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Abstract

Background: Cardiac imaging-based indices of left ventricular (LV) mechanical dyssynchrony have limited
accuracy for predicting the response to cardiac resynchronization therapy (CRT). The aim of the study was to
evaluate the diagnostic performance of mechanical dyssynchrony indices in a study population of patients with
severely reduced ejection fraction and no LV myocardial scar assessed by cardiovascular magnetic resonance
(CMR), and either left bundle branch block (LBBB) or normal QRS duration.
Methods: We retrospectively identified 80 patients from three centers, with LV ejection fraction ≤35%, no
scar by CMR late gadolinium enhancement, and either normal electrocardiographic QRS duration (<120ms)
and normal frontal plane electrical axis (-30 to +90 degrees) (control, n=36), or LBBB by Strauss’ criteria
(LBBB, n=44). The CMR image data from these subjects is made publicly available as part of this publication.
CMR feature tracking was used to derive circumferential strain in a midventricular short-axis cine image. Using
circumferential strain, mechanical dyssynchrony was quantified as the circumferential uniformity ratio estimate
(CURE) and the systolic stretch index (SSI), respectively.
Results: Both CURE and SSI resulted in measures of mechanical dyssynchrony that were more severe (lower
CURE, higher SSI) in LBBB compared to controls (CURE, median [interquartile range], 0.63 [0.54-0.75] vs
0.79 [0.69-0.86], p<0.001; SSI 9.4 [7.4-12.7] vs 2.2 [1.2-3.6], p<0.001). SSI outperformed CURE in the ability
to discriminate between LBBB and controls (area under the receiver operating characteristics curve [95%
confidence interval] 0.98 [0.95-1.00] vs 0.77 [0.66-0.86], p<0.001; sensitivity 93 [84-100] vs 75 [61-86] %,
p=0.02; specificity 97 [92-100] vs 67 [50-81] %, p=0.003).
Conclusions: The ability to discriminate between LBBB and normal QRS duration among patients with
severely reduced ejection fraction and no scar was fair for CURE and excellent for SSI.
Keywords: Cardiac Magnetic Resonance; Mechanical Dyssynchrony; Left Bundle Branch Block; Cardiac
Resynchronization Therapy; Heart Failure; Circumferential Strain

1 Background
Cardiac resynchronization therapy (CRT), induces re-
verse remodeling, improves symptoms, and reduces
mortality in carefully selected heart failure (HF) pa-
tients with left ventricular (LV) dyssynchrony [1].
However, a nonresponse rate of 30-40% is still observed
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[2], indicating a need for further refinement of current
criteria for selecting patients to undergo CRT. Left
ventricular dyssynchrony is a discoordination of in-
traventricular regional mechanical LV activation. Me-
chanical dyssynchrony has been proposed as one of the
principal therapeutic targets of CRT [3]. As such, me-
chanical dyssynchrony makes for a potential predictor
of CRT response.

Cardiovascular magnetic resonance (CMR) feature
tracking has been used to characterize mechanical con-
traction features in patients with left bundle branch
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block (LBBB) compared to healthy controls [4]. The
COMPANION, REVERSE, and MADIT-CRT tri-
als demonstrated that patients with LBBB derived
greater benefit from CRT compared to those with
other conduction patterns [5–7]. Furthermore, posi-
tive CRT response and “super-response” to CRT have
to an even greater extent been found to be associ-
ated with strict LBBB, as defined by Strauss et al. [8],
when compared to LBBB defined by conventional cri-
teria [9, 10]. This is likely a result of greater specificity
for the strict LBBB criteria for identifying significant
LV dyssynchrony, the substrate that is corrected by
CRT.

Abnormalities of regional myocardial mechanics can
be caused by conduction abnormalities, especially
LBBB, or by focal myocardial fibrosis, also referred
to as scar [11]. Myocardial scarring has been found
to be negatively associated with CRT response [12–
15]. Indices of mechanical dyssynchrony are often de-
rived from measurements of cardiac deformation such
as strain. Strain measurements have been found to
be greatly affected by the presence of myocardial scar
[16–18] or myocardial edema [17, 18]. Importantly, the
failure of most indices of mechanical dyssynchrony
can be attributed to a lack of specificity [19]. Con-
sequently, the goal of dyssynchrony analysis should
be detection of a mechanical dyssynchrony pattern
amenable to CRT, and not the detection of mechan-
ical dyssynchrony per se [19]. Information about me-
chanical dyssynchrony characteristics in patients with
a high likelihood of CRT response, while at the same
time controlling for concomitant pathology, e.g my-
ocardial scar, is of great interest in identifying pre-
dictors of CRT response. However, information about
this is scarce.

