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Abstract

The implications of selection bias due to volunteering (volunteer bias) for genetic as-
sociation studies are poorly understood. Because of its large sample size and extensive
phenotyping, the UK Biobank (UKB) is included in almost all large genomewide as-
sociation studies (GWAS) to date, as it is one of the largest cohorts. Yet, it is known
to be highly selected. We develop inverse probability weighted GWAS (WGWAS) to
estimate GWAS summary statistics in the UKB that are corrected for volunteer bias.
WGWAS decreases the effective sample size substantially compared to GWAS by an
average of 61% (from 337,543 to 130,684) depending on the phenotype. The extent to
which volunteer bias affects GWAS associations and downstream results is phenotype-
specific. Through WGWAS we find 11 novel genomewide significant loci for type 1
diabetes and 3 for breast cancer. These loci were not identified previously in any prior
GWAS. Further, genetic variant’s effect sizes and heritability estimates become more
predictive in WGWAS for certain phenotypes (e.g., educational attainment, drinks per
week, breast cancer and type 1 diabetes). WGWAS also alters biological annotation
relations in gene-set analyses. This suggests that not accounting for volunteer-based
selection can result in GWASs that suffer from bias, which in turn may drive spurious
associations. GWAS consortia may therefore wish to provide population weights for
their data sets or rely more on population-representative samples.

Keywords: Genome wide association studies, selection bias, volunteer bias, partici-
pation bias, ascertainment bias, collider bias, polygenic scores, SNP-based heritability,
gene-set analysis, tissue expression, MAGMA, LD-score regression, UK Biobank, in-
verse probability weights, genetic correlations
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1 Introduction

Genomewide association studies (GWAS) have resulted in the discovery of numerous genetic

associations that can be used to facilitate our understanding of the genetic factors that

contribute to variation in human phenotypes [1, 2]. However, as with other associations

derived from non-representative data [3], GWAS results could be affected by selection bias, as

individuals who volunteer to participate in a GWAS cohort are different from the underlying

cohort-specific sampling population [3–10]. Under such circumstances, the internal validity

of GWAS results may be affected, as study participation in itself can serve as a collider1

from genotype to phenotype. Here, we study whether this type of selection bias, which we

will refer to as volunteer bias,2 affects GWAS findings for various phenotypes in the UK

Biobank (UKB). Because the UKB is included in almost all large GWAS to date, as it is

one of the largest cohorts with both rich genetic and rich phenotypic data, our findings are

highly relevant to understanding biases in extant GWASs.

There are indications that genetic studies are affected by non-random selection. For

example, sex shows significant autosomal heritability in data sets that require active partici-

pation (23andMe and the UKB), but not in data sets that require more passive enrollment [6].

As no known biological mechanism could cause autosomal allele frequencies to differ between

the sexes, such observed autosomal heritability of sex can be attributed to sex-differential

participation bias. Also, direct evidence exists that genes are associated with study en-

gagement [12, 17]. For example, the UKB collects additional questionnaires and conducts

follow-up studies that are optional. Selection into these optional components is significantly

1When two variables X and Y independently cause a third variable Z, collider bias leads to biased
estimates of the association between X and Y conditional on Z [4, 11]. In this case, variables associated
with volunteering (e.g., education or health) act as colliders, such that a spurious association between these
variables may arise in the volunteer-based data.

2The issue of non-random selection of the intended study population into the final sample is often termed
selection bias [4, 5, 11, 12], participation bias [6, 7], volunteer bias [11, 13], or ascertainment bias [14], and
it arises due to non-random selection from the population of interest into the actual sample. Perhaps
confusingly, the term “ascertainment bias” is sometimes also used to describe situations where a dataset is
representative of its intended study population, but this intended study population is not the same as the
population of interest [15, 16].
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heritable [5, 7]. However, it is unclear whether (1) sample non-representativeness biases

GWAS associations, and (2) whether and how non-representativeness also biases various

downstream analyses based on such GWAS results as an input (e.g., SNP-based heritabili-

ties or gene-set tissue expression analyses). We attempt to provide answers to such questions

here.

To this end, we estimate GWAS results that are robust to volunteer bias and study the

extent to which non-random selection into genotyped samples leads to bias. Theoretically,

non-random sample selection may bias single nucleotide polymorphism (SNP) associations

in various ways. Table 1 shows the results of simulations illustrating how selection may

bias the regression of a phenotype Y on a hypothetical SNP of interest in various scenarios.

Phenotype-based selection (scenario 1) results in attenuation bias and thus smaller SNP

effect sizes. This results in potential false negatives, and may also affect various downstream

analyses based on GWAS summary statistics, e.g., lead to smaller SNP heritabilities and

alter bio-annotation results based on gene set analyses. Phenotype-genotype-based selection

(scenario 2) is arguably more worrisome. Here, the sign of the bias depends on the sign by

which the phenotype and SNP of interest independently influence selection into the sample.

