
1 
 

A Threshold Criteria for Seasonal Amplification and Outbreaks  of Mosquito-1 

Borne Disease (MBD) Cases in Kerala using Climate Parameters 2 

Rajib Chattopadhyay1, Divya Surendran1, Lekshmi, S1, Pulak Guhathakurta1, K.S. 3 

Hosaliker1, D.S. Pai1,2, Manu M. S4,  and M. Mohapatra3 4 

 5 

 6 

Corresponding Author:  7 

Rajib Chattopadhyay 8 

India Meteorological Department, Pune 9 

Email id: rajib.chattopadhyay@imd.gov.in 10 

1: India Meteorological Department, Pune 11 

2: Institute for Climate Change Studies (ICCS), Kottayam 12 

3: India Meteorological Department, New Delhi 13 

4. Directorate of Health Services, Govt of Kerala, Thiruvananthapuram   14 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.10.22282112doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.11.10.22282112
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

 15 

Abstract 16 

Modelling the dynamics of mosquito borne disease (MBD) cases is a challenging task. The 17 

current study first proposes a generic dynamical model to qualitatively understand the 18 

seasonality as well as outbreaks of malaria and dengue over the state of Kerala based on a 19 

climate forced oscillator model, which is then supplemented by a data driven model for 20 

quantitative evaluation. The proposed forced oscillator model is parametric and general in 21 

nature which can be qualitatively used to understand the seasonality and outbreaks. 22 

However, since parametric model-based estimation require estimation of multiple 23 

parameters and several closure assumptions, we used the K-means clustering which is a data 24 

driven clustering approach to understand the relationship between Malaria and Dengue cases 25 

and climate forcing. The results showed a clear relationship of the MBD cases with the first 26 

order and second order moments (i.e. mean and standard deviation) of the climate forcing 27 

parameters. Based on this, we came up with an objective threshold criterion which relates 28 

the climate parameters to the number of cases of malaria and dengue cases over Kerala.  29 
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Introduction 30 

Temporal evolution of Mosquito borne disease (MBD) like malaria and dengue are known to 31 

be related to local tropical humid climatic conditions. India report a large number of MBD 32 

every year. These MBD cases show rapid seasonal peaks and sometimes cause severe 33 

localized outbreaks leading to several fatalities. In the recent years, after the adoption of 34 

National Framework for Malaria Elimination (NFME) and the National Strategic Plan for 35 

Malaria Elimination (2017–22), there is a significant decrease in malaria cases in India(Narain 36 

and Nath 2018; Mohan et al. 2021; NVDCP,,MoHFW 2022). However, local outbreaks of MBD 37 

like malaria and dengue is commonly reported over different states of India and provide 38 

several unique challenges for detection and elimination (Das et al. 2012; Gupta et al. 2012; 39 

Singh et al. 2020; Ranjha and Sharma 2021; Paradkar et al. 2021). As per WHO world malaria 40 

report 2021, India contributed 1.7% of malaria cases and 1.2% deaths globally during 2021 41 

(WHO 2021) . Similarly, WHO reports that dengue spread over 128 countries across the globe 42 

and affected ~5 million people during the year 2020. 43 

India shows different state/regional gradation in terms of number of malaria and dengue 44 

cases(Das et al. 2012; Gupta et al. 2012; Singh Parihar et al. 2019). Prevention of such localized 45 

VBD outbreaks like malaria and dengue and timely intervention to reduce the disease burden 46 

is important from community health practice perspective.  Epidemiological modelling and 47 

simulation studies often relate the vector growth and proliferation dynamics to the ambient 48 

weather and climatic factors like temperature, humidity, rainfall etc. (Loevinsohn 1994; Craig 49 

et al. 1999; Paaijmans et al. 2009; Laneri et al. 2010; Hii et al. 2012; Lunde et al. 2013; Singh 50 