Therefore, the aim of this study was to investigate
mechanical dyssynchrony characteristics of patients
with strict LBBB and normal QRS duration, a left ven-
tricular ejection fraction ≤35% and no LV myocardial
scar assessed by CMR late gadolinium enhancement
(LGE).

2 Methods
This is an observational case-control study where pa-
tients were retrospectively identified by cross-referencing
the CMR and electrocardiography (ECG) databases
from three centers (Duke University Medical Center,
NC, USA; Pittsburgh University Medical Center, PA,
USA; and Karolinska University Hospital, Stockholm,
Sweden). The study was approved by the local human
subject research ethics committee at each site, and
all subjects either provided written informed consent
or were included following a retrospective waiver of
informed consent provided by the local ethics commit-
tee.

2.1 Subject selection
Subjects considered for inclusion in the present study
had a LV ejection fraction ≤35%, no scar by CMR late
gadolinium enhancement (LGE), CMR cine images in
a LV short-axis stack, and either normal ECG QRS
duration (<120 ms) and frontal plane electrical axis (-
30 to +90 degrees, controls, n=36), or LBBB (n=44)
defined by Strauss’ strict ECG criteria, defined as a
terminal negative deflection in lead V1 and V2 (QS or
rS configuration), a QRS duration ≥140 ms for men
and ≥130 ms for women, and the presence of mid-QRS
notching or slurring in ≥2 of leads V1, V2, V5, V6, I
and aVL [8]. Subjects were excluded if they had a his-
tory of congenital heart disease, CMR evidence of my-
ocardial storage disease, atrial fibrillation, prior open
heart surgery, or LV septal wall flattening indicative
of clinically significant pulmonary hypertension. The
following baseline characteristics were collected: age,
sex, height, weight, body surface area (BSA), body
mass index (BMI), and CMR measures of LV volumes,
function and mass. Among the patients who met the
inclusion criteria (n=87), patients were excluded due
to having Takotsubo cardiomyopathy (n=1), atrial fib-
rillation discovered at time of feature tracking analysis
(n=1), or missing or insufficient number of diagnostic
quality CMR cine images (n=5). As a result, the final
study group included 80 patients.

2.2 CMR image acquisition
All imaging was performed with clinically available
scanners at the respective centers. Scanners included
3T (Siemens Verio, Erlangen, Germany) and 1.5T sys-
tems (Siemens Avanto, Espree or Aera, Erlangen, Ger-
many, or Philips Intera, Best, the Netherlands), all us-
ing ECG gating and phased-array receiver coils. Typi-
cal acquisition parameters for cine images were: repeti-
tion time 44 ms, echo time 1.2 ms, flip angle 60 degrees,
matrix 190 x 190, slice thickness 6 mm, and temporal
resolution 24 frames per cardiac cycle. Clinical reports
of cardiac viability assessment were reviewed for men-
tion of any myocardial scar by LGE.

2.3 Image and strain analysis
Cine CMR images exported for offline myocardial
strain analysis performed by an observer using com-
mercially available software for CMR feature track-
ing (Segment version 3.2 R8757) Medviso, Lund, Swe-
den) [20, 21]. All analysis was performed blinded to
ECG classification. Endocardial and epicardial bor-
ders, excluding papillary muscles and trabeculations,
were manually delineated in the end-diastolic reference
timeframe. The end-diastolic reference timeframe was
set to the timeframe immediately following halting of
the circumferential expansion and longitudinal length-
ening of the LV during late diastole as viewed in a three
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chamber, long-axis, and short-axis slice. This was due
to observation that there was often a delay in the clo-
sure of the mitral valve, which otherwise has commonly
been used to define end-diastole. The delineation was
performed in a single midventricular short-axis slice. A
non-rigid elastic registration strategy was used by the
software to measure myocardial strain over time. For
regional strain assessment, the area encompassed by
the endo- and epicardial borders was segmented into
regions of interest according six segments of the Ameri-
can Heart Association 17-segment model. In short-axis
images, the location of regional segments was deter-
mined using an angle relative to the right ventricu-
lar anterior insertion point. Circumferential strain was
evaluated from the Lagrangian strain tensor between
adjacent points. Mechanical dyssynchrony was quanti-
fied using the circumferential uniformity ratio estimate
(CURE) [22–24] and the systolic stretch index (SSI)
[25, 26]. In short, CURE is derived from Fourier trans-
formation of the spatial distribution of strain from my-
ocardial segments averaged over the number of short
axis slices. CURE is then calculated as

