
 Long-term storage has minor effects 

on biobanked neonatal dried blood 

spot metabolome 

Filip Ottosson (1), Francesco Russo (1), Anna Abrahamsson (1), Nadia Sara Jensen 

MacSween (1), Julie Courraud (1,2), Zaki Krag Nielsen (1), David M. Hougaard (1), 

Arieh S. Cohen (1), Madeleine Ernst (1) 

1) Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of 

Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark 

2) Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University 

of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece 

 

Over 2.5 million neonatal dried blood spots (DBS) are stored at the Danish National 

Biobank. These samples offer extraordinary possibilities for metabolomics research, 

including prediction of disease and understanding of underlying molecular 

mechanisms of disease development. Nevertheless, Danish neonatal DBS have been 

little explored in metabolomics studies. One question that remains is the long-term 

stability of the large number of metabolites typically assessed in untargeted 

metabolomics over long time periods of storage. Here, we investigate temporal trends 

of metabolites measured in 200 neonatal DBS collected over a time course of 10 

years, using an untargeted LC-MS/MS based metabolomics protocol. We found that a 

majority (79%) of the metabolome was stable during 10 years of storage at -20°C. 

However, we found decreasing trends for lipid-related metabolites, such as 

phosphocholines and acylcarnitines. A few metabolites, including glutathione and 

methionine, may be strongly influenced by storage, with changes in metabolite levels 

up to 0.1-0.2 standard deviation units per year. Our findings indicate that untargeted 

metabolomics of DBS samples, with long-term storage in biobanks, is suitable for 

retrospective epidemiological studies. We identify metabolites whose stability in DBS 

should be closely monitored in future studies of DBS samples with long-term storage.  
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Introduction 

Over 2 million neonatal heel prick samples are stored at the Danish National Biobank 

at Statens Serum Institut and made accessible to researchers worldwide. These 

samples derive from the population-wide screening for inborn errors of metabolism 

(IEM), which in Denmark has been performed since the 1980’s. All of these samples 

can be linked to Danish registry data, containing diverse health and social records, 

such as disease incidence, operation procedures, age, gender, education, or 

ethnicity1,2 , thus providing extraordinary opportunities for research into early diagnosis 

and detection of diseases. Metabolomics studies in particular could offer unique 

opportunities to describe potential metabolic etiologies of various diseases. This could 

provide clinicians with a retrospective tool to investigate disease onset as well as 

providing researchers with an opportunity to conduct longitudinal cohort studies. 

Nevertheless, Danish neonatal DBS have been little explored in metabolomics studies. 

One question that remains uninvestigated is the long term stability of the large number 

of metabolites typically assessed in an untargeted metabolomics experiment over long 

time periods of storage. Blood for neonatal screening is usually drawn from the heel, 

absorbed onto filter paper, and dried for three hours at ambient temperature before 

analysis and biobank storage3. Compared to traditional whole blood sampling, dried 

blood spot (DBS) samples are less invasive and require less sample volume. DBS 

samples also have a distinct matrix paper composition and are made of whole blood, 

which, in conventional blood sampling, is separated into plasma or serum and blood 

cells/clot. Therefore, both cellular and extracellular compounds are present in DBS, 

offering multiple opportunities for clinical practice and research.  

Long-term stability of DBS samples has been studied to a lesser extent than the 

corresponding liquid blood drawings, despite being a crucial aspect in order to ensure 

valid analytical results. DBS samples stored at ambient temperature are prone to 

considerable short-term changes4. For instance, in a panel of 13 amino acids and 

carnitine species, storage in ambient temperature for 5-15 years resulted in significant 

changes in concentrations for all metabolites except valine, ranging from 2-28% per 

year5. In particular, acylcarnitines appear to be sensitive to degradation at ambient 

temperature 6. Conversely, storage below -20°C significantly reduces time-dependent 

metabolite changes in concentrations in a study comparing the 2-year stability of 
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metabolites in DBS at ambient temperature, -20°C and -80°C7. However, only a few 

studies have studied the stability of the DBS metabolome, as measured using 

untargeted metabolomics. It has been shown that only a small minority of the 

metabolome in DBS from rats were unstable during one year storage at -20°C 8. On 

the other hand, during storage times up to five years at -20°C, one study found 

considerable variation in a majority of 6000 measured metabolite features9. Further 

studies, investigating longer storage times, are needed in order to confirm these 

findings. 