Parihar et al. 2019; Patil and Pandya 2021; Colón-González et al. 2021). The studies showed 51 

that temporal evolution of these climate factors provides necessary “forcing” for temporal 52 

evolution dynamics. Several studies also assume the environmental forcing as a driving factor 53 
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for a  near future estimation/outlooks of such outbreaks using linear, non-linear, dynamical 54 

as well as statistical forecasting models (Laneri et al. 2010; Hii et al. 2012; Zinszer et al. 2015; 55 

Anwar et al. 2016; Sewe et al. 2017; Hussien 2019; Patil and Pandya 2021; Nkiruka et al. 2021). 56 

Although, epidemiological model of malaria and dengue outbreaks relates several external 57 

factors to the growth of the parasite/mosquito, temperature and other climate derived 58 

factors are known to contribute to the growth of both the malarial parasite and mosquito. 59 

Hence, such studies conclude that climatic factors are extremely important for MBD 60 

outbreaks. In the context of climate change scenario and rise in global mean temperature, 61 

studies reports frequent proliferation of the VBD outbreaks(Reiter P 2001; Caminade et al. 62 

2014; Campbell et al. 2015; Ebi and Nealon 2016; Colón-González et al. 2021). 63 

How do the climatic factors are related to seasonal evolution of MBD and its occasional 64 

outbreaks i.e. increase in large number of cases over a particular location for a short period 65 

of time? Do climate extremes force such outbreaks? The climatic fields such as temperature, 66 

humidity, rainfall can be assumed to be the forcing, causing an increase or decrease in the 67 

mosquito population or creating favourable condition for the development of the malarial 68 

parasites. An Example is shown in Fig.1a and 1b, which shows the seasonal cycle (i.e. average 69 

month wise distribution) of the number of reported malaria and dengue cases for all districts 70 

of Kerala and accumulated rainfall over Kerala (Fig.1c) for the recent 12 years 2011-2021.  The 71 

clear summer season peak of both the time series is evident for all years. Such seasonal peaks 72 

of malaria are reported in other states also and the monthly variations of malaria cases 73 

resembles the rainfall variations. The outbreaks above the seasonal cycles, when there are 74 

excess values in different months are also known to be related to climate factors in different 75 

regions (Laneri et al. 2010). The power spectral plot of the malaria, dengue along with rainfall 76 

and few other climatic variables for Kerala are shown in Fig.2. The plot shows an annual cycle 77 

and other statistically significant peaks (>90% confidence) for different climatic variables 78 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.10.22282112doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282112
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

(spectral peaks above the green line is significant). Fig.2 shows the similar frequency response 79 

of malaria and climate variables (Rainfall, maximum temperature (Tmax), minimum 80 

temperature (Tmin), Relative Humidity (RH) at 3UTC and at 12UTC) for the time period 81 

considered in this study. Fig.1 and 2, thus represents the similar cyclical variability for both 82 

the variables. Physically MBD seasonal evolution cycle can be linked to temperature or rainfall 83 

cycle as the parasite growth and development are favoured by climatological condition. In 84 

addition to such cyclical behaviour, how does the outbreak of disease (i.e. increase in the 85 

number of Malaria/Dengue cases for few months relative to the expected or mean value) 86 

relate to the climatic factors? 87 

Based on a generic model, the current study reports a case study based on the malaria and 88 

dengue data from Kerala and estimate the climatological conditions or thresholds related to 89 

the malaria and dengue outbreaks during the period 2011-2021. This generic model would 90 

first show the seasonal cycle evolution and then it will provide conditions when the outbreaks 91 

can be forced by climatological components. The generic model is shown in Fig.3. It is a 92 

coupled model relating the malaria/dengue cases with the vector number density. We 93 

assume that the vector density is coupled to climate factors rather than the reported number 94 

of malaria/dengue case. The dynamics of malaria or dengue cases (M(t)) can be given as: 95 

𝑑𝑀

𝑑𝑡
= −𝑎𝑀 + 𝑏𝑃 ----------------(1) 96 

and, the number of vector (P(t)) forced by climate component (W) as: 97 

𝑑𝑃

𝑑𝑡
= −𝑐𝑃 + 𝑟𝑀 + 𝑠𝑊----------(2) 98 

In the above equations, the sign of the constants (a,b,c…etc.) are given to represent sign of 99 

feedback. Negative feedbacks in an equation is represented by negative sign and the positive 100 

feedbacks are represented by positive sign for that equation. Thus, the rhs terms [−𝑎𝑀, +𝑏𝑃] 101 
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in equation (1) represents the negative and positive feedbacks to 
𝑑𝑀