CURE = 1
n

n∑
t=1

√ ∑
S0(t)∑

S0(t) +
∑

S1(t)

where S0 is the zero order, and S1 is the first order
term in the fourier transformation, and n is the num-
ber of timeframes covering the cardiac cycle. CURE
ranges between 0 (perfect dyssynchrony) and 1 (per-
fect synchrony). SSI was originally developed through
computer simulations [26], and later presented in a
slightly simplified version for use in echocardiography
[25] and is calculated as the sum of LV lateral wall
systolic pre-stretch (SPS) and septal rebound stretch
(SRS),

SSI =SPSantlat + SPSinflat

2 +

SRSantsept + SRSinfsept

2

Systolic pre-stretch is defined as the sum of LV lateral
wall stretch before aortic valve opening, averaged over
the anterolateral and inferolateral segment. Septal re-
bound stretch is defined as the sum of septal stretch
following early systolic shortening and before aortic
valve closure, averaged over the anteroseptal and in-
feroseptal segment.

2.4 Statistical analysis
Categorical data are reported as number and percent-
ages. Continuous variables are reported as median [in-
terquartile range]. For continuous variables, groups

were compared using the Wilcoxon signed-rank test.
Bivariate correlation was examined by Spearman’s
ρ correlation coefficient. Univariable logistic regres-
sion models with LBBB status as the dependent vari-
able were fitted separately for the two dyssynchrony
indices. Specificity, sensitivity, discriminatory perfor-
mance, and cut-off values were derived from receiver-
operating characteristics (ROC) analysis using the
Youden’s index. Multivariable linear regression models
fit separately for each dyssynchrony index in LBBB,
and controls respectively, were used to test for asso-
ciations with covariates age, LV end-diastolic volume
index (LVEDVI), LV mass index (LVMI), and sex, in-
dicating any need for covariate-adjusted, or covariate-
specific ROC curves. Nonlinearities were entertained
by use of restricted cubic splines, as were interactions
between LVEDVI, and LVMI with sex, respectively.
Areas under the paired ROC curves were compared
using nonparametric stratified bootstrapping. Boot-
strapped CIs were derived from 4000 replicates and
calculated using the percentile method. A two-sided
p < 0.05 was considered statistically significant. Data
processing and statistical analysis were performed in
the R statistical programming environment 4.1.0 [27],
using package dplyr 1.0.7 [28] for data transformation,
ggplot2 3.3.5 [29] for graphical visualizations, pROC
1.17.0.1 [30] for ROC analysis, rms 6.2.0 for regression
modeling, and knitr 1.33 [31] for reproducible docu-
mentation.

3 Results
3.1 Subject characteristics
The characteristics of patients included in the study
(n=80, 56% female) are presented in Table 1. Charac-
teristics were similar in the two groups except for older
age and greater LV mass in subjects with LBBB.

3.2 Dyssynchrony measurements
Both CURE and SSI showed group differences be-
tween LBBB and controls (Figure 1). Consistent with a
greater amount of mechanical dyssynchrony in LBBB,
CURE was lower in LBBB compared to controls (0.63
[0.54-0.75] vs 0.79 [0.69-0.86], p<0.001), and SSI was
higher in LBBB compared to controls (9.4 [7.4-12.7]
vs 2.2 [1.2-3.6], p<0.001). Compared to CURE, SSI
had a greater area under the ROC curve for detect-
ing mechanical dyssynchrony associated with strict
LBBB (0.98 [95% CI: 0.95-1.00] vs 0.77 [95% CI: 0.66-
0.86], p< 0.001, Figure 2), and this corresponded to
a higher sensitivity and specificity for SSI compared
to CURE (Figure 3). The odds ratio (OR) for iden-
tifying LBBB for SSI was 3.40 [95% CI: 1.84-6.28]
per 1 percentage unit increase in SSI value, and for
CURE was 2.16 [95% CI: 1.44-3.24] per 0.10 decrease
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in CURE value. In evaluating the need for covariate-
adjusted and/or covariate-specific ROC curves, lin-
ear regression models were used to test the associa-
tion between dyssynchrony indices and covariates: age,
LVEDVI, LVMI, and sex, allowing for interactions be-
tween LVMI and LVEDVI, with sex, respectively. No
evidence was found in support of an association be-
tween dyssynchrony indices and covariates in controls,
or between CURE and covariates in LBBB. Further-
more, neither CURE nor SSI associated with QRS du-
ration in either LBBB or controls (p ≥0.4 for all).
There was an association between SSI and age, keep-
ing other covariates fixed, in LBBB. This suggests that
the discriminatory ability of SSI might vary with re-
spect to age. For purposes of clarity, the unadjusted
ROC curve is presented.