In this study, we used an untargeted LC-MS/MS based metabolomics protocol to 

identify long term temporal trends in thousands of metabolites in DBS samples stored 

at the Danish National Biobank at -20°C from one to ten years.  

 

  

Material and Methods 

Study design 

We retrieved from the Danish National Biobank a cohort of 200 neonatal DBS stored 

over a time period of ten years at -20°C (2010-2019). 20 neonatal DBS were 

retrieved for each year (ten females, ten males). To control for variation introduced 

by other sources than storage time, we selected DBS from children born in July, 

sampled at two days of age, and born at 40 weeks of gestation at Hvidovre Hospital, 

Denmark. The study was conducted in accordance with the Declaration of Helsinki, 

and the protocol complies with the Danish Ethical Committee law by not being a 

health research project (Section 2,1), but a method development study not requiring 

an ethical approval2. The Committees on Health Research Ethics for the Capital 

Region of Denmark waived ethical approval for this work.   

Sample Preparation 

All samples (including blank, pooled, and external quality control samples) were 

submitted to untargeted metabolomic profiling using liquid chromatography tandem 

mass spectrometry (LC-MS/MS) at Statens Serum Institut, Copenhagen, Denmark, in 

December 2020. For LC-MS/MS data acquisition, samples were randomly distributed 
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over three 96-well plates (batches). A large batch of DBS consisting of adult blood 

from a single individual was prepared at the beginning of the study, and stored at -

20°C. Aliquots (3.2-mm-diameter punches) were distributed on all plates and used as 

external controls (EC). Each plate consisted of 2 water blanks, 8 EC, 4 paper blanks 

(PB, 3.2-mm-diameter punches of blank filter paper), 4 pooled samples (equal aliquots 

of all samples within a plate), and 67 samples for the second and third plate and 66 

samples for the first plate. All solvents were LCMS-grade, and were purchased from 

Thermo Fisher Scientific (Waltham, MA, USA). DBS samples (3.2-mm-diameter 

punches) were dissolved in 80% methanol in water and 100 µL extracts were placed 

in 96-well plates. All extraction steps were performed on a Microlab STAR automated 

liquid handler (Hamilton Bonaduz AG, Bonaduz, Switzerland).  

Metabolomics profiling 

The LC-MS/MS platform consisted of a timsTOF Pro mass spectrometer with an 

Apollo II ion-source for electrospray ionization (Bruker Daltonics, Billerica, MA, US) 

coupled to a UHPLC Elute LC system (Bruker Daltonics). The chromatographic 

separation system included a binary pump, an autosampler with cooling function, and 

a column oven with temperature control. For infusion of the reference solution, used 

for external and internal mass calibration, an additional isocratic pump, Azura Pump 

P4.1S (Knauer, Berlin, Germany) was used. The analytical separation was performed 

on an Acquity HSS T3 (100 Å, 2.1 mm x 100 mm, 1.8 µm) column (Waters, Milford, 

MA, US). The mobile phase consisted of solvent A (99.8% water and 0.2% formic acid) 

and B (49.9% methanol, 49.9% acetonitrile and 0.2% formic acid). The analysis started 

with 99% mobile phase A for 1.5 min, followed by a linear gradient to 95% mobile 

phase B during 8.5 min, an isocratic flow at 95% mobile phase B for 2.5 min before 

going back to 99% mobile phase A and equilibration for 2.4 min. Total run time for 

each injection was 15 min and the analysis time for a full 96-well plate was 

approximately 25 h. Samples were maintained at +15°C in the autosampler, 5 µL were 

loaded onto the column with a flow rate of 0.4 mL/min and a column temperature of 

40°C. 