𝑑𝑡
 leading to decrease or 102 

increase of the lhs term. Similarly, for the temporal change of parasite number( 
𝑑𝑃

)𝑑𝑡
 term, the 103 

positive and negative feedback terms are [−𝑐𝑃, 𝑟𝑀, 𝑠𝑊] constructed. [𝑠𝑊] represents the 104 

weather feedback term. Note that the weather feedback term impacts the parasite (i.e. 105 

equation 2), rather than the number of cases (equation 1). There could be other terms, but 106 

the simple coupled relationship is assumed for highlighting the impact of climatic factors. The 107 

medical interventions, genetic resistance against the MBD in the sample population are 108 

assumed in [-aM] or [-cP] terms.  A combination of the terms leads to the following equation: 109 

or, 
𝑑2𝑀

𝑑𝑡2 = −𝑎
𝑑𝑀

𝑑𝑡
+ 𝑏[−𝑐𝑃 + 𝑟𝑀 + 𝑠𝑊] 110 

or, 
𝑑2𝑀

𝑑𝑡2 = −𝑎
𝑑𝑀

𝑑𝑡
− 𝑒𝑃 − 𝑞𝑀 + 𝑓𝑊  where,   𝑒 = 𝑏𝑐, 𝑞 = −𝑏𝑟, 𝑓 = 𝑏𝑠   111 

𝑑2𝑀

𝑑𝑡2 + 𝑎
𝑑𝑀

𝑑𝑡
+ 𝑞𝑀 = 𝑓𝑊 − 𝑒𝑃-------------------------(3) 112 

The above equation represents a damped oscillator with a forcing term  𝐹 = 𝑓𝑊 − 𝑒𝑃 in the 113 

right-hand side.  It is to be noted that the climate forcing is a function of multiple climate 114 

parameters, i.e. 𝑊 ≡ 𝑊(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑒𝑡𝑐. ). Clearly the climate 115 

component and the MBD cases are a periodic function as shown in Fig.1 and there can be two 116 

situation (I), case when e=0, and more general when (II) 𝑒 ≠ 0 117 

Case(I): If it is assumed that the parasitic forcing is negligible (due to control of mosquitos or 118 

other medical interventions), i.e.  second term is close to zero, i.e. or e=0 (𝑒 ≠ 0 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙), 119 

the equation 3 simplifies to: 120 

𝑑2𝑀

𝑑𝑡2
+ 𝑎

𝑑𝑀

𝑑𝑡
+ 𝑞𝑀 = 𝐹 sin 𝜔𝑡--------------------------(4) 121 

Assuming a periodic solution, 𝑅𝑒(𝐴𝑒𝑖(𝜔𝑡+𝜑)),the amplitude and phase is given by  122 
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𝐴 = 𝐴(𝜔) =
𝐹

√(𝑞−𝜔2)2+(𝑎𝜔)2
------------------------------(5a) 123 

𝛿 = tan−1 𝑎𝜔

𝑞−𝜔2----------------------------------------------(5b) 124 

The solution of M(t) is given by 125 

 𝑀(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝛿)-----------------------------------(5c) 126 

The above solutions suggest two things: (a) the climate forcing can drive the seasonal cycle; 127 

a periodic forced solution of M(t) following the climate forcing sinusoidal, relate MBD annual 128 

cyclical evolution to climate annual cycle as shown in Fig.1, and (b) the amplitude of the 129 

seasonal cycle, A depends on Climate forcing amplitude F and the denominator of (5a). F is in 130 

general a function of multiple climate variables (temperature, rainfall humidity etc), and the 131 

denominator of (5a) is minimum when 𝜔 = 𝑞 (𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎). These two conditions as 132 

mentioned above defines the amplitude of M(t). Malaria/dengue outbreak or extreme values 133 

of M(t), thus, is related to climate factors F and a resonant interaction. ' 134 

Case (II) when  𝑒 ≠ 0: This is the more general case. Since the first and the second term in 135 

the rhs side compete with each other (opposing sign), the net forcing is related to the 136 

temporal evolution of malarial parasite at any time. If the net forcing is zero, i.e. 𝑓𝑊 − 𝑒𝑃 =137 