This type of selection can result in false positives when the true SNP effect size is zero, or

can result in incorrect effect sizes (possibly of opposite sign) for SNPs that do have an effect

on Y. When biases are sufficiently large, they may hamper our understanding of the genetic

architecture of particular phenotypes.

The UKB is a crucial data source for GWAS given its large sample size (N ≈ 500, 000)

and extensive phenotyping. Due to the polygenicity of complex traits, typically small effect

sizes of individual genetic variants and the large numbers of independent variants tested,

large sample sizes are essential for GWASs to have sufficient power [18]. This makes the

UKB one of the most important data sets in statistical genetics. However, the UKB suffers

from selective participation: only 5.5% of UK citizens who received an invitation actually

participated [13]. During data collection, the focus was on ensuring a large sample size, at

2
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Phenotype
Population Scenario 1 Scenario 2a Scenario 2b

(1) (2) (3) (4)

SNP 0.041 0.006 −0.062 0.075
(0.001) (0.002) (0.002) (0.002)

Constant −0.00004 2.088 2.147 2.033
(0.002) (0.003) (0.003) (0.002)

Observations 1,000,000 50,000 50,000 50,000
R2 0.001 0.0001 0.013 0.019

Table 1: Simulated example of spurious SNP associations due to volunteer bias. We simu-
late a population of 1,000,000 individuals, with simulated phenotype Y = 0.04 · SNP + ε, with SNP ∼
binom(1, 000, 000; 2; 0.4) and ε ∼ N(0, 1). In this population, the true effect of the SNP on Y is 0.04.
The effect of the SNP on Y is properly identified in the full population (see column 1; standard errors in
parentheses). However, next we consider a non-randomly selected subsample that consists of 5% of this pop-
ulation, consisting of only those with Y > Y ∗ = PY

95 (scenario 1: Phenotype-based selection). Here, selection
leads to attenuation bias in the SNP effect (column 2). Under an alternative selection scheme (scenario 2:
Phenotype-genotype-based selection), selecting those with Z = 0.5 · Y + 0.04 · SNP > Z∗ = PZ

95, selection
leads to downward bias so severe that the estimated SNP effect is of the wrong sign (column 3). In Column
4, the regression is estimated after selecting those with 0.5 ·Y − 0.04 ·SNP > Z∗. As a result, the estimated
SNP effect is upward biased.

the expense of ensuring representation of the underlying sampling population.3

In a related paper, we describe how this selective participation in the UKB results in

substantial biases in various phenotype-phenotype associations, that can even be of the in-

correct sign. Here, we use the inverse probability weights (IP weights) developed in that

paper to correct estimated associations in the UKB for volunteer bias [3]. For the construc-

tion of such weights it is essential that the reference data source (i) is representative of the

sampling population, (ii) has many variables in common with the target data source that

relate to participation into the target data source (here the UKB), (iii) has sufficient sample

size for reasons of precision, and (iv) has fine geographic detail. To our knowledge, only the

UK Census (5% microdata subsample) meets all four criteria as a reference data source [19].

The UK Census is representative of the UK population (criterion i), has many variables in

common with the UKB that relate to UKB participation (criterion ii) and has a substantial

sample size (criterion iii). Last, the UKB restricted its sampling population to those living

in sufficient proximity to any of 22 assessment centers, which were mainly located in highly

3Other large genotyped samples of similar (or larger) sample sizes, e.g., those of 23andMe, suffer from
comparable volunteer biases due to self-selection of respondents.
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urbanized areas. The fine geographic detail (criterion iv) of the UK Census data allowed us

to precisely identify the sampling population of the UKB, by restricting to only individuals

in the UKB-eligible age range that resided within the areas from which the UKB sampled its

respondents. With these restrictions in place, this UKB-eligible subsample of the UK Census

5% microdata subsample (final sample size: 687,491) was used as an appropriate reference

data source to estimate IP weights for all UKB respondents.4 As a result of meeting these

criteria, these IP weights are precisely estimated and consequently capture an average of

78% of the volunteer bias in various estimated phenotype-phenotype associations.[3] Hence,

by weighting the UKB using IP weights, we can estimate any association estimate as if the

UKB were representative of its underlying sampling population.

Here, we use these IP weights to assess the extent to which GWAS results are biased

due to non-representative sampling. We do this by running an inverse probability weighted

GWAS (WGWAS) for 10 phenotypes. By comparing WGWAS and GWAS results, we pro-

vide evidence that non-random selection biases the estimated associations between genetic

predictors and various phenotypes towards the null. In GWAS, volunteer bias results in

missing genomewide significant SNP associations for type 1 diabetes and breast cancer, and

in downward biased estimates of SNP-based heritabilities. For example, the SNP-based heri-

tability of educational attainment (EA) in the UKB increases from 14.8 to 17.8 percent after

accounting for volunteer bias. Further, contrasting WGWAS and GWAS results we find that

volunteer bias can lead to misleading biological annotations.