Tandem mass spectrometric analysis was performed in Q-TOF mode with TIMS off, 

and auto MS/MS using the following settings: ionization mode set to positive ionization, 

mass range set to 20–1000 m/z and a Spectra Rate of 3 Hz. Source settings as 
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Capillary: 2500 V, Nebulizer Gas: 2.5 Bar, Dry Gas flow: 8 L/min, Dry Gas temperature: 

240°C. Tune settings were as follows: Funnel 1 RF and Funnel 2 RF: 200Vpp, isCID: 

0 eV, Multipole RF: 60 Vpp, Deflection Delta: 60 V, Quadrupole Ion Energy: 5 eV with 

a low mass set to 60 m/z, Collision Cell Energy set to 7 eV with a pre Pulse Storage 

of 5 µs. Stepping was used in Basic Mode with a Collison RF from 250 – 750 Vpp, 

Transfer Time 20 – 50 µs and Timing set to 50% for both. For MS/MS, only the collision 

energy ranged from 100%to 250% with timing set to 50% for both. Auto MS/MS was 

used with a predefined Cycle Time of 0.5 s, Active Exclusion was used with Exclusion 

after 3 Spectra and a Release time set to 0.20 min. Sodium formate clusters were 

applied for instrument mass calibration and for internal recalibration of individual 

samples. A Precursor Exclusion list was used with Exclusion of mass range of 20-60 

m/z.  

Metabolomics preprocessing 

Bruker .d files were exported to the .mzML format using ProteoWizard’s MSConvert10, 

and subsequently preprocessed using the Ion Identity Network workflow in 

MZmine11,12 (version 2.37.1.corr17.7).  

Data was cropped, with chromatogram retention time from 0.4 to 12 min and m/z range 

from 0 to 1100 retained. Mass lists were then created with MS1 intensity above 5E2 

and MS2 intensity above 0 retained. The chromatogram was built through the ADAP 

chromatogram builder7 by using the following parameters: minimum group size of 

scans: 3, group intensity threshold: 5E2, minimum highest intensity: 1E3, and m/z 

tolerance: 0.002 m/z or 5 ppm. The chromatogram was smoothed with a filter width of 

5 and further deconvoluted using the MEDIAN m/z center calculation with m/z range 

for MS2 scan pairing: 0.002 Da and retention time range for MS2 scan pairing: 0.3 

min. The local minimum search algorithm was used for deconvolution with parameters 

set to: chromatographic threshold: 85%, minimum RT range: 0.01 min, minimum 

relative height: 0%, minimum absolute height: 1E3, min ratio of peak top/edge: 2.2, 

peak duration range: 0.01-0.5 min. The peaks were deisotoped using the isotopic peak 

grouper function, with parameters set to: m/z tolerance: 0.002 m/z or 5 ppm, retention 

time tolerance: 0.3 min, monotonic shape: on, maximum charge: 2, representative 

isotope: most intense. Peaks from all samples were aligned using the join aligner 

function with parameters set to: m/z tolerance: 0.002 m/z or 5 ppm, retention time 
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tolerance: 0.5 min, weight for m/z: 75%, weight for retention time: 25%. Rows were 

then filtered using the duplicate peak filter with the new average filter mode and m/z 

tolerance set to 0.001 m/z or 5 ppm and RT tolerance to 0.03 min. The metaCorrelate 

function was used to find correlating peak shapes with parameters set to: RT 

tolerance: 0.1 min, min height: 1E3, noise level: 5E2, min samples in all: 2 (abs), min 

samples in group: 0 (abs), min %-intensity overlap: 60%, exclude estimated features 