0, the equation shows malaria cases decreasing with time (damped oscillator with no external 138 

forcing). This can be the case, for example when there is strong biological or medical 139 

intervention and climate action balance the parasite growth. The decreasing trend in malaria 140 

cases intuitively suggest such situation. However, this does not mean climate forcing has 141 

become less important. It simply means that the oscillator is not forced into action due to 142 

human intervention. In the context of climate change, if the climate forcing changes in the 143 

(e,f) parameter space, the cases would again increase. It may be also noticed that the second 144 

term on the right-hand side of Eq.3, it adds stochastic noise depending on the amplitude of 145 
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the constants. Also, the amplitude of climate forcing can also be stochastic. So, it can be said 146 

that the outbreaks of the MBD above the cyclical variation can be related to this stochastic 147 

forcing. Thus equation (5) provides a basis for seasonal cycle and outbreak conditions both 148 

for malaria and any other MBD. It also emphasizes the importance of climate change. In a 149 

changed regime, climate forcing can in fact force the oscillator to increase the malaria cases. 150 

The current study would not provide a mathematical solution for this outbreak conditions (i.e. 151 

estimate e and f), rather it would explore under what climatological conditions (represented 152 

by a set of climate variables described earlier) the severe outbreaks of MBD (represented by 153 

number of reported cases) can occur in a non-parametric sense i.e.  what climate forcing leads 154 

to larger malaria/dengue cases. Parametric models describing vector dynamics deals with 155 

large number of parameters(Taghikhani and Gumel 2018; Singh Parihar et al. 2019; Lee et al. 156 

2021) and can be often sensitive to these parameters. The non-parametric relationship is 157 

simplistic and data driven and would be useful as it is found that there is linear as well as noise 158 

and non-linearity mixed relationship between malaria and several climate variables which 159 

imparts non-stationarity in the data and hence can be less reliable. In fact, the forcing is 160 

related to multiple climate variables as described earlier provides multiple source of 161 

uncertainties in parasite dynamical model (i.e. equation 2). This is shown in Fig.4. The 162 

variables are chosen based on previous studies (Guhathakurta et al. 2021; Patil and Pandya 163 

2021; Dutta et al. 2021). It can be seen that many surface variables are correlated with the 164 

malaria and dengue cases. Hence, there is a relationship between these variables and MBD 165 

evolution and outbreaks. Thus, malaria/dengue outbreak could be traced by multivariate 166 

clustering analysis.  Clustering analysis would identify the severity thresholds associated with 167 

the outbreaks. The severity threshold, thus identified, would help to derive large scale climate 168 

conditions for the disease outbreak and hence its prediction. 169 
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Data and Methods 170 

(i) Data 171 

Disease Data: Monthly data of malaria and dengue cases over Kerala was collected from State 172 

News bulletin on Integrated Disease Surveillance Project (ISDP) for the years 2011 to 2021 173 

(132 months). https://dhs.kerala.gov.in/data-on-communicable-diseases/ 174 

Meteorological Data:  175 

Climate variables (Rainfall, Tmax, Tmin and Relative Humidity at 3UTC & 12UTC) used for 176 

clustering analysis has been calculated from the station wise data of Kerala obtained from 177 

National Data Centre (NDC), Pune (https://dsp.imdpune.gov.in/). 178 

For the analysis of the spatial evolution of the meteorological factors on the Malaria 179 

outbreak pattern, the composite of variables such as daily maximum temperature (Tmax), 180 

minimum temperature (Tmin), Skin (i.e earth’s surface) Temperature, relative humidity (RH) 181 

at 12 UTC and rainfall has been used. All the datasets except rainfall has been obtained from 182 

the NCEP-NCAR Renanalysis-1 dataset (Kalnay et al. 1996) with a spatial resolution of 2.50 x 183 