These findings suggest that volunteer bias impacts genetic associations of interest as well

as downstream uses of such estimated genetic effects. Because of the need for very large

samples in GWAS, the focus has thus far been on growth in sample sizes, bringing together

academic research samples from different countries, cohorts, and specific subpopulations,

as well as samples collected by companies such as 23andMe. As a result, various types of

selection biases may affect results based on such data sets. Our findings suggests that future

4An earlier paper estimated IP weights using the Health Survey for England [20], which has a smaller
sample size (N = 7,721), fewer variables (6), and no geographic identifiers.

4

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.10.22282137doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282137
http://creativecommons.org/licenses/by-nd/4.0/


GWASs may benefit from more systematic data collection that ensures representativeness

(expensive) or from ensuring that sampling weights can be constructed to correct for poten-

tial biases (cheaper, and ideally incorporated as part of the study design for each included

cohort).

To facilitate researchers in employing our volunteer bias correction, the IP weights will

be made available to researchers using the UKB as a data field.

2 Results

2.1 WGWAS

To assess how selection into the UKB biases various phenotypes of interest, we performed a

weighted GWAS (WGWAS) on 10 phenotypes. WGWAS estimates the association between

the respective phenotype and the SNP through weighted least squares regression using IP

weights designed to correct for volunteer bias (see Methods). These IP weights are available

for ∼ 98% of UKB respondents (see [3]). We study the effects of selection into the UKB sam-

ple that is typically used in GWAS studies by restricting to individuals of British European

Ancestry and removing those with low quality genetic data, or for whom IP weights could not

be estimated (see Methods). For comparison, we estimate a corresponding GWAS for each

phenotype, in which these regressions are left unweighted. Both WGWAS and GWAS con-

trol for genetic sex, the first 20 PCs of the genetic data, year of birth fixed effects, and gene

batch fixed effects. Weighting introduces heteroskedasticity in standard errors. Therefore,

we estimate heteroskedasticity robust standard errors for both WGWAS and GWAS.

Our final sample consists of 376,193 respondents. For reasons of computational feasibility,

we restrict our analyses to 1,025,058 SNPs identified in HapMap3 that were available in

the UKB imputed genotyped data set (call rate > 2%, MAF > 1% and in HWE with

p < 1 · 10−6, as recommended in [21]). We selected 10 phenotypes related to health and

social scientific outcomes. Supplementary table 1 summarizes these phenotypes before and
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after IP weighting. Weighting these phenotypes changes their mean and standard deviation.5

The sample size for all ten phenotypes is larger than 140,081, with an average N of 337,562

and maximal N of 376,900. Supplementary section S1 outlines our coding procedures for

each phenotype.

To assess whether our IP weights capture volunteer-based selection that may affect

phenotype-genotype associations, we first performed a GWAS with the IP weights as a

phenotype. This resulted in 7 independent genomewide significant hits (Figure S1) and a

SNP-based heritability of 3.6% (s.e. 0.26 %, LD-score intercept: 1.31 (0.0094)). The qq-plot

for the associations shows an early lift-off (λ = 1.55; Figure S2). This implies that volunteer

bias is highly polygenic and may impact genetic associations across the whole genome. Sup-

plementary note S2 provides various additional analyses of our GWAS on the IP weights:

the 7 top hits are found in loci for which significant genetic associations with various pheno-

types have been reported, such as EA, cholesterol, alcohol consumption and hypothyroidism

(supplementary note S2 and Figure S15). Further, these GWAS results exhibit substantial

genetic overlap between the genes that influence a respondent’s IP weight and various other

phenotypes, as measured by publicly available GWAS results (supplementary note S2 and

Figure S3): genes associated with a higher IP weight are correlated with lower educational

attainment (rG = −0.711 (0.0250)), a lower age at first birth (rG = −0.698 (0.0293)), a

lower likelihood to participate in UKB’s optional modules (e.g. the mental health question-

naire, rG = −0.507 (0.0339)), and a higher BMI (rG = 0.265 (0.0226)), likelihood of smok-

ing (rG = 0.395 (0.0267)) and likelihood of mental disorders (e.g., Depression rG = 0.288

(0.0333)). This pattern shows that the IP weights capture “healthy volunteer bias”, as they

reflect that those in better health and of higher socioeconomic status (i.e., higher educational

attainment) are more likely to volunteer for UKB participation (Figure S3).

