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 2 

Abstract 30 

Background: Lack of anatomy recognition represents a clinically relevant risk factor in abdominal 31 

surgery. While machine learning methods have the potential to aid in recognition of visible patterns 32 

and structures, limited availability and diversity of (annotated) laparoscopic image data restrict the 33 

clinical potential of such applications in practice. This study explores the potential of machine 34 

learning algorithms to identify and delineate abdominal organs and anatomical structures using a 35 

robust and comprehensive dataset, and compares algorithm performance to that of humans.  36 

Methods: Based on the Dresden Surgical Anatomy Dataset providing 13195 laparoscopic images 37 

with pixel-wise segmentations of eleven anatomical structures, two machine learning algorithms 38 

were developed: individual segmentation algorithms for each structure, and a combined algorithm 39 

with a common encoder and structure-specific decoders. Performance was assessed using F1 40 

score, Intersection-over-Union (IoU), precision, recall, and specificity. Using the example of 41 

pancreas segmentation on a sample dataset of 35 images, algorithm performance was compared 42 

to that of a cohort of 28 physicians, medical students, and medical laypersons.  43 

Results: Mean IoU for segmentation of intraabdominal structures ranged from 0.28 to 0.83 and 44 

from 0.32 to 0.81 for the structure-specific and the combined semantic segmentation model, 45 

respectively. Average inference for the structure-specific (one anatomical structure) and the 46 

combined model (eleven anatomical structures) took 20 ms and 54 ms, respectively. The 47 

structure-specific model performed equal to or better than 27 out of 28 human participants in 48 

pancreas segmentation.  49 

Conclusions: Machine learning methods have the potential to provide relevant assistance in 50 

anatomy recognition in minimally-invasive surgery in near-real-time. Future research should 51 

investigate the educational value and subsequent clinical impact of respective assistance 52 

systems.  53 
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 3 

Introduction 55 

Computer vision describes the computerized analysis of digital images aiming at the automation 56 

of human visual capabilities, most commonly using machine learning methods, in particular deep 57 

learning. This approach has transformed medicine in recent years, with successful applications 58 

including computer-aided diagnosis of colonic polyp dignity in endoscopy1,2, detection of clinically 59 

actionable genetic alterations in histopathology3, and melanoma detection in dermatology4. 60 

Availability of large amounts of training data is the defining prerequisite for successful application 61 

of deep learning methods. With the establishment of laparoscopy as the gold standard for a variety 62 

of surgical procedures5–8 and the increasing availability of computing resources, these concepts 63 

have gradually been applied to abdominal surgery. The overwhelming majority of research efforts 64 

in the field of Artificial Intelligence (AI)-based analysis of intraoperative surgical imaging data (i.e. 65 

video data from laparoscopic or open surgeries) has focused on classifying images with respect 66 

to the presence and/or location of previously annotated surgical instruments or anatomical 67 

structures9–13 or on analysis of surgical proficiency14–16 based on recorded procedures. However, 68 

almost all research endeavors in the field of computer vision in laparoscopic surgery have 69 

concentrated on preclinical stages and to date, no AI model based on intraoperative surgical 70 

imaging data could demonstrate a palpable clinical benefit.17 Among the studies closest to clinical 71 

application are recent works on identification of instruments and hepatobiliary anatomy during 72 

cholecystectomy for automated assessment of the critical view of safety13, and on the automated 73 

segmentation of safe and unsafe preparation zones during cholecystectomy18.  74 

In surgery, patient outcome heavily depends on experience and performance of the surgical 75 

team.19,20 In a recent analysis of Human Performance Deficiencies in major cardiothoracic, 76 

vascular, abdominal transplant, surgical oncology, acute care, and general surgical operations, 77 

more than half of the cases with postoperative complications were associated with identifiable 78 

human error. Among these errors, lack of recognition (including misidentified anatomy) accounted 79 

for 18.8%, making it the most common Human Performance Deficiency overall.21 While AI-based 80 

systems identifying anatomical risk and target structures would theoretically have the potential to 81 

alleviate this risk, limited availability and diversity of (annotated) laparoscopic image data 82 

drastically restrict the clinical potential of such applications in practice.  83 