(gap-filled): on. Parameters for the correlation grouping were set as follows: min data 

points: 5, min data points on edge: 2, measure: Pearson, min feature shape 

correlation: 85%. Ion identity networking parameters were set to: m/z tolerance: 0.002 

m/z or 5 ppm, check: one feature, min height: 1E3 with ion identity library parameters 

set to: MS mode: positive, maximum charge: 2, maximum molecules/cluster: 2, 

adducts: M+H, M+Na, M+K, modifications: M-H2O, M-NH3. Further ion identity 

networks were added with m/z tolerance: 0.002 m/z or 5 ppm, min height: 1E3 and ion 

identity library parameters set to: MS mode: positive, maximum charge: 2, maximum 

molecules/cluster: 6, adducts: M+H, M+Na, modifications: M-H2O, M-2H2O, M-3H2O, 

M-4H2O, M-5H2O and m/z tolerance: 0.002 m/z or 5 ppm, min height: 1E3, and 

annotation refinement on with parameters set to: delete smaller networks: link 

threshold: 4, delete networks without monomer: on,  and ion identity library parameters 

set to MS mode: positive, maximum charge: 2, maximum molecules/cluster: 2, 

adducts: M+H, M+Na, M+K, modifications: M-H2O, M-NH3. Finally, two feature tables 

were exported in the .csv format: one feature table containing all extracted mass 

spectral features and another feature table filtered for mass spectral features with 

associated fragmentation spectra (MS2). An aggregated list of MS2 fragmentation 

spectra was exported in the .mgf format and submitted to ion identity feature-based 

mass spectral molecular networking through the Global Natural Products Social 

Molecular Networking Platform (GNPS)12–14. 

Before statistical analysis, mass spectral features with a relative intensity less than 20 

times the mean relative intensity of all paper blank samples were removed. Relative 

intensities were further batch normalized through centering by subtracting the column 

means (omitting NAs) of each batch and scaling by the standard deviation. Missing 

values were thereafter imputed using the OptSpace matrix completion algorithm 

implemented in the robust Aitchison open-source software DEICODE, implemented in 

Qiime215, assuming a rank of 100 for the underlying low-rank structure16. Furthermore 
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we removed features present in less than 5% of the samples, resulting in a final cohort 

of 200 samples and 731 metabolic features. 

Metabolite identification 

To annotate mass spectral features to putative chemical structures, a mass spectral 

molecular network was created through the GNPS Platform (http://gnps.ucsd.edu) 

using the ion identity feature based molecular networking workflow (https://ccms-

ucsd.github.io/GNPSDocumentation/fbmn-iin/)12–14. The data was filtered by removing 

all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were 

window filtered by choosing only the top 6 fragment ions in the +/- 50 Da window 

throughout the spectrum. The precursor ion mass tolerance was set to 0.02 Da and a 

MS/MS fragment ion tolerance of 0.02 Da. A network was then created where edges 

were filtered to have a cosine score above 0.7 and more than 4 matched peaks. 

Further, edges between two nodes were kept in the network if and only if each of the 

nodes appeared in each other’s respective top 10 most similar nodes. Finally, the 

maximum size of a molecular family was set to 100, and the lowest scoring edges 

were removed from molecular families until the molecular family size was below this 

threshold. The spectra in the network were then searched against all GNPS’ spectral 

libraries. The library spectra were filtered in the same manner as the input data. All 

matches kept between network spectra and library spectra were required to have a 

score above 0.7 and at least four matched peaks.  

To further enhance chemical structural information within the molecular network, 

substructure information was incorporated into the network using the GNPS MS2LDA 

workflow (https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/)17–19. 

Furthermore, information from in silico structure annotations from Network Annotation 

Propagation20 and Sirius+CSI:FingerID21 were incorporated into the network using the 

GNPS MolNetEnhancer workflow (https://ccms-

ucsd.github.io/GNPSDocumentation/molnetenhancer/)22. Chemical class annotations 

were performed using deep neural networks in CANOPUS23 and followed the 

ClassyFire chemical ontology24.  
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Statistical Analysis 