3.3 CMR image availability
All CMR images analyzed as part of the current study
are made available online in the Figshare repository,
doi:10.6084/m9.figshare.15155596. Among the individ-
ual CMR exams (n=80) the majority were performed
on a Siemens scanner (n=75) and only a few on a
Philips scanner (n=5), all contain a cine short-axis
stack, while most also contain cine 2-chamber (n=78),
3-chamber (n=79), and 4-chamber images (n=79). As
per the inclusion criteria all patients were verified to
be free of myocardial scar by LGE CMR.

4 Discussion
The main finding of the study is that the ability to
discriminate between LBBB and normal QRS duration
among patients with severely reduced LV ejection frac-
tion and no scar was fair for CURE and excellent for
SSI. This highlights that, when developing and evalu-
ating indices aimed at accurately identifying mechan-
ical dyssynchrony amenable to CRT, it is important
to evaluate the performance of a proposed index both
in patients with LBBB, and in comparison to control
subjects with normal QRS duration.

The lack of response and even harmful effects of CRT
when implanted in patients with narrow QRS com-
plexes indicates that CRT requires an electrical sub-
strate [32, 33]. Findings that LBBB patients derive
greater benefit from CRT compared to those without
support that LBBB is this electrical substrate [5–7].
Response to CRT can partly be explained by correc-
tion of the discoordinated contraction of myocardial
wall segments, a consequence of abnormal electrical
activation. However, not all patients with LBBB by
conventional electrocardiographic criteria have com-
plete LBBB [34, 35], and mechanical dyssynchrony is
not uniquely associated with electrical dyssynchrony
[11, 36]. For example, focal LV myocardial scarring

is also known to cause abnormalities in regional my-
ocardial mechanics [11]. Approximately one third of
patients with LBBB by conventional criteria do not
have strict LBBB [37]. Consequently, Strauss, et al,
proposed more strict criteria for LBBB [8]. Increased
rate of CRT response has been found when using this
strict definition of LBBB [9, 10, 38], and strict LBBB is
associated with greater mechanical dyssynchrony than
non-strict LBBB [39]. Mechanical dyssynchrony per se
might therefore not be of primary interest in predicting
CRT response but instead focus should be on identi-
fication and quantification of the mechanical dyssyn-
chrony pattern associated with an abnormal electri-
cal activation as seen in complete LBBB. Importantly,
the current study evaluates the discriminatory abil-
ity of two recently proposed mechanical dyssynchrony
indices for the mechanical dyssynchrony pattern asso-
ciated with strict LBBB compared to patients with
equally reduced ejection fraction but normal QRS,
while controlling for confounding factors such as scar.

QRS duration cannot accurately characterize the
spectrum of conduction abnormalities, and so it seems
unlikely that any singular mechanical dyssynchrony in-
dex will be able to capture the full spectrum of vari-
ation inherent to dyssynchronous ventricular contrac-
tion. While both CURE and SSI capture differences
in the pattern of discoordination on a group level, we
found SSI superior to CURE with regards to the ability
to differentiate between LBBB and controls. Our re-
sults suggest that the incremental mechanical dyssyn-
chrony component associated with LBBB is better
characterized by quantification of the absolute extent
of stretch during the opposing directions of movement
in the septum and lateral wall.