2.50. The monthly mean surface Tmax and Tmin are obtained directly from the reanalysis 184 

products. The daily mean skin temperature and the surface RH at 12 UTC are used to calculate 185 

the respective monthly mean values. Similarly, the daily gridded rainfall data of spatial 186 

resolution of 0.25 x 0.25 from India Meteorological Department (Pai et al. 2014) has been 187 

used to obtain the monthly mean rainfall (mm/day) and all the variables are analysed for the 188 

same period as above from 2011-2021 (132 months). 189 

(ii) Methods 190 

Clustering is a form of unsupervised learning whereby a set of observations (i.e., data points) 191 

is partitioned into natural groupings or clusters of patterns in such a way that the measure of 192 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.10.22282112doi: medRxiv preprint 

https://dhs.kerala.gov.in/data-on-communicable-diseases/
https://dsp.imdpune.gov.in/
https://doi.org/10.1101/2022.11.10.22282112
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

similarity between any pair of observations assigned to each cluster minimizes a specified 193 

cost function (Haykin 2009). K-Means clustering is one such method in which the Euclidean 194 

distance between the points is used to aggregate the points into different clusters with the 195 

target number of clusters (k) to be provided initially by the user. The imaginary or real location 196 

representing the centre of any cluster is termed as centroid. Initially, we have to define the 197 

number of clusters to be obtained (k). A random ‘k’ points or centroids are selected from the 198 

dataset and each data point is assigned to their closest centroid, which will form the 199 

predefined ‘k’ clusters. The k-Means algorithm computes the centroids and repeats until the 200 

optimal centroid is found. The data points are assigned to clusters in such a way that the sum 201 

of the squared distances between the datapoints and the centroid is as small as possible.  202 

In this study, the monthly mean of six variables e.g. Tmax, Tmin, RH at 3 UTC and 12 UTC, 203 

(accumulated) precipitation in Kerala and the number of reported Malaria/Dengue cases in 204 

the state has been used to construct a vector space with the vector having six dimensions for 205 

every month. The  132 monthly values  (for the years 2011-2021) of this vector  is used to  206 

identify a set of 5 clusters using K-Means clustering algorithms using a standard scikit-learn 207 

python module (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html). 208 

Here each month represent a point in the six-dimensional vector space and the points are 209 

used to calculate the Euclidean distance for obtaining the optimized centroid of each cluster. 210 

In general, the clustering analysis will help to aggregate these points into different clusters 211 

based on the hidden patterns in the observed datasets representing a relation between the 212 

climatic variables (Tmax, Tmin, skin temperature, relative humidity, precipitation) and the 213 

vector borne disease (malaria/dengue) data.  214 

(iii) Outbreak criteria  215 
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In this analysis we have used a simple criterion for deciding the outbreak (i.e. extreme event) 216 

criteria in a month. For malaria cases considered, we have defined outbreaks when the 217 

standardized anomaly of cases in a month is greater than 1 standard deviation. For dengue, 218 

we have used 0.5 standard deviation criteria. This criteria is not quantitive, is not used 219 

quantitatively in  220 

Results 221 

(i) Clustering results 222 

Clustering for Malaria cases is shown in Fig.5 from panel (a) to (e) for the clusters 1 to 5 along 223 

with multiple climate variables used in the clustering. The variables (represented as bars) of 224 

each cluster which are used for the clustering are plotted as a ratio of the corresponding time 225 

series mean. Suppose the Tmax in one cluster is 1.75, it means that the value of Tmax of that 226 

cluster is 1.75 times greater than the mean of Tmax time series. Similarly, the standard 227 

deviation is plotted as a fraction of the standard deviation of time series. In cluster2, which 228 

has a highlighted frame, the number of malaria cases are approximately two times greater 229 

than the malaria time series mean. It shows that cluster 2 has a greater number of malaria 230 

cases as compared to the other clusters. The climate variables in cluster 2 show some specific 231 

values; like rainfall is 1.75 times greater than the rainfall time series mean and the Tmax, Tmin 232 

and relative humidity are close to their corresponding time series mean. The mean and 233 

standard deviation of all variables in actual time series along with that for each malaria cluster 234 

are given in Table-1. So, it means that these specific combinations given in Table-1 for the 235 

cluster 2 have the potential to bring more malaria cases.  236 

Fig.5f shows the monthly distribution of the frequency of cases projected in each cluster. 237 