Turning to the association results for phenotypes, we first investigate the relation between

WGWAS and GWAS SNP effects for the (approximately independent) top hits for each

5For example, UKB respondents have received an average 13.8 years of education (SD=4.91), which
reduces to 13.0 years after weighting (SD=5.00).
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Phenotype Coefficient [95% CI] P N
Years of Education 1.109 [1.087;1.131] 5.16× 10−21 504
BMI 1.091 [1.068;1.115] 2.89× 10−13 259
Severe Obesity 1.082 [1.028;1.137] 0.00300 259
Height 1.021 [1.014;1.028] 3.83× 10−9 1967
Drinks Per Week 1.183 [1.054;1.312] 0.00705 30
Breast cancer 0.794 [0.759;0.828] 5.93× 10−28 510

Table 2: Comparison of weighted and unweighted GWAS results (top hits only). Each row shows
the coefficient (and 95% confidence interval) for a bivariate regression with the weighted SNP effect as the
dependent variable, and the unweighted SNP effect as the independent variable. A coefficient larger than one
implies that WGWAS increases GWAS effect sizes on average (i.e., volunteer bias leads to an underestimate
of the association in GWAS). A coefficient smaller than one implies that WGWAS shrinks effect sizes on
average. P-values are for the null hypothesis that this coefficient equals one. The last column shows the
number of SNPs that are included in this regressions: only independent top hits from GWAS studies that
did not include the UKB are included (see Methods for additional detail).

phenotype, which we take from the literature. Here, we define a “top hit” as having p < 10−5

as determined by a well-powered GWAS taken from the literature (N > 200, 000) that did

not include the UKB (see Methods for additional detail). Because well-powered GWAS that

do not include UKB data are not available for every phenotype, we could only perform these

analyses for 6 out of the 10 phenotypes. Using this set of SNPs, Table 2 shows the coefficient

of a regression of the effect sizes estimated through WGWAS on the effect sizes estimated

through GWAS. This coefficient is significantly larger than one for all cases, except for Breast

Cancer. This implies that, for most phenotypes, correcting GWAS for volunteer bias through

WGWAS results inmore predictive effect sizes, i.e., effect sizes lie further from the null, which

is consistent with selection bias, here taking the form of attenuation bias (i.e., selection is

phenotype-based, scenario 1 from Table 1). Years of education, BMI, drinks per week, and

severe obesity are most affected by this type of volunteer bias: correcting for volunteer bias

results in an increase of the SNP effect sizes by 10.9% for years of education, 9.1% for BMI,

8.2% for severe obesity, and 18.3% for drinks per week. By contrast, correcting GWAS

results for height for volunteer bias also results in significantly increased predictability, but

the overall effect is relatively minor: a 2.1% increase in the effect sizes. This is intuitive, given

that height only has a small genetic correlation with our IP weights (Figure S3), and it seems

reasonable that height has little influence on whether individuals volunteer for scientific data

participation.

7
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Breast Cancer is the only phenotype for which we find a significant shrinkage of SNP effect

sizes in Table 2, as the coefficient on the regression is 0.794. Hence, not taking volunteer bias

into account inflates genetic effect sizes for previously identified top hits for breast cancer,

which implies that some of these previously identified SNPs may have overestimated effect

sizes. This is consistent with phenotype-genotype-based selection (scenario 2 in Table 1)

for breast cancer. Out of the six phenotypes, breast cancer showed the largest change in

prevalence after weighting: unweighted prevalence in the UKB was 2.9%, while weighted

prevalence was 2.4%, a 16.2% change (supplementary table 1). Breast cancer could be

particularly affected by volunteer bias due to the fact that females are over-represented in

the UKB. Breast cancer is much more likely to occur in females than males, and sex-related

participation bias plays a role in GWAS [6].

Table 3 provides additional comparisons of WGWAS and GWAS results for all ten phe-

notypes using WGWAS and GWAS effect sizes for all HapMap3 SNPs in the UKB. The first

column shows the genetic correlation between the unweighted and weighted GWAS effect

sizes, estimated through LD-score regression (see Methods). The correlation is positive and

close to one for most phenotypes, but differs significantly from one for all, with the excep-

tion of BMI, height and age at first birth. The lowest congruence between weighted and

unweighted SNP associations is found for Type 1 Diabetes (rG = 0.66) and Breast Cancer

(rG = 0.81). We use the standard errors of WGWAS (GWAS) to estimate the effective

sample size in columns 2 and 3 of the table (see Methods). Averaged over all phenotypes,

the effective sample size shrinks from 337,534 in GWAS to 130,684 in WGWAS, a shrink-

age of 61.2%. This implies that representative samples increase the power of GWAS, as

the effective sample size shrinks when taking volunteer bias into account. Standard errors

in WGWAS vis à vis GWAS are inflated by 32% to 87% on average (Table 3, column 4).

Hence, when correcting genetic associations for selection bias using IP weighting, researchers

face a bias-variance trade-off, as OLS is efficient in the absence of selection bias.