To advance and diversify the applications of computer vision in laparoscopic surgery, we have 84 

recently published the Dresden Surgical Anatomy Dataset22, providing 13195 laparoscopic images 85 

with high-quality annotations of the presence and exact location of eleven intraabdominal 86 

anatomical structures: abdominal wall, colon, intestinal vessels (inferior mesenteric artery and 87 

inferior mesenteric vein with their subsidiary vessels), liver, pancreas, small intestine, spleen, 88 
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stomach, ureter and vesicular glands. Here, we present the first study evaluating automated 89 

detection and localization of organs and anatomical structures in laparoscopic view based on this 90 

dataset, and, using the example of delineation of the pancreas, compare algorithm performance 91 

to that of humans.  92 

 93 

Methods 94 

Patient cohort 95 

Video data from 32 robot-assisted anterior rectal resections or rectal extirpations were gathered 96 

at the University Hospital Carl Gustav Carus Dresden between February 2019 and February 2021. 97 

All included patients had a clinical indication for the surgical procedure, recommended by an 98 

interdisciplinary tumor board. The procedures were performed using the da Vinci® Xi system 99 

(Intuitive Surgical, Sunnyvale, CA, USA) with a standard Da Vinci® Xi/X Endoscope with Camera 100 

(8 mm diameter, 30˚ angle, Intuitive Surgical, Sunnyvale, CA, USA, Item code 470057). Surgeries 101 

were recorded using the CAST system (Orpheus Medical GmBH, Frankfurt a.M., Germany). Each 102 

record was saved at a resolution of 1920 x 1080 pixels in MPEG-4 format.  103 

All experiments were performed in accordance with the ethical standards of the Declaration of 104 

Helsinki and its later amendments. The local Institutional Review Board (ethics committee at the 105 

Technical University Dresden) reviewed and approved this study (approval number: BO-EK-106 

137042018). The trial was registered on clinicaltrials.gov (trial registration ID: NCT05268432). 107 

Written informed consent to laparoscopic image data acquisition, data annotation, data analysis, 108 

and anonymized data publication was obtained from all participants. Before publication, all data 109 

was anonymized according to the general data protection regulation of the European Union.  110 

 111 

Dataset 112 

Based on the full-length surgery recordings and respective temporal annotations of organ visibility, 113 

individual image frames were extracted and annotated as described previously. The resulting 114 

Dresden Surgical Anatomy Dataset comprises 13195 distinct images with pixel-wise 115 

segmentations of eleven anatomical structures: abdominal wall, colon, intestinal vessels (inferior 116 

mesenteric artery and inferior mesenteric vein with their subsidiary vessels), liver, pancreas, small 117 

intestine, spleen, stomach, ureter and vesicular glands. Moreover, the dataset comprises binary 118 

annotations of the presence of each of these organs for each image. The dataset is publicly 119 

available via the following link: https://figshare.com/s/d7a60b74989a9cab2f7f.  120 

 121 
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For machine learning purposes, the Dresden Surgical Anatomy Dataset was split into training, 122 

validation, and test data as follows (Figure 1):  123 

— Training set (at least 12 surgeries per anatomical structure): surgeries 1, 4, 5, 6, 8, 9, 10, 124 

12, 15, 16, 17, 19, 22, 23, 24, 25, 27, 28, 29, 30, 31.  125 

— Validation set (3 surgeries per anatomical structure): surgeries 3, 21, 26. 126 

— Test set (5 surgeries per anatomical structure): surgeries 2, 7, 11, 13, 14, 18, 20, 32.  127 

This split is proposed for future works using the Dresden Surgical Anatomy Dataset to reproduce 128 

the variance of the entire dataset within each subset, and to ensure comparability regarding clinical 129 

variables between the training, the validation, and the test set. Surgeries for the test set were 130 

selected to minimize variance regarding the number of frames over the segmented classes. Out 131 

of the remaining surgeries, the validation set was separated from the training set using the same 132 

criterion.  133 

 134 

Structure-specific semantic segmentation model 135 

To segment each anatomical structure, a separate convolutional neural network for segmentation 136 

a DeeplabV323 model with a ResNet50 backbone with default PyTorch pretraining on the COCO 137 

dataset24, was used. The networks were trained using cross-entropy loss and the AdamW 138 

optimizer25 for 100 epochs with a starting learning rate of 10-4 and a linear learning rate scheduler 139 

decreasing the learning rate by 0.9 every 10 epochs. For data augmentation, we applied random 140 

scaling and rotation, as well as brightness adjustments. The final model for each organ was 141 

selected via the Intersection-over-Union (IoU) on the validation dataset and evaluated using the 142 