The overall variation in the metabolite data was analyzed using principal component 

analysis (PCA), in R package mixOmics25. To assess associations between principal 

components and storage time, we performed linear regression models. To identify 

metabolic features significantly increasing or decreasing over time, we performed a 

linear regression analysis for each metabolite individually. All linear regression models 

were adjusted for sex, birth weight and the mothers’ age. P-values were adjusted for 

multiple hypothesis testing using the false discovery rate (FDR) method26. To visualize 

temporal trends, we calculated the median for all significant metabolites (linear 

regression, FDR-adjusted P-value < 0.05) and subtracted the most recent sampling 

year (2019), which was used as baseline. Results from linear regression models were 

confirmed using non-parametric correlation tests using Spearman’s ρ. Also, 

longitudinal trends in metabolite data were explored by multivariate statistics using the 

R package timeOmics27. Briefly, longitudinal changes in metabolite levels were 

modeled using linear mixed model splines. By applying PCA on modeled metabolite 

profiles, metabolites with similar longitudinal trends could be clustered together. The 

optimal number of principal components were optimized by maximizing the silhouette 

coefficient. All statistical analyses were performed in R 4.1.1 or Python 3.7. Code and 

Jupyter notebooks are publicly accessible at: https://github.com/SSI-

Metabolomics/Temporal_SupplementaryMaterial/.  

Putative identification of degradation products  

To identify putative degradation products we performed a pair-wise correlation 

analysis of all metabolic features correlating significantly with year of sampling (FDR-

adjusted P-value < 0.05) using Pearson’s ρ. Putative degradation was then defined as 

two metabolic features, which 1) correlate significantly with year of sampling (FDR-

adjusted P-value < 0.05) , 2) correlate negatively with each other (Pearson’s r < 0; P-

value < 0.05), 3) exhibit chemical structural relationship either through high tandem 

mass spectral similarity (cosine > 0.7) or shared MS2LDA substructural motifs. For 

visualization and chemical structural annotation, putative degradation products were 

identified within the mass spectral molecular network by adding edges (connecting 

lines) between two nodes, meeting criteria 1), 2) and 3). 
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Results 

A total of 731 metabolites (mass spectral features with unique MS/MS fragmentation 

patterns) were measured and present in at least 5% of the samples. Putative 

annotation on the metabolite class level was conducted by combining mass spectral 

molecular networking (GNPS), unsupervised substructure discovery (MS2LDA), in 

silico annotation through Network Annotation Propagation20 Sirius+CSI:FingerID, 

MolNetEnhancer, and deep neural network in CANOPUS. This resulted in chemical 

class annotation (level 3 annotation29) for 182 metabolites (24.9%).  

To examine whether overall variation in the metabolomics data was related to 

storage time of DBS samples, PCA was performed. The first principal component 

(PC) explained 11.5 % of the variation in the data set and the cumulative explained 

variance of the first four PCs was 29.2% (Figure S1A). Samples with similar storage 

time did not cluster according to the PCs (Figure S1B), but PC2 (beta=0.068, 

p=5.5e-3), PC3 (beta=0.090, p=2.1e-4) and PC4 (beta=0.12, p=1.6e-7) were 

significantly (p<0.05) associated with storage time in linear regression models 

adjusted for sex, birth weight and age of the mother (Figure S1C). 

We proceeded to explore the association between each individual metabolite and 

storage time. In linear regression models, adjusted for sex, birth weight and age of 

the mother, 152 out of 731 metabolites (20.8%) were significantly (FDR-adjusted P-

value<0.05) associated with storage time (Figure 1A) (Table S1). Out of these, 71 

were inversely associated with storage time and 81 showed a positive association. 

Comparing the metabolite levels after ten years of storage with one year of storage, 

the median metabolite level was on average 0.67 standard deviations higher for 

metabolites with significant positive beta coefficients and 0.64 standard deviations 

lower for metabolites with significant negative beta coefficients (Figure 1B). In total, 

46 of the 152 significant metabolites (30%) could be assigned to a metabolite class 

(Figure 1C) (level 3).  