The last two columns document how WGWAS decreases the number of genomewide

8
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significant SNPs relative to GWAS. Here, we only consider independent SNPs, identified

through clumpling of WGWAS (GWAS) summary statistics (see Methods). For example,

the number of genomewide significant SNPs in our BMI GWAS is 174, whereas it is 22 in

the corresponding WGWAS. Such newly insignificant SNPs may indicate false positives in

the current GWAS literature, but may also be a result of the increased standard errors that

are a feature of WGWAS.

We use a Hausman test to calculate p-values for the null hypothesis that the effect sizes in

weighted and unweighted GWAS are the same (see Methods). Here, we find that estimated

SNP effects for breast cancer and type 1 diabetes are the most altered by weighting. For

breast cancer and type 1 diabetes, we respectively find 365 and 40 independent loci with

significantly altered SNP effects after weighting. 11 of these SNPs, tagging 3 independent

loci, are not identified as genomewide significant for type 1 diabetes by GWAS, but are

genomewide significant in WGWAS (Supplementary table 5). For example, rs341988 is

insignificant for type 1 diabetes in GWAS (β = −0.0009 s.e. = 0.0007 P = 0.17), but is

identified as genomewide significant in WGWAS (β = −0.004 s.e. = 0.0007 P = 1.26 ·10−8).

The difference in these point estimates is significant (PH = 4.05 · 10−24). Hence, for type 1

diabetes, selection bias takes the form of attenuation bias, and this results in missing several

genomewide significant loci. A comparison of the manhattan plots for GWAS and WGWAS

for type 1 diabetes clearly indicates that weighting alters which loci become significant and

which ones become insignificant for this phenotype (Figure S4). Similarly, for breast cancer

we find 3 SNPs, tagging one independent locus, that is insignificant in GWAS, but significant

in WGWAS (Supplementary table 6). We followed up on these loci in the GWAS catalog

(section S3). All four loci have not previously been identified as being associated with these

phenotypes. Furthermore, two loci are entirely new to the literature: neither of these SNPs,

nor any SNPs in linkage disequilibrium with these SNPs (r2 > 0.1, distance 500kb) have

been reported in the GWAS catalog at P < 1× 10−5 [22].

For the phenotypes drinks per week and physical activity we both find 1 SNP with

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.10.22282137doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282137
http://creativecommons.org/licenses/by-nd/4.0/


Phenotype r(β̂GWAS , β̂WGWAS) NGWAS
eff NWGWAS

eff Increase S.E.s
sig. hits

GWAS

sig. hits

WGWAS

Age at First Birth 0.976 (0.0128) 139093 51949 71.3% 30 3
BMI 0.992 (0.0052) 372969 135238 76.7% 1205 127
Breast cancer 0.813∗(0.0341) 376072 182605 32.2% 51 8
Drinks per Week 0.936∗(0.0188) 265696 96008 83% 23 4
Self-rated health 0.973∗(0.0088) 372714 136982 81.5% 101 6
Height 0.993 (0.0032) 374175 151328 60.6% 5114 1453
Physical activity 0.866∗(0.031) 334570 123017 75% 3 0
Severe Obesity 0.949∗(0.0175) 373834 136396 75.3% 23 1
Type 1 Diabetes 0.66∗(0.0566) 373786 132605 87% 69 37
Years of Education 0.988 (0.0062) 392433 160707 63.8% 331 49

Table 3: Comparison of weighted and unweighted GWAS results. Comparisons use all UKB SNPs in
HapMap3 (1,025,058 in total). The first column shows the genetic correlation between GWAS and WGWAS
results, estimated through LD-score regression (see Methods). The second and third columns show the
effective sample sizes (see Methods) of both methods. WGWAS increases standard errors by the percentage
shown in column 4 (E[ seWGWAS−seGWAS

seGWAS
]). Column 5 shows the number of genomewide significant SNPs for

each trait in GWAS, column 6 shows this in WGWAS.
* values significantly different than one at Bonferroni-corrected level of 5% significance (p < 0.005)

a significantly altered effect size between WGWAS and GWAS, but these SNPs were not

genomewide significant using any of the two methods. For the 6 other phenotypes, we find

no evidence of any particular SNP having a genomewide significant difference in the effect

size after volunteer bias correction. However, our qq-plots indicate that we are underpowered

for these analyses, as they have a λ smaller than one (Figure S5). By contrast, the qq-plot

of our GWAS with the IP weights as a phenotype shows an early liftoff (λ = 1.55), which

suggests there are many SNPs throughout the genome whose observed frequencies may be

affected by volunteer bias. In the remainder, we investigate how weighting of GWAS results

affects various downstream statistics that rely on GWAS results.