Dresden Surgical Anatomy Dataset with the abovementioned training-validation-test split (Figure 143 

1).  144 

Segmentation performance was assessed using F1 score, IoU, precision, recall, and specificity 145 

on the test folds. These parameters are commonly used technical measures of prediction 146 

exactness, ranging from 0 (least exact prediction) to 1 (entirely correct prediction without any 147 

misprediction).  148 

 149 

Combined semantic segmentation model 150 

A convolutional neural network with a common encoder and eleven decoders for combined 151 

segmentation of the eleven anatomical structures was trained. The used architecture is an 152 

extension of DeepLabV323. A shared ResNet50 backbone with default PyTorch pretraining on the 153 

COCO dataset24, was used. For each class, a DeepLabV3 decoder was then run on the features 154 
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extracted from a given image by the backbone. As the images are only annotated for binary 155 

classes, the loss is only calculated for the decoder associated with the class annotated in a given 156 

image. The remaining training procedure was identical to the structure-specific model. The model 157 

was trained and evaluated using the Dresden Surgical Anatomy Dataset with the abovementioned 158 

training-validation-test split (Figure 1).  159 

Segmentation performance was assessed using F1 score, IoU, precision, recall, and specificity 160 

on the test folds.26  161 

 162 

Comparative evaluation of algorithmic and human performance 163 

To determine the clinical potential of automated segmentation of anatomical risk structures, the 164 

segmentation performance of 28 humans was compared to that of the structure-specific semantic 165 

segmentation model using the example of the pancreas. The local Institutional Review Board 166 

(ethics committee at the Technical University Dresden) reviewed and approved this study 167 

(approval number: BO-EK-566122021). All participants provided written informed consent to 168 

anonymous study participation, data acquisition and analysis, and publication. In total, 28 169 

participants (physician and non-physician medical staff, medical students, and medical 170 

laypersons) marked the pancreas in 35 images from the Dresden Surgical Anatomy Dataset with 171 

bounding boxes. These images originated from 26 different surgeries, and the pancreas was 172 

visible in 16 of the 35 images. Each of the previously selected 35 images was shown once, the 173 

order being arbitrarily chosen but identical for all participants. The open-source annotation 174 

software Computer Vision Annotation Tool (CVAT) was used for annotations. In cases where the 175 

pancreas was seen in multiple, non-connected locations in the image, participants were asked to 176 

create separate bounding boxes for each area.  177 

Based on the structure-specific semantic segmentation model, axis-aligned bounding boxes 178 

marking the pancreas were generated in the 35 images from the pixel-wise segmentation. To 179 

guarantee that the respective images were not part of the training data, four-fold cross validation 180 

was used, i.e. the origin surgeries were split into four equal-sized batches, and algorithms were 181 

trained on three batches that did not contain the respective origin image before being applied to 182 

segmentation.  183 

To compare human and algorithm performance, the bounding boxes created by each participant 184 

and the structure-specific semantic segmentation model were compared to bounding boxes 185 

derived from the Dresden Surgical Anatomy Dataset, which were defined as ground truth. IoU 186 

between the manual or algorithmical bounding box and the ground truth was used to compare 187 

segmentation accuracy.  188 
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 189 

Data Availability 190 

The Dresden Surgical Anatomy Dataset is publicly available via the following link: 191 

https://figshare.com/s/d7a60b74989a9cab2f7f. All other data generated and analyzed during the 192 

current study are available from the corresponding authors on reasonable request. To gain 193 

access, data requestors will need to sign a data access agreement. 194 

 195 

Code Availability 196 

The most relevant scripts used for dataset compilation are publicly available via the following link: 197 

https://zenodo.org/record/6958337#.YzsBdnZBzOg.  198 

 199 

Results 200 

Machine Learning-based anatomical structure segmentation in structure-specific models 201 