Among the eight represented metabolite classes, four contributed with more than 

one metabolite, including amino acids and derivatives (N=17), peptides (N=16), 

glycerophosphocholines (N=5) and acylcarnitines (N=4). In total, 24 significant 
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metabolites achieved at least a second level annotation29, among which the 

strongest positive association with storage time was seen for glycerophosphocholine 

(beta=0.098, p=4.7e-5) and the strongest negative association for methionine 

(beta=-0.15, p=6.3e-12) and glutathione (beta=-0.18, p=7.7e-11). Overall, 13 classes 

(with at least two measured metabolites) had no metabolites significantly associated 

with storage. Among classes with metabolites associated with storage, the 

proportions of associated metabolites ranged from 27 % (acyl carnitines) to 63 % 

(glycerophosphocholines). For metabolites without class annotation, 19 % were 

associated with storage time (Figure 1D).  

 

Figure 1. Beta coefficients from linear regression models (A), indicating change for each metabolite in standard 

deviation units per year of storage time. Significant associations indicate false discovery-rate P-value <0.05. (B) 

Median levels of all the 152 metabolites significantly associated with storage time for each year of storage time. 

Point estimates show mean value at each time point and direction (pos: positive, neg: negative), and error-bars 

indicate standard deviations. (C) Metabolite classes for annotated metabolites significantly associated with storage 

time. (D) Proportion of metabolites within each class associated with storage time, out of 20 putatively annotated 

classes, only 7 showed significant alterations with storage time.  
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Metabolites annotated as peptides or amino acids and derivatives did not show 

similar temporal patterns within each respective class. All acylcarnitines showed 

negative associations with storage. For glycerophosphocholines, all 

lysophosphatidylcholine species were negatively associated with storage, while 

levels of the head group glycerophosphocholine were positively associated with 

storage (Figure 2).  

Overall, similar results were achieved when comparing the results from the linear 

regression models with those from Spearman's correlation coefficient tests, where 141 

metabolites were significantly (FDR-adjusted P-value<0.05) correlated with storage 

time, out of which 128 were significant using linear regression (Figure S2).  

 

Figure 2. Median metabolite levels for different storage times. Data are shown for all four metabolite classes with 

more than one metabolite significantly associated with storage time. Metabolites without level 2 annotations are 

labeled according to their m/z and retention time (mz_rt).  

We next explored metabolite changes upon storage using a multivariate approach 

implemented in the timeOmics R package27. The optimal clustering was achieved 

when using only the first principal component (PC1). PC1 was strongly associated with 

storage time, explaining 81 % of the variation in storage time. The loadings of PC1 

were very similar to the beta-coefficients of the linear regression models (Pearson’s ρ 

= 0.93). For instance, glutathione was the metabolite with the strongest (negative) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.22276667doi: medRxiv preprint 

https://paperpile.com/c/R6L2O6/W70Z
https://doi.org/10.1101/2022.11.14.22276667
http://creativecommons.org/licenses/by-nc-nd/4.0/


contribution to PC1 and among the metabolites with strongest association in the linear 

regression models (Figure S3).   

Observing both positive and negative temporal trends for metabolites, we sought to 

identify putative transformation pathways for metabolites in our dataset. We found one, 

and in this putative pathway, an unknown glutathione isomer seems to be formed 

either by deconjugation of crotonaldehyde from S-(4-oxobutan-2-yl)glutathione or 

directly from glutathione. This is supported by temporal trends, mass spectral 

similarities and shared Mass2Motiff. Glutathione (beta=-0.17, P=1E-13) and S-(4-

oxobutan-2-yl)glutathione (beta=-0.06, P=4.8e-3) are decreasing in levels with longer 

storage time, while levels of the unknown glutathione isomer are increased with longer 

storage time (beta=0.09, P=1.8E-5). 