From the figure it can be seen that the cluster 2 and cluster 4 have maximum frequency 238 

projections (%) during the monsoon months (June to September). Here, there is also a 239 
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seasonal splitting of cluster observed; i.e. higher values of frequencies lie in a particular 240 

season. Maximum projections of cluster 3 are seen in winter months (December, January and 241 

February) and the same for cluster 1 are in pre-monsoon (March, April and May) and post 242 

monsoon (October, November and December) months. There is a lesser chance for random 243 

projections, which means that the cluster which is projected maximum is not projected in 244 

another season.  245 

Fig.5g. shows the monthly distribution of average malaria cases in each cluster along with the 246 

climatology of malaria cases. Here, it is observed that the cluster2 has maximum number of 247 

malaria cases especially in the months from June to October, which is consistent with the 248 

mean plot shown in Fig.5b. Similarly, in cluster4, all climate variables are near or above their 249 

time series mean, however it has reported a smaller number of Malaria cases. Here the high 250 

values of rainfall (almost twice the time series mean) and smaller standard deviation of other 251 

climate variables are not conducive for the breeding of the vectors and malaria outbreak. 252 

Earlier studies(Patz et al. 2000) ; (Kalluri et al. 2007) have shown that the increased amount 253 

of rainfall helps to washout the mosquito larva and hence reduces the chances of malaria 254 

outbreaks. So, it shows that the large number of malaria cases (204) in cluster 2 are associated 255 

with the climate conditions mentioned in the Table 1. Hence the fulfilment of cluster2 criteria 256 

can be considered as a threshold for malaria outbreaks. 257 

Many times, there are some outbreaks happened in the months of October and November 258 

even though their values are less than the other months (Fig.1d and 5g). So, malaria outbreaks 259 

are not completely a climate derived problem, but many times the climate factors apart from 260 

the parasite forcing can favour the disease outbreaks as the clustering analysis shows.  The 261 

intensity of those outbreaks, which are directly forced by the climate factors, can be reduced 262 

by the proper climate surveillance and monitoring.  263 
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 Similarly, from the cluster analysis performed for the Dengue cases (Fig.6 (a) to (e)), it 264 

has been observed that the cluster1 Dengue cases are approximately 1.25 times greater than 265 

the respective time series mean. The mean and standard deviation of all variables in actual 266 

time series along with that for each dengue cluster are given in Table-2. The specific 267 

combination of climate variables mentioned in cluster1 favour the breeding of mosquito and 268 

outbreaks of dengue cases in Kerala. It can also be noticed that the cluster 4 shows the 269 

maximum number of dengue cases (4784) however, the frequency of occurrence of cluster 4 270 

is only 2.3% which is very much smaller than the other clusters. So, it may be considered as 271 

an outlier cluster. 272 

The monthly frequency distribution of the projections in each cluster for dengue has shown 273 

in Fig.6f. It has been observed that the cluster 1 has the maximum projections during the 274 

months (June to October). Similar to Malaria clusters, here also a seasonal splitting among 275 

dengue clusters is observed. Higher values of frequencies of cluster 1 lie in the months from 276 

June to September, followed by the cluster 2 with maximum projections in the pre-monsoon 277 

(March, April and May) and post monsoon (October, November and December) months.  278 

(ii) Large scale climate condition results 279 

Fig.7(a-d) shows the composite of climate variables (Tmax, Tmin, RH and Rainfall) over the 280 

spatial domain (10°S-50°N;40°E-120°E) in Malaria cluster 2 with a lag 0 to lag 5.  In Tmax, 281 

strong positive anomalies were observed over the northern parts especially near the Tibetan 282 

plateau and negative anomalies over southern peninsular India and the northern parts of 283 