Structure-specific multi-layer convolutional neural networks (Figure 1) were trained to segment 202 

the abdominal wall, the colon, intestinal vessels (inferior mesenteric artery and inferior mesenteric 203 

vein with their subsidiary vessels), the liver, the pancreas, the small intestine, the spleen, the 204 

stomach, the ureter, and vesicular glands. Table 1 displays mean F1 score, IoU, precision, recall, 205 

and specificity for individual anatomical structures as predicted by the structure-specific 206 

algorithms. Out of the analyzed segmentation models, performance was lowest for the vesicular 207 

glands (mean IoU: 0.28 ± 0.21) and the pancreas (mean IoU: 0.28 ± 0.27), while excellent 208 

predictions were achieved for the abdominal wall (mean IoU: 0.83 ± 0.14) and the small intestine 209 

(mean IoU: 0.80 ± 0.18). In segmentation of the pancreas, the ureter, the vesicular glands and the 210 

intestinal veins, there was a proportion of images with no detection or no overlap between ground 211 

truth, while for all remaining anatomical structures, this proportion was minimal (Figure 2 a). While 212 

the images, in which the highest IoUs were observed, mostly displayed large organ segments that 213 

were clearly visible (Figure 2 b), the images with the lowest IoU were of variable quality with 214 

confounding factors such as blood, smoke, soiling of the endoscope lens, extreme zoom, or 215 

pictures blurred by camera shake (Figure 2 c).  216 

Inference on a single image with a resolution of 640 x 512 pixels required, on average, 20 ms on 217 

an Nvidia A5000, resulting in a frame rate of 50 frames per second. This runtime includes one 218 

decoder, meaning that only the segmentation for one anatomical class is included.  219 

 220 
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Table 1: Summary of performance metrics for anatomical structure segmentation using 221 

structure-specific models based on the DeepLabv3 architecture. For each metric, mean and 222 

standard deviation are displayed.  223 

 224 

Anatomical structure F1 score IoU Precision Recall Specificity 

Abdominal wall 0.90 ± 0.10 0.83 ± 0.14 0.89 ± 0.14 0.93 ± 0.07 0.97 ± 0.04 

Colon 0.79 ± 0.20 0.69 ± 0.22 0.80 ± 0.21 0.82 ± 0.21 0.97 ± 0.05 

Inferior mesenteric artery 0.54 ± 0.26 0.41 ± 0.22 0.55 ± 0.25 0.67 ± 0.33 0.99 ± 0.01 

Intestinal veins 0.54 ± 0.33 0.44 ± 0.29 0.70 ± 0.26 0.56 ± 0.36 1.00 ± 0.00 

Liver 0.80 ± 0.23 0.71 ± 0.25 0.85 ± 0.21 0.81 ± 0.24 0.98 ± 0.03 

Pancreas 0.37 ± 0.32 0.28 ± 0.27 0.59 ± 0.37 0.37 ± 0.36 1.00 ± 0.01 

Small intestine 0.87 ± 0.14 0.80 ± 0.18 0.87 ± 0.16 0.91 ± 0.15 0.97 ± 0.04 

Spleen 0.79 ± 0.23 0.69 ± 0.24 0.74 ± 0.22 0.90 ± 0.24 0.99 ± 0.01 

Stomach 0.71 ± 0.24 0.60 ± 0.25 0.65 ± 0.25 0.89 ± 0.21 0.98 ± 0.02 

Ureter 0.47 ± 0.30 0.36 ± 0.25 0.53 ± 0.28 0.57 ± 0.39 1.00 ± 0.00 

Vesicular glands 0.40 ± 0.25 0.28 ± 0.21 0.37 ± 0.28 0.62 ± 0.35 0.97 ± 0.03 

 225 

Machine Learning-based anatomical structure segmentation in a combined model 226 

Using all annotated images from the Dresden Surgical Anatomy Dataset, a combined model with 227 

a mutual encoder and organ-specific decoders was trained (Figure 1). Table 2 displays mean F1 228 

score, IoU, precision, recall, and specificity for anatomical structure segmentation in the combined 229 

model. The performance of the combined model was overall similar to that of structure-specific 230 

models (Table 1), with highest segmentation performance for the abdominal wall (IoU: 0.81 ± 0.16) 231 

and the small intestine (IoU: 0.77 ± 0.19), and the lowest performance for the vesicular glands 232 