 

Figure 3. Putative degradation of glutathione structural analogues. Putative degradation was identified through the 

mass spectral molecular network and defined as two metabolic features, which 1) correlate significantly with year 

of sampling (FDR-adjusted P-value < 0.05) , 2) correlate negatively with each other (Pearson’s r < 0; P-value < 

0.05), 3) exhibit chemical structural relationship either through high tandem mass spectral similarity (cosine > 0.7) 

or shared MS2LDA substructural motifs. Shared MS2LDA substructural motifs are further indicated in orange in 

the molecular structures.  
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Discussion 

In order to study the long-term stability of untargeted metabolomics data in DBS stored 

at -20°C, we investigated the relation between over 700 metabolite features and 

sample storage up to ten years. A minority of the metabolites (20.8%) were 

significantly associated with storage time, indicating that DBS samples stored in 

biobanks over an extensive time at -20°C are suitable for untargeted metabolomics 

studies. The levels of a few metabolites, such as glutathione and methionine, may be 

heavily influenced by extended storage time in DBS and should be closely monitored 

in future studies. 

Applying untargeted metabolomics in prospective or retrospective cohorts has large 

potential, but also several challenges, including effects of long-term storage times. The 

plasma metabolome has been seen to be stable up to five years of storage at -80°C30, 

given that samples do not go through several freeze-thaw cycles31. Recently, it was 

shown that among 200 plasma metabolites, only 2% were significantly altered after 

seven years, but 26% upon 16 years of storage at -80°C32. 

As opposed to plasma samples, DBS are usually stored at -20°C or even at room 

temperature, emphasizing the need to ensure the stability of long-term storage. A 

previous study by Li and collaborators has shown that 76% of DBS metabolites in a 

targeted metabolomics panel were influenced by storage in -80°C up to one year. The 

major effect of storage was seen between months one and three, where influenced 

metabolites on average decreased in concentration to 60% of the original 

concentration, while small concentration changes were seen between months three 

and twelve33. There are few studies of metabolite stability in DBS over a longer time 

span than one year. In a targeted metabolomics study, with several samples collected 

over two years, alterations in metabolite stability could only be seen in samples stored 

at room temperature, as opposed to -20°C7. Rus and collaborators applied untargeted 

metabolomics in six individuals, who deposited DBS samples each year over a period 

of six years. The authors showed that 30-35% of the ~6,000 measured metabolite 

features had a between-sample coefficient of variation (CV) < 20%, while the majority 

of metabolite features displayed large alterations over time9.  
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In order to best capture the effect of storage, we chose to evaluate the temporal trend 

in the present study using linear regression models, assuming linear changes in 

metabolite levels over time. As opposed to the previous study by Rus and 

collaborators, our investigation showed that almost 80% of the measured metabolite 

features were unrelated to storage time. Among the 152 metabolites that were 

significantly associated with storage time, we observed that the levels of around half 

of the metabolites increased with storage, while the remaining decreased. This is in 

contrast to what was previously seen during one year of storage, where a large 

majority of influenced metabolites in a targeted panel decreased with time33. Our 

finding that around half of the metabolites increase with storage and half decrease 

indicates that chemical transformations may occur over time.  

To investigate chemical transformations we combined mass spectral molecular 

networking, in silico structure and substructure annotation with information on 

metabolites significantly increasing or decreasing over time. We found a potential 

transformation pathway involving glutathione, a compound that is previously known to 

be prone to degradation in DBS samples33. The transformation involves formation of 

an unidentified glutathione isomer, from glutathione degradation and/or by 

deconjugation of S-(4-oxobutan-2-yl)glutathione. Moreover, glutathione may also be 

oxidized to form a disulfide dimer, a process which is well-known in nature, where 

glutathione is a potent scavenger of reactive oxygen species34. Our findings indicate 

that oxidation could contribute to glutathione degradation, since oxidized glutathione 

is increasing with storage time. On the other hand, glutathione and oxidized 

glutathione were not inversely correlated with each other.  