Indian Ocean. The strong negative anomalies over the southern peninsular India were 284 

observed reducing its intensity from lag5 to lag3, further becoming positive. In Tmin (Fig.7b), 285 

similar positive anomaly pattern was observed near the Tibetan plateau from lag 0 to lag 5. 286 

High temperature near the Tibetan anticyclone and lower temperature over the northern 287 
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Indian ocean (north-south temperature gradient) are some of the large-scale climate factors 288 

which are known to impact the climate variability (Turner and Annamalai 2012),(You et al. 289 

2020) over Indian region. Similarly, the spatial pattern of relative humidity (Fig.7c) and rainfall 290 

(Fig.7d) show high values along the west coast of India and the north-eastern region. High 291 

humidity is known to impact growth of mosquito growth (Li et al. 2013; Mohapatra et al. 292 

2022). Hence the composite of climate factors of Malaria cluster2 are consistent with large-293 

scale climate factors during the monsoon months.  294 

Fig.8(a-d) shows the composite of climate variables (Tmax, Tmin, RH and Rainfall) in Dengue 295 

cluster 1 with a lag 0 to 5 (same spatial domain as shown for malaria cases in Fig.1).  In both 296 

Tmax and Tmin, strong negative anomalies were observed over the northern parts especially 297 

near the Tibetan plateau for lag 0 to lag 5 and over peninsular India from lag 3 to lag5. Strong 298 

positive anomalies were observed for both the temperatures over the central India and the 299 

foot hills of Himalayas from lag0 to lag5. This shows the climate forcing required for the 300 

dengue outbreaks are entirely different from the forcing favouring the malaria outbreaks. The 301 

composite spatial pattern of relative humidity and rainfall of dengue cluster 1 is more or less 302 

similar to the malaria cluster2 from lag 0 to lag5. So, it shows that high amount of relative 303 

humidity and rainfall are conducive for both the disease outbreaks.  304 

Conclusion 305 

In the current analysis we have used the malaria and dengue data over Kerala and based on 306 

a coupled system hypothesis, the outbreak of malaria and dengue are related to the 307 

multivariate clusters of climatological variables. Also, it is shown how the cyclical seasonal 308 

behaviour of the malaria and dengue cases can be explained using this model. The current 309 

analysis identified two category criteria for malaria cases (when the malaria cases are larger 310 

than the mean or when the malaria cases close to mean) which is tabulated in Table-1. It can 311 
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be seen that high malaria cases are driven by higher than mean rainfall values and near mean 312 

values of temperature & relative humidity pattern. When the criteria is satisfied, there is a 313 

strong possibility of increase in malaria cases.  Similarly, cluster analysis for dengue cases, 314 

identified one criterion (when the dengue cases are larger than the mean) which is given in 315 

Table-2. The dengue cases identified in this cluster are also driven by higher than mean 316 

rainfall and near mean values of temperature and relative humidity. Incidentally, an outlier 317 

cluster can be identified with large number of dengue cases but are associated with near 318 

mean values of climatic parameters (rainfall, RH etc.). However, the frequency of occurrence 319 

of this cluster is very low (only 2%).  320 

Based on the composite analysis of climate variables, it is shown that in some cases, both 321 

malaria and dengue outbreaks over Kerala are driven by the climate forcing to some extent. 322 

However, the forcing is different for both the diseases. High temperatures over the Tibetan 323 

plateau and low temperature over the northern Indian ocean along with the high values of 324 

relative humidity and rainfall over the west coast and north-eastern parts of India are found 325 

to be allied with the malaria outbreaks over Kerala. At the same time, the out breaks of 326 

dengue are seen to be associated with the low temperatures over the Tibetan plateau and 327 

high temperatures over the central India and foot fills of Himalayas along with relative 328 

humidity and rainfall similar to that of malaria outbreaks.  329 

 The number of Malaria cases and outbreaks reported over Kerala are found to 330 

decrease in the recent years. As mentioned in the introduction, medical interventions can 331 

counteract the climate forcing and it is seen for the recent trend in malaria cases over Kerala.  332 