SSI was developed by Lumens et al. [26] in an at-
tempt to characterize the electromechancial substrate
that may respond to CRT. They used a computa-
tional model to simulate electromechanical and non-
electrical substrates of mechanical dyssynchrony and
identified strain characteristics specific for the differ-
ent substrates of mechanical dyssynchrony. In a study
of patients enrolled in the Adaptive CRT trial, it
was found that SSI by echocardiography was inde-
pendently associated with CRT outcome, adjusting for
QRS morphology, QRS duration, sex, heart failure eti-
ology, and treatment with angiotensin-converting en-
zyme inhibitors/angiotensin II receptor blockers [25].
However, whether SSI has added prognostic value over
strict LBBB morphology is still unknown. It remains
to be explored whether SSI can be used to identify
non-LBBB patients that may be suitable for CRT, and
such studies are justified.

CURE was first evaluated in a canine model of
heart failure and LBBB conduction delay [22, 24]. It
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was found that biventricular pacing leads to greater
synchrony (increased CURE), improved global func-
tion, and that circumferential dyssynchrony indices
had greater dynamic range when compared to longitu-
dinal indices [24]. Importantly, CURE was found sensi-
tive to regionally clustered dyssynchrony [24]. Region-
ally clustered dyssynchrony might show equal variance
as dispersed dyssynchrony when compared to variance-
based dyssynchrony measures, although with very dif-
ferent effects on cardiac mechanics [24]. While CURE
can be considered a more general measure of dyssyn-
chrony, it has been found to be predictive of CRT re-
sponse in clinical cohorts [13, 23, 40]. An advantage
of CURE over commonly used time-to-peak based in-
dices is that CURE utilizes information of the full car-
diac cycle. Additionally, considering that CURE is de-
rived from the relative positions of included segments
and less so on their absolute value of strain, CURE
is theoretically less sensitive to inter-vendor variations
of strain measurements. However, despite these theo-
retical advantages of using CURE, the current study
shows that CURE had a modest performance in iden-
tifying LBBB specific mechanical dyssynchrony.

The association between mechanical dyssynchrony,
quantified as the systolic dyssynchrony index, and my-
ocardial scar has been studied in patients with systolic
heart failure [41]. They conclude that 25% of patients
with narrow QRS (<130 ms) presented with mechan-
ical dyssynchrony, despite no difference in scar bur-
den compared to narrow QRS patients without me-
chanical dyssynchrony. Those findings suggest that
mechanical dyssynchrony in such patients might be
secondary to myocardial scar rather than electrical
dyssynchrony. There is no general agreement upon the
definition of mechanical dyssynchrony, and the dif-
ference in vendor software for strain measurements
limits straightforward comparisons between studies.
CURE has been shown to identify a greater mag-
nitude of dyssynchrony (lower CURE values) in pa-
tients with non-ischemic cardiomyopathy compared to
healthy controls (0.79±0.14 vs 0.97±0.02) [42]. In a
different study, CURE in healthy controls volunteers
has been shown to be 0.87±0.07 [43]. The current
study shows that patients with severely reduced LVEF
and normal QRS duration have some degree of me-
chanical dyssynchrony even in the absence of scar (me-
dian CURE 0.79). This would suggest that other fac-
tors beyond scar and LBBB contribute to mechanical
dyssynchrony detected by CURE. Such factors may
include variations in pre-load and/or afterload, and
regional wall motion abnormalities due to chronic is-
chemia or other non-ischemic cardiomyopathies that
impair contractile function without causing myocar-
dial scar.

While CURE and SSI both displayed group differ-
ences between LBBB and controls, the current study
found no evidence in support of a relationship between
either CURE or SSI, and QRS duration within LBBB
and control groups, respectively. CURE and QRS du-
ration have previously been found to be modestly cor-
related (r = −0.58; p<0.001) in a cohort (n = 43)
of cardiomyopathy patients with similar reductions in
ejection fraction and prolongation of QRS duration,
though QRS morphology was not reported [23]. How-
ever, when only evaluating the correlation between
CURE and QRS duration in those patients referred for
CRT (n = 20) those authors found that the evidence
did not support any correlation (r = −0.40; p = 0.08)
[23]. The apparent lack of correlation between dyssyn-
chrony and QRS duration is of interest considering
that current guidelines are still unclear regarding the
group of patients with intermediate QRS width (QRS
120-149ms). These exploratory results add to the no-
tion that there is a complex relationship between elec-
trical and mechanical dyssynchrony.

