U [0.54, 0.9]; Iowa, Texas, Washington, U 
[0.57, 1.12]; California, Florida, Massachusetts, Michigan, New York, Pennsylvania, U 
[0.585, 1.125];  
Delta (2021-06-06 to 2021-12-18): Wyoming, U [0.5, 1.02]; Iowa, Texas, U [0.52, 1.27]; 
Washington, U [0.53, 1.27]; California, Florida, Michigan, New York, Pennsylvania, U 
[0.54, 1.275];  
Delta_holiday (2021-07-04 to 2021-07-31): Massachusetts, U [0.855, 1.275];  
Delta1 (2021-06-13 to 2021-07-03): Massachusetts, U [0.54, 1.275];  
Delta2 (2021-08-01 to 2021-08-21): Massachusetts, U [0.54, 1.02];  
Delta3 (2021-08-22 to 2021-12-18): Massachusetts, U [0.54, 1.275];  
Omicron_BA.1 (2021-12-05 to 2022-03-26): Wyoming, U [0.62, 1.2]; Texas, U [0.65, 1.5]; 
Iowa, Washington, U [0.66, 1.5]; California, Florida, Massachusetts, Michigan, New York, 
Pennsylvania, U [0.675, 1.5];  
Omicron_BA.2 (2022-03-06 to 2022-05-07): Wyoming, U [0.75, 1.68]; Iowa, Texas, 
Washington, U [0.79, 2.1]; California, Florida, Massachusetts, Michigan, New York, 
Pennsylvania, U [0.81, 2.1];  
Omicron_BA.2.12.1 (2022-04-03 to 2022-06-18): Wyoming, U [0.75, 1.68]; Iowa, Texas, 
Washington, U [0.79, 2.1]; California, Florida, Massachusetts, Michigan, New York, 
Pennsylvania, U [0.81, 2.1];  

n/a 
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Omicron_nonBA.1o2 (2022-06-05 to 2022-12-31): Wyoming, U [0.75, 1.68]; Iowa, Texas, 
Washington, U [0.79, 2.1]; California, Florida, Massachusetts, Michigan, New York, 
Pennsylvania, U [0.81, 2.1];  
wave1 (2020-01-01 to 2020-09-30): Wyoming, U [0.41, 0.6]; Iowa, Texas, Washington, U 
[0.44, 0.75]; California, Florida, Massachusetts, Michigan, New York, Pennsylvania, U 
[0.45, 0.75];  
wave2 (2020-10-01 to 2021-03-20): Wyoming, U [0.41, 0.66]; Iowa, Texas, Washington, 
U [0.44, 0.83]; California, Florida, Massachusetts, Michigan, New York, Pennsylvania, U 
[0.45, 0.825] 

Space-
reprobing 

Infection-
detection 
rate 

r 2020summer (2020-06-01 to 2020-10-03): Massachusetts, New York, Wyoming, U [0.05, 
0.25]; Michigan, Pennsylvania, U [0.05, 0.3125]; California, Florida, Iowa, Texas, 
Washington, U [0.05, 0.375];  
2021summer (2021-06-01 to 2021-06-30): California, Iowa, Massachusetts, Michigan, 
New York, Pennsylvania, U [0.02, 0.1]; California, Florida, Iowa, Massachusetts, 
Michigan, New York, Pennsylvania, Texas, Washington, U [0.03, 0.25];  
Alpha (2021-02-14 to 2021-05-31): Florida, Iowa, Massachusetts, Michigan, 
Pennsylvania, Texas, U [0.2, 0.4]; California, New York, Washington, Wyoming, U [0.2, 
0.48];  
Delta (2021-05-31 to 2022-01-01): Florida, Texas, Washington, Wyoming, U [0.1, 0.5];  
Delta1 (2021-06-21 to 2021-07-17): California, Iowa, Massachusetts, Michigan, New 
York, Pennsylvania, U [0.1, 0.5];  
Delta2 (2021-06-27 to 2021-08-08): California, Iowa, Massachusetts, Michigan, New 
York, Pennsylvania, U [0.3, 0.5];  
Delta3 (2021-07-19 to 2022-01-08): California, Iowa, Massachusetts, Michigan, New 
York, Pennsylvania, U [0.1, 0.5];  
massvax (2021-05-14 to 2021-05-31): California, Iowa, Massachusetts, Michigan, New 
York, Pennsylvania, Washington, U [0.05, 0.3];  
Omicron0 (2021-10-15 to 2021-12-11): all locations, U [0.001, 0.05];  
Omicron1a (2021-12-05 to 2021-12-18): all locations, U [0.1, 0.5];  
Omicron1b (2021-12-05 to 2021-12-25): all locations, U [0.1, 0.6];  
Omicron2 (2021-12-26 to 2022-06-18): all locations, U [0.05, 0.2];  
Omicron3 (2022-06-05 to 2022-12-31): all locations, U [0.02, 0.18];  
wave1 (2020-03-08 to 2020-05-31): all locations, U [0.08, 0.35];  
wave2 (2020-09-06 to 2021-03-20): Florida, Iowa, Massachusetts, Michigan, 

n/a 
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Pennsylvania, Texas, U [0.12, 0.4]; New York, Washington, Wyoming, U [0.144, 0.48]; 
California, U [0.144, 0.54] 

Space-
reprobing 

Infection-
fatality risk 

IFR 2020summer (2020-06-01 to 2020-09-30): all locations, U [1e-04, 0.005];  
Alpha (2021-03-07 to 2021-06-19): all locations, U [1e-04, 0.015];  
Delta (2021-06-13 to 2022-01-01): all locations, U [1e-04, 0.015];  
massvax (2021-05-14 to 2021-06-26): California, Florida, Iowa, Massachusetts, 
Michigan, New York, Pennsylvania, Texas, Washington, U [1e-04, 0.01];  
Omicron_BA.1 (2021-12-12 to 2022-06-18): all locations, U [4e-05, 0.004];  
Omicron_nonBA.1 (2022-06-05 to 2022-12-31): all locations, U [8e-06, 0.0032];  
wave1early (2020-03-16 to 2020-04-15): all locations, U [0.005, 0.025];  
wave1late (2020-04-16 to 2020-05-31): all locations, U [0.001, 0.015];  
wave2 (2020-10-01 to 2021-04-24): all locations, U [2e-04, 0.0125] 

n/a 
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