(IoU: 0.32 ± 0.24) and the pancreas (IoU: 0.33 ± 0.25). As for the structure-specific models, few 233 

images were not or entirely mispredicted; the proportion of such images was largest in the 234 

pancreas and the vesicular glands (Figure 3 a). Similar trends towards an impact of segment size, 235 

zoom, endoscope lens soiling, blurry images, and presence of blood or smoke were seen as for 236 

structure-specific models when comparing image quality of well-predicted images (Figure 3 b) and 237 

images with poor or no prediction (Figure 3 c).  238 

Inference on a single image with a resolution of 640 x 512 pixels required, on average, 54 ms on 239 

an Nvidia A5000, resulting in a frame rate of about 18.5 frames per second. This runtime includes 240 

all 11 decoders, meaning that segmentations for all organ classes are included. 241 

  242 
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Table 2: Summary of performance metrics for anatomical structure segmentation using the 243 

combined model (common encoder with structure-specific decoders). For each metric, 244 

mean and standard deviation are displayed.  245 

 246 

Anatomical structure F1 score IoU Precision Recall Specificity 

Abdominal wall 0.89 ± 0.12 0.81 ± 0.16 0.85 ± 0.16 0.95 ± 0.07 0.96 ± 0.05 

Colon 0.79 ± 0.17 0.69 ± 0.20 0.77 ± 0.18 0.86 ± 0.19 0.96 ± 0.05 

Inferior mesenteric artery 0.63 ± 0.21 0.49 ± 0.20 0.57 ± 0.22 0.78 ± 0.23 0.99 ± 0.01 

Intestinal veins 0.60 ± 0.25 0.47 ± 0.22 0.60 ± 0.24 0.72 ± 0.31 0.99 ± 0.01 

Liver 0.81 ± 0.19 0.72 ± 0.22 0.80 ± 0.22 0.89 ± 0.15 0.98 ± 0.05 

Pancreas 0.44 ± 0.30 0.33 ± 0.25 0.54 ± 0.34 0.49 ± 0.36 0.98 ± 0.10 

Small intestine 0.85 ± 0.15 0.77 ± 0.19 0.80 ± 0.19 0.94 ± 0.12 0.95 ± 0.06 

Spleen 0.80 ± 0.19 0.70 ± 0.22 0.72 ± 0.20 0.95 ± 0.15 0.99 ± 0.01 

Stomach 0.70 ± 0.27 0.60 ± 0.28 0.70 ± 0.26 0.81 ± 0.29 0.99 ± 0.01 

Ureter 0.52 ± 0.26 0.39 ± 0.23 0.45 ± 0.25 0.71 ± 0.34 0.99 ± 0.01 

Vesicular glands 0.44 ± 0.29 0.32 ± 0.24 0.47 ± 0.31 0.53 ± 0.35 0.98 ± 0.02 

 247 

Performance of machine learning models in relation to human performance 248 

To approximate the clinical value of the previously described algorithms for anatomical structure 249 

segmentation, the performance of the structure-specific model was compared to that of of a cohort 250 

of 28 physicians, medical students, and persons with no medical background (Figure 4 a), and 251 

different degrees of experience in laparoscopic surgery (Figure 4 b). A vulnerable anatomical 252 

structure with – measured by classical metrics of overlap (Tables 1 and 2) – comparably weak 253 

segmentation performance of the trained algorithms, the pancreas was selected as an example.  254 

Comparing bounding box segmentations of the pancreas of participants and the machine learning 255 

model, the medical and laparoscopy-specific experience of human participants was mirrored by 256 

the respective IoUs describing the overlap between the pancreas annotation and the ground truth. 257 