Although a large majority of the metabolites in our study were not significantly 

associated with storage, relatively strong associations were seen for some 

metabolites, such as glutathione and methionine. For instance, our results indicate 

that the levels of glutathione decrease at a rate of approximately 0.1-0.2 standard 

deviation units per year, resulting in significant imprecision when analyzing samples 

with very different storage time. Overall, our results are consistent with previous 

studies where several of the metabolites, which are associated with storage time in 

the present study, have previously been reported to be unstable in DBS samples, 

including glutathione33, Sphingosine-1-phosphate33 and palmitoylcarnitine33. 
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Additionally we observed that acylcarnitines and lysophosphocholines were inversely 

associated with storage time, indicating either residual enzymatic degradation of the 

fatty-acids or non-enzymatic hydrolysis of the head-groups upon extended storage. 

Consistent with the latter, we observed that the head group of lysophosphocholines, 

glycerphosphocholine, was positively associated with storage and a similar trend was 

seen for free carnitine, although not statistically significant after multiple-test 

correction. Previous studies display conflicting findings regarding storage of lysoPCs, 

where two studies in plasma have shown either increasing32 and decreasing30 

concentrations of lysoPCs upon storage. In DBS, several lysoPCs have been shown 

to decrease in concentration during one year of storage33, but some lysoPC species, 

such as LysoPC C26:0, appear to be stable35. In our study glycerophosphocholines 

was the metabolites class with the highest proportion (63 %) of metabolites associated 

with storage time. Decreasing concentrations of acylcarnitines has been reported in 

several studies of both plasma30 and DBS33 samples, but no evidence of increases in 

free carnitine has been found previously. It is noteworthy that although we see a 

negative temporal trend for acylcarnitines in this study, the proportion of altered acyl 

carnitines (27 %) was close to the overall average (21 %), indicating that the stability 

may not be worse for acyl carnitines than for other metabolite classes.  

In the present study, we aimed at separating the temporal effects of storage from 

biological variation by analyzing neonatal DBS samples, with identical gestational age, 

age of sampling and birth month. Moreover, in the regression analysis we adjusted for 

other potential confounding factors, such as birth weight, sex and the age of the 

mother. Despite these efforts, a residual biological variation may result in statistically 

significant differences between individual time points that are not related to storage 

per se. To minimize the risk of false positives, we modeled a linear association 

between metabolite and storage, disregarding differences between two individual time 

points. Results from the linear regression models were confirmed using alternative 

approaches using both Spearman’s correlation tests and multivariate statistics.  

When using data from metabolites that are prone to degradation in epidemiological 

studies, it may be preferable to adjust for storage time in statistical models. In that 

light, this study can serve as a reference for identifying metabolites whose levels may 

be in need of adjustments when comparing samples with very different storage times.  
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Conclusions 

A large majority of the DBS metabolome is stable during storage at -20°C for up to ten 

years. A few metabolites, including methionine and glutathione, may be strongly 

influenced by storage, and should be closely monitored in metabolomics studies of 

DBS. Overall, our findings indicate that untargeted metabolomics can be applied in 

retrospective studies of DBS samples with long-term storage in biobanks. 
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Figure S1. Principal component analysis of metabolite data from DBS of 200 neonates, showing the explained 

variance for the first 8 principal components (PC) (A). Values for PC1-PC4 for short storage time (1-3 years), 

medium storage time (4-6 years) and long storage time (7-10 years) (B). Boxplots indicate median, 25th and 75th 

percentiles for each PC and storage time (C).  
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Figure S2. Venn Diagram of number of metabolites significantly (FDR-adjusted P-value<0.05) associated with 

storage time, using either linear regression models adjusted for sex, birth weight and age of the mother (lm) or 

Spearman’s correlation test (cor).  
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Figure S3. Multivariate modeling of temporal trends found strong association between a principal component of 

longitudinal changes in metabolite levels (PC1) and storage time (A). The loadings of PC1 were similar to beta-

coefficients from linear regression models on storage time. Individual metabolites are labeled according to 

significance in the linear regression analyses (B). The loadings of PC1 indicated that glutathione was the 

metabolite with the strongest contribution to the clustering (C).  
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