2.2 SNP heritability estimates become larger after correcting for

volunteer bias

We estimated SNP-based heritabilities, the proportion of genetic variation that can be ex-

plained by common SNPs, for all tested phenotypes using LD-score regression (see Methods)

based on GWAS/WGWAS. In estimation, we use the effective sample sizes (summarized in

Table 3) to account for the increased estimation error of WGWAS vis à vis GWAS [23]. The

results are summarized in Table 4.
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Phenotype GWAS h2 (SE) WGWAS h2 (SE) P GWAS Intercept (SE) WGWAS Intercept (SE)
Age at First Birth 0.1657 (0.0073) 0.2135 (0.0143) 1.28× 10−5 1.0347 (0.0096) 1.0147 (0.008)
BMI 0.2281 (0.0065) 0.2381 (0.0091) 0.14 1.127 (0.0152) 1.033 (0.011)
Breast cancer 0.0149 (0.0018) 0.0267 (0.0029) 1.11× 10−7 1.0183 (0.0079) 0.9825 (0.007)
Drinks per Week 0.0599 (0.003) 0.0739 (0.0054) 7.44× 10−4 1.0051 (0.0077) 0.9852 (0.0064)
Height 0.4235 (0.0189) 0.4464 (0.0206) 0.059 1.4785 (0.0345) 1.1694 (0.0195)
Physical activity 0.0281 (0.0019) 0.031 (0.0044) 0.408 0.9962 (0.0069) 0.9933 (0.0069)
Self-rated health 0.0972 (0.0029) 0.125 (0.0052) 9.35× 10−13 1.0522 (0.0103) 1.0091 (0.0079)
Severe Obesity 0.0416 (0.0022) 0.0584 (0.0045) 1.83× 10−6 1.0166 (0.0082) 0.995 (0.0076)
Type 1 Diabetes 0.0054 (0.0014) 0.0432 (0.0035) 1.63× 10−41 1.0194 (0.0074) 0.9403 (0.0064)
Years of Education 0.1482 (0.0052) 0.1775 (0.0073) 2.07× 10−9 1.1635 (0.0155) 1.0531 (0.0113)

Table 4: SNP-based heritabilities for GWAS and WGWAS. SNP-based heritabilities were estimated
using LD-score regression (see Methods). Heritabilities are shown here on the observed scale. The third col-
umn shows the p-value for the null hypothesis that the GWAS and WGWAS heritabilities are the same. The
fourth and fifth columns show the intercept of the LD-score regression in GWAS and WGWAS, respectively.
An intercept > 1 can be attributed to bias arising from population stratification [24].

For most phenotypes, correcting for volunteer bias by WGWAS results in substantial

increases in the SNP-based heritability estimates. As for the SNP associations we explored

in section 2.1, weighting matters the most for the heritability estimates of type 1 diabetes

and breast cancer. For type 1 diabetes, the SNP-based heritability increases from 0.54%

in GWAS to 4.32% in WGWAS, a large and highly statistically significant increase (P =

1.63 · 10−41). For breast cancer, the heritability almost doubles from 1.49% to 2.67% (P =

1.11 · 10−7). Most other phenotypes also see their heritabilities increased. For example, EA

has a heritability of 14.8% in the UKB, but this increases to 17.8% when volunteer bias is

taken into account (P = 2.07 · 10−9). Drinks per week, severe obesity, age at first birth

and self-rated health also show substantial increases in estimated SNP heritabilities. This

is consistent with phenotype-based selection (scenario 1 in our simulations; Table 1). By

contrast, Height, BMI, and Physical Activity do not show significant changes in heritability.

In LD-score regression, an intercept greater than 1 may be indicative of bias due to

population stratification or cryptic relatedness [24]. For our unweighted GWASs, we find

intercepts larger than 1 for years of education, BMI, height, self-rated health, and age at

first birth as is common for these phenotypes [25–27]. As a consequence of weighting, the

intercept moves closer to one, and becomes statistically indistinguishable from one for self-

rated health and age at first birth. Hence, WGWAS may have the additional advantage of

reducing bias arising from population stratification.
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2.3 Volunteer bias affects gene tissue expression analysis

Gene tissue expression analysis is a popular tool for understanding the biological pathways

through which genes may operate on a phenotype. We assessed the relevance of volunteer

bias for such bio-annotations by conducting gene-set analyses using our WGWAS and GWAS

summary statistics in MAGMA (implemented through the FUMA pipeline)[28, 29]. Here,

we highlight the results for the breast cancer WGWAS and GWAS (Figure 1). For this

phenotype, unweighted GWAS results show no evidence of genes expressed in any particular

area of the body being significantly more associated with the likelihood of breast cancer.

However, when estimating the same associations through WGWAS, we find that genes ex-

pressed in the fallopian tube, uterus, ovary, and breast mammary tissue are more likely to

exhibit associations with breast cancer. Thus, correcting GWAS for volunteer bias may im-

prove understanding of the pathways through which the genome influences a phenotype of

interest.