The pancreas-specific segmentation model (IoU: 0.29) performed equal to or better than 27 out 258 

of the 28 human participants (Figures 4 c and d). Overall, these results demonstrate that the 259 

developed models have clinical potential to improve the recognition of vulnerable anatomical 260 

structures.  261 

 262 

Discussion 263 

In surgery, misinterpretation of visual cues can result in objectifiable errors with serious 264 

consequences.21 Based on a robust public dataset providing 13195 laparoscopic images with 265 

segmentations of eleven intra-abdominal anatomical structures, this study explores the potential 266 

of machine learning for automated segmentation of these organs, and compares algorithmic 267 
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segmentation quality to that of humans with varying experience in minimally-invasive abdominal 268 

surgery.  269 

In summary, the presented findings suggest that machine learning-based segmentation of 270 

intraabdominal organs and anatomical structures is possible and has the potential to provide 271 

clinically valuable information. At an average runtime of 54 ms per image, corresponding to a 272 

frame rate of 18.5 frames per second, the combined model would facilitate near-real-time 273 

identification of eleven anatomical structures. These runtimes mirror the performance of a non-274 

optimized version of the model, which can be significantly improved using methods such as 275 

TensorRT from Nvidia. Measured by classical metrics of overlap between segmentation and 276 

ground truth, predictions were, overall, better for large and similar-appearing organs such as the 277 

abdominal wall, the liver, the stomach, and the spleen as compared to smaller and more diverse-278 

appearing organs such as the pancreas, the ureter, or vesicular glands. Furthermore, poor image 279 

quality (i.e. images blurred by camera movements, presence of blood or smoke in images) was 280 

linked to lower accuracy of machine learning-based segmentations. These findings imply that 281 

computer vision studies in laparoscopy should be carefully interpreted taking representativity and 282 

potential selection of underlying training and validation data into consideration.  283 

Measured by classical metrics of overlap (e.g. IoU, F1 score, precision, recall, specificity) that are 284 

commonly used to evaluate segmentation performance, the structure-specific models and the 285 

combined model performed similarly with average IoUs ranging from 0.28 to 0.83 and from 0.32 286 

to 0.81, respectively. Interpretation of these metrics, however, represents a major challenge in 287 

computer vision applications in medical domains such as dermatology and endoscopy27–29 as well 288 

as non-medical domains such as autonomous driving30. In the specific use case of laparoscopic 289 

surgery, evidence suggests that such technical metrics alone are not sufficient to characterize the 290 

clinical potential and utility of segmentation algorithms.31,32 In this context, the subjective clinical 291 

utility of a bounding box-based detection system recognizing the common bile duct and the cystic 292 

duct at average precisions of 0.32 and 0.07, respectively, demonstrated by Tokuyasu et al., 293 

supports this hypothesis.12 In the presented analysis, the trained structure-specific machine 294 

learning algorithm performed equal to or better than all human participants in the specific task of 295 

bounding box segmentation of the pancreas except for one expert with over 10 years of 296 

experience. This suggests that even for structures such as the pancreas with seemingly poor 297 

segmentation quality (segmentation IoU of the best-performing model: 0.33 ± 0.25 in the test set) 298 

have the potential to provide clinically valuable help in anatomy recognition. Notably, the best 299 

average IoUs achieved in this comparative study were 0.29 (for the structure-specific model) and 300 

0.36 (for the best human participant), which would both be considered less reliable segmentation 301 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.11.22282215doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.11.22282215


 11 

quality measures on paper. This encourages further discussion about metrics for segmentation 302 

quality assessment in clinical AI. In the future, the potential of the described dataset22 and organ 303 

segmentation algorithms could be exploited for educational purposes33,34, for guidance systems 304 

facilitating real-time detection of risk and target structures18,32,35, or as an auxiliary function 305 

integrated in more complex surgical assistance systems, such as guidance systems relying on 306 

automated liver registration36.  307 

The limitations of this work are mostly related to the dataset and general limitations of machine 308 

learning-based segmentation: First, the Dresden Surgical Anatomy Dataset is a monocentric 309 

dataset based on 32 robot-assisted rectal surgeries. Therefore, the images used for algorithm 310 

training and validation display organs from specific angles, which could limit generalizability and 311 

transferability of the presented findings to other minimally-invasive abdominal surgeries, 312 

particularly non-robotic procedures. Second, annotations were required for training of machine 313 

learning algorithms, potentially inducing some bias towards the way that organs were annotated 314 

in the algorithms, which may differ from individual healthcare professionals’ way of recognizing an 315 

organ. This is particularly relevant for organs such as the ureters or the pancreas, which often 316 

appear covered by layers of tissue. Here, computer vision-based algorithms that solely consider 317 

the laparoscopic images provided by the Dresden Surgical Anatomy Dataset for identification of 318 

risk structures will only be able to identify an organ once it is visible. For an earlier recognition of 319 

such hidden risk structures, more training data with meaningful annotations would be necessary. 320 