5 Image availability
The current study shows that patients with severely re-
duced ejection fraction and normal QRS duration have
a baseline level of mechanical dyssynchrony that is not
attributable to myocardial scarring or prolonged depo-
larization of the myocardium. Consequently, when de-
veloping an index of mechanical dyssynchrony, speci-
ficity for its intended use should be of interest. To our
knowledge, no study to date has included patients free
of myocardial scar, with a normal QRS duration, and
with severely reduced ejection fraction when compar-
ing or developing indices of mechanical dyssynchrony.
In order to facilitate future research where baseline
mechanical dyssynchrony is accounted for, the images
from the current study are made available online. See
the section ‘Availability of data and materials’ below.

6 Limitations
Identification of the time point for aortic valve open-
ing, and aortic valve closure was performed by visual
assessment of CMR cine images, and the accuracy
of this assessment is limited by the temporal resolu-
tion of CMR images. However, any variations in accu-
racy would equally affect the analysis of both patient
groups, and hence should not have a major effect on
the overall results. The software used for strain anal-
ysis reports segmental strain measurements according
to the AHA 17-segment model. Hence, CURE calcula-
tion was limited to Fourier transformation applied to
six individual myocardial segments in the midventricu-
lar short-axis slice. The impact of the spatial resolution
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of measurement in CURE quantification has not pre-
viously been reported. However, it cannot be excluded
that quantification of CURE using higher spatial res-
olution could potentially influence the results.

7 Conclusion
SSI was superior to CURE regarding the ability to dis-
criminate between strict LBBB and normal QRS du-
ration among patients with severely reduced ejection
fraction and no scar. The amount of dyssynchrony in
patients with no scar, and severely reduced ejection
fraction, needs to be taken into account when develop-
ing and evaluating indices aimed at accurately identi-
fying mechanical dyssynchrony amenable to CRT. We
suggest that control subjects with normal QRS dura-
tion, severely reduced ejection fraction, and the ab-
sence of myocardial scar, be included when developing
and evaluating mechanical dyssynchrony indices aimed
at predicting CRT response.
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Figures

Figure 1 Values for the circumferential uniformity ratio estimate (CURE) and the systolic stretch index (SSI) for left bundle branch
block (LBBB) and controls. The box and whisker plots show the median (horizontal line), interquartile range (box), and data points
within 1.5× interquartiles ranges of the first and third quartile, respectively (whiskers). Note, there is more pronounced mechanical
dyssynchrony (lower CURE, higher SSI) in LBBB compared to control. CURE is more homogenously distributed between groups
compared to SSI.
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Figure 2 Receiver operating characteristics (ROC) for univariable logistic regression models to differentiate between left bundle
branch block (LBBB) and controls using the circumferential uniformity ratio estimate (CURE) and the systolic stretch index (SSI),
respectively. Better discriminatory ability for LBBB is seen for SSI compared to CURE. AUC = area under the ROC curve, CI =
confidence interval.
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Figure 3 Bar plot showing sensitivity and specificity for detecting left bundle branch block using the systolic stretch index (SSI) and
the circumferential uniformity ratio estimate (CURE), respectively. Error bars denote 95% confidence intervals.
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Tables

Control LBBB Test Statistic
N = 36 N = 44

Age, years 48 [36-60] 64 [59-69] p<0.0011

Male Sex, n (%) 16 (44) 19 (43) p=0.912

Height, cm 169 [160-177] 169 [157-177] p=0.5521

Weight, kg 84.7 [72.1-95.3] 79.5 [63.8-89.0] p=0.2051

BMI, kg/m2 27.3 [25.4-34.2] 26.7 [24.1-29.4] p=0.2821

BSA, m2 1.9 [1.8-2.1] 1.9 [1.6-2.1] p=0.3081

EDV, mL 254 [164-307] 255 [210-291] p=0.7191

EDVI, mL/m2 123 [101-150] 127 [114-154] p=0.3011

LVEF, % 25 [21-30] 27 [24-32] p=0.431

LVM, g 183 [156-223] 159 [131-184] p=0.0011

LVMI, g/m2 100 [82-117] 85 [67-96] p<0.0011

QRS duration, ms 90 [84-101] 158 [150-170] p<0.0011

Table 1 Data are presented as median [interquartile range] or numerator
(percentage). LVEDV = left ventricular end-diastolic volume, LVEDVI =
left ventricular end-diastolic volume index, LVM = left ventricular mass,
LVMI = left ventricular mass index, LVEF = left ventricular ejection
fraction, BMI = body mass index, BSA = body surface area.
Tests used: Wilcoxon test; Pearson test.
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