In supplementary material (Figure S7 to Figure S14), we show MAGMA gene tissue

expression analyses for the 9 other phenotypes. We find several phenotypes for which sig-

nificant areas of expression are found in GWAS, but not in WGWAS, namely age at first

birth, BMI, self-reported health, and physical activity, suggesting that such findings might

possibly be spurious and driven by volunteer bias.
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(a) GWAS

(b) WGWAS

Figure 1: Gene-set analysis for Breast Cancer, estimated using MAGMA, for GWAS, and WGWAS that
corrects for volunteer bias in the UKB
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3 Discussion

Our analyses highlight the drawbacks of non-random, volunteer-based sampling for GWAS

and subsequent downstream genetic analyses. Contrasting WGWAS with GWAS results

for ten phenotypes, we demonstrated that in GWAS volunteer bias results in (i) missing

genomewide significant loci for type 1 diabetes and breast cancer, (ii) attenuated effect sizes

and missing heritability for various health-related and behavioral phenotypes, and (iii) biased

gene-tissue expression findings. Our results suggest that the need to correct GWAS results

for volunteer bias through IP-weighting (i.e. WGWAS) is phenotype-specific. Phenotypes

where weighting altered results substantially are disease-related (e.g. Type 1 diabetes, breast

cancer), related to socioeconmic status (e.g. educational attainment) or related to health

behavior (e.g. drinks per week). By contrast, height is an example of a phenotype where

weighting made a relatively minor difference. Although weighting still altered results for

height, practitioners may wish to opt for GWAS, rather than WGWAS for such a phenotype,

because of the bias-variance tradeoff, which increases the standard errors of WGWAS vis à

vis GWAS.

The focus here was on the UKB for which we estimated IP weights [3]. Many other GWAS

cohorts are volunteer-based and will suffer from similar, but distinct, forms of volunteer

bias. Our results suggest that such volunteer biases need to be taken seriously, and should

be corrected for. GWAS consortia may wish to ensure that weights are available for all

volunteer-based cohorts included in their GWAS. Such IP weights can be estimated by

comparing the genotyped data set to a source of representative data (e.g., Census data or

administrative data), provided that both data sets have a sufficient number of (close to)

identically measured variables in common. Further, in the design of a new data set, it is

essential that as many variables as possible are collected that are shared with a source of

representative data to ensure that IP weights can be precisely estimated. Our results suggest

that IP weighting is sufficient to capture a substantial degree of volunteer bias in genetic

association results. WGWAS increases standard errors, but is also likely to increase effect
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sizes, such that power need not be reduced. Further, WGWAS reduces the effective sample

size of a cohort, which should be taken into account when meta-analyzing multiple cohorts.

Our results provide insights into the effects of volunteer bias on GWAS, but drawbacks

remain. The IP weights we use to correct for volunteer bias may suffer from omitted variable

bias, since the model that was used to create them only includes variables that the UKB

and UK Census safeguarded microdata have in common. These variables mostly capture

socioeconomic status, demographics and self-reported health. However, it is possible that

other variables that relate to UKB volunteering are missing, e.g., personality characteristics.

Nonetheless, these weights have been shown to capture an average of 78% of volunteer bias

in phenotype-phenotype associations [3], and we therefore expect that the genomic results

presented here can indeed be interpreted as being representative of the population from

which the UKB was sampled.
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4 Methods

4.1 Data

4.1.1 UK Biobank (UKB)

The UKB is a cohort of 503,317 individuals collected between 2006 and 2010 at 22 assessment

centres spread out across Great Britain. Potential participants were identified through the

registry of the National Health Service, which covers virtually the whole UK population.

Individuals living in proximity to an assessment centre and aged 40 to 69 at the start of the

assessment period (which varies per assessment centre) received an invitation to participate

by post. This UKB-eligible population consists of 9,238,453 individuals who received an

invite, such that the overall acceptance rate was 5.45%.

Figure S18 summarizes our sample selection criteria for the UKB. We drop individuals

that were not included in the genetic subsample, and restrict the UKB to individuals who

identified as “white British” and were of genetic European ancestry, as most published work

with the UKB genetic data makes this sample restriction [e.g. 25, 26, 30]. We also drop

respondents that did not meet the standard requirements regarding genetic data quality

control (see next subsection). Last, we dropped 6,292 respondents (1.6%) for whom IP

weights could not be estimated, typically because of missing variables (see ref [3] for detail)

4.1.2 Genetic data in the UKB

Genetic data collection on UKB participants has been extensively described elsewhere [31].

We restrict our sample to those of white British ancestry, as defined by a PC analysis

conducted by Bycroft et al.[31] As is the standard in GWAS analyses, we only keep UKB

participants that were sufficiently densely genotyped: we drop individuals that have missing

values at more than 2% of all SNPs measured in UKB (6,118 participants in total). We

also drop those with outlying heterozygosity values (mean +/− 3 std. deviations of the

heterozygosity distribution observed in the data; 2,279 participants in total). Furthermore,
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we drop individuals for whom their reported sex does not match with their sex as inferred

from their measured genome (296 in total), as such mismatch may point towards sample

contamination or sample mix up. We focus on a genotyped sample that is approximately

independent by keeping only one individual from each group of first-degree relatives. The

individual that is kept is the one with the least missingness in their genetic data. As a result,

we drop 18,736 respondents from the sample.