Importantly, the presented comparison to human performance focused on segmentation of visible 321 

anatomy as well, neglecting that humans (and possibly computers, too) could already identify a 322 

risk structure hidden underneath tissue layers. The existing limitations notwithstanding, the 323 

presented study represents an important addition to the growing body of research on medical 324 

image analysis in laparoscopic surgery, particularly by linking technical metrics to human 325 

performance.  326 

In conclusion, this study demonstrates that machine learning methods have the potential to 327 

provide clinically relevant near-real-time assistance in anatomy recognition in minimally-invasive 328 

surgery. This study is the first to use the recently published Dresden Surgical Anatomy Dataset, 329 

providing baseline algorithms for organ segmentation and evaluating the clinical relevance of such 330 

algorithms. Future research should investigate other segmentation methods, the transferability of 331 

these results to other surgical procedures, and the clinical impact of real-time surgical assistance 332 

systems and didactic applications based on automated segmentation algorithms.  333 

 334 
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Figures and Figure Captions 428 

 429 

Figure 1 430 

Fig. 1 Schematic illustration of the structure-specific and combined machine learning 431 

models used for semantic segmentation. The Dresden Surgical Anatomy Dataset was split into 432 

a training, a validation, and a test set. For spatial segmentation, two machine learning models 433 

were trained: A structure-specific model with individual encoders and decoders, and a combined 434 

model with a common encoder and structure-specific decoders.  435 
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Figure 2 437 

Fig. 2 Pixel-wise organ segmentation with structure-specific models trained on the 438 

respective organ subsets of the Dresden Surgical Anatomy Dataset. (a) Violin plot 439 

illustrations of performance metrics for structure-specific segmentation models. The median and 440 

quartiles are illustrated as solid and dashed lines, respectively. (b) Example images with the 441 

highest IoUs for liver, pancreas, stomach, and ureter segmentation with structure-specific 442 

segmentation models. Ground truth is displayed in blue, and proposed segmentations are 443 

displayed as white overlay. (c) Example images with the lowest IoUs for liver, pancreas, stomach, 444 

and ureter segmentation with structure-specific segmentation models. Ground truth is displayed 445 

in blue, and proposed segmentations are displayed as white overlay. 446 
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Figure 3 449 

Fig. 3 Pixel-wise organ segmentation with the combined model trained on the entire 450 

Dresden Surgical Anatomy Dataset with a common encoder and structure-specific 451 

decoders. (a) Violin plot illustrations of performance metrics for the combined segmentation 452 

model. The median and quartiles are illustrated as solid and dashed lines, respectively. (b) 453 

Example images with the highest IoUs for liver, pancreas, stomach, and ureter segmentation with 454 

the combined segmentation model. Ground truth is displayed in blue, and proposed 455 

segmentations are displayed as white overlay. (c) Example images with the lowest IoUs for liver, 456 

pancreas, stomach, and ureter segmentation with the combined segmentation model. Ground 457 

truth is displayed in blue, and proposed segmentations are displayed as white overlay. 458 

 459 

 460 

Figure 4 461 

Fig. 4 Comparison of pancreas segmentation performance of the structure-specific model 462 

with a cohort of 28 human participants. (a) Distribution of medical and non-medical professions 463 

among human participants. (b) Distribution of laparoscopy experience among human participants. 464 

(c) Waterfall chart displaying the average pancreas segmentation IoUs of participants with 465 

different professions as compared to the IoU generated by the structure-specific model. (d) 466 

Waterfall chart displaying the average pancreas segmentation IoUs of participants with varying 467 

laparoscopy experience as compared to the IoU generated by the structure-specific model.  468 
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Abbreviations 470 

AI Artificial Intelligence 471 

IoU Intersection-over-Union 472 

SD Standard deviation 473 
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