We conduct our analyses on autosomal SNPs which are in HWE (p > 1 × 10−6), with

MAF > 0.01, and which are missing in less than 2% of all included respondents. For reasons

of computational feasibility, we only select 1,025,058 of these SNPs that were also available

in the HapMap3 reference panel.

4.2 GWAS on the IP Weights

We estimate a GWAS using the IP weights as a phenotype by fitting a linear model in

PLINK, restricting to our quality-controlled set of HapMap3 SNPs. Independent hits were

assessed through PLINK’s clumping algorithm (R2 ≥ 0.1, LD-window of 250kb). SNP-based

heritability was estimated using LD-score regression [24].

4.3 Regular GWAS and WGWAS

For each phenotype, we estimate GWAS associations for all HapMap 3 SNPs that were

available in the UKB data. We fit the following model:

ỹi = β0 + β1SNPij + εi, (1)

where ỹi is the estimated residual of the phenotype from an auxiliary regression which fits

yi on a set of variables that may confound the relationship between SNPj and y. These

variables are genetic sex, the first 20 principal components, gene batch fixed effects, and a

dummy for individual i’s birth year cohort (5-year bins) capturing the effects of ageing on
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yi. SNPij is individual i
′s allele count at the ith SNP.

We estimate two GWASs for each phenotype: (1) a regular GWAS, which estimates SNP

associations using the above model by OLS, and (2) an inverse probability weighted GWAS

(WGWAS), which estimates the above model using the IP weights as estimated in [3] using

a subsample of 2011 UK Census microdata as data representative of the UKB’s sampling

population. For WGWAS, ỹ was residualized using the same weights in the auxiliary regres-

sion. We estimate heteroskedasticity-robust (White) standard errors for both GWAS and

WGWAS. Both GWAS and WGWAS were estimated in R.

Approximately independent SNPs were assessed through PLINK’s clumping algorithm

(R2 ≥ 0.1, LD-window of 250kb).

4.4 Comparing GWAS and WGWAS results for known top hits

Known top hits were selected from publicly available GWAS results that did not include

the UKB as part of their discovery sample (See supplementary table 2). To obtain top hits

that were approximately independent, we clumped these results (R2 ≥ 0.1, LD-window of

250kb). Top hits were selected by only selecting SNPs with cutoff p < 10−5.

4.5 Testing for significant differences in WGWAS and GWAS as-

sociations

P-values (denoted PH) that test the null hypothesis βGWAS
1 = βWGWAS

1 are estimated using

the Hausman test statistic: H =
(β̂GWAS

1 −β̂WGWAS
1 )2

var(β̂GWAS
1 −β̂WGWAS

1 )
∼ χ2(1). In this expression we use

var(β̂GWAS
1 − β̂WGWAS

1 ) = var(β̂GWAS
1 ) − var(β̂WGWAS

1 ), given that βGWAS
1 is estimated

efficiently under the null [32, 33].
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4.6 Determining the effective sample sizes of GWAS and WGWAS

The effective sample size aids to understanding how much non-representativeness dilutes

the power of GWAS results, and are a crucial input into the LD-score regressions (see next

section). We calculate the effective sample size for each SNP, given by

Neff =
σ2
y,k

SE2
k · [2 ·MAFk · (1−MAFk)]

,

with k referring to either the unweighted or IP weighted sample statistic [23]. SE2
k is given

by the standard error of the SNP as determined by unweighted or IP weighted GWAS,

respectively. For each phenotype, the effective sample size as averaged over all SNPs is

reported.

4.7 SNP-based heritabilities and genetic correlations

We use LD-score regression to estimate the genetic correlation and SNP-based heritabilities

for GWAS and WGWAS [24, 34]. GWAS and WGWAS summary statistics were prepared

using the munge sumstats.py function. Our estimates of Neff were used as the parameter

for the sample size when preparing the summary statistics for both GWAS and WGWAS.

To evaluate whether our SNP-based heritabilities differed for GWAS and WGWAS, we

construct the following Z-statistic:

Z =
h2
GWAS − h2

WGWAS√
s.e.(h2

GWAS) + s.e.(h2
WGWAS)− 2cov(h2

GWAS, h
2
WGWAS)

,

where we compute the covariance through

cov(h2
GWAS, h

2
WGWAS) = cor(h2

GWAS, h
2
WGWAS)× s.e.(h2

GWAS)× s.e.(h2
WGWAS),

estimating cor(h2
GWAS, h

2
WGWAS) as the value of the intercept from the cross-trait LD-score

regression on the weighted and unweighted GWAS results [23, 34].
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