However, in the ongoing climate change scenario, intensity and frequency of extreme events 333 

are increasing and it may favour the suitable conditions (heavy rainfall, extreme temperatures 334 

etc.) for the outbreaks of mosquito borne diseases. In such conditions, the existing 335 
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intervention methods will not be sufficient to reduce the impacts caused by the outbreaks. 336 

So, in a long-term planning perspective, along with improvements in intervention methods, 337 

implementation of the climate positive actions is also important. Coherent climate action e.g.  338 

reducing the emissions of fossil fuels and greenhouse gases, reduces the temperature 339 

extremes; Proper drainage system in a place doesn’t allow the rainwater to get stagnant over 340 

time and become conducive for the proliferation of vectors. So, these precautionary steps will 341 

not satisfy the cluster conditions which are responsible for the breeding of vector and hence 342 

reduces the frequency and intensity of MBD outbreaks.  Also, the analysis suggests that, the 343 

threshold criteria has to be improved using more samples. Weekly data aggregation would 344 

improve the understanding of climate link in the control and management of MBD.  345 
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Table-1 471 

Statistics of Climate variables and Malaria cases over Kerala during 2011-2021 for actual time 472 
series and different clusters. Cluster-2 (highlighted columns) represents the malaria outbreak 473 

clusters 474 

 475 

Variables Actual Time 

Series 

Cluster1 

(frequency28.8

%) 

Cluster2  

(frequency 

25.8%) 

Cluster3 

(frequency 

28.8%) 

Cluster4 

(frequency 15.2%) 

Cluster5 

(frequency 

1.5%) 

 Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D 

Tmax (℃) 31.73 2.40 33.88 1.21 29.93 1.65 32.02 1.58 31.03 0.91 22.76 4.40 

Tmin (℃) 23.32 1.64 24.66 0.97 23.04 1.10 22.33 1.00 23.85 0.39 15.81 2.10 

Rainfall(m

m) 2592 2520 1216 869 4597 2164 604 670 5680 1957 1526 1411 

RH3UTC 

(%) 81.41 6.47 80.38 2.68 86.41 4.33 74.52 2.37 89.29 2.32 68.29 0.96 

RH12UTC 

(%) 69.75 9.16 67.58 4.82 77.74 3.55 59.64 4.20 80.47 3.46 59.92 7.50 

Malaria 

Case 105 71 64 37 204 41 83 44 60 34 50 39 

 476 

  477 
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Table-2 478 

Statistics of Climate variables and Dengue cases over Kerala during 2011-2021 for actual time 479 
series and different clusters. Cluster-1 (highlighted columns) represents the dengue outbreak 480 

clusters 481 

Variables Actual Time 

Series 

Cluster1 

(frequency 

27.3%) 

Cluster2 

(frequency 

31.1%) 

Cluster3 

(frequency 

11.4%) 

Cluster4* 

(frequency 

2.3%) 

Cluster5 

(frequency 

28.0%) 

 Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D 

Tmax (℃) 31.73 2.40 30.79 0.90 33.62 1.31 27.39 2.53 30.68 0.32 32.40 1.49 

Tmin (℃) 23.32 1.64 23.75 0.41 24.61 0.97 20.62 2.06 23.73 0.19 22.52 1.01 

Rainfall(m

m) 2592 2520 5321 2301 1491 1042 3761 2108 4650 1910 515 630 

RH3UTC 

(%) 81.41 6.47 89.47 2.03 80.88 2.66 78.65 5.19 90.53 0.92 74.54 2.40 

RH12UTC 

(%) 69.75 9.16 80.25 3.15 69.07 4.84 70.79 6.35 80.25 2.93 59.01 3.78 

Dengue 

Case 485 782 668 487 343 428 289 193 4784 782 196 181 

*  Cluster4 frequency is only 2.3 482 

  483 
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Figure Caption:  484 

Figure 1. (a). Interannual variation of monthly Malaria Cases over Kerala. (b).  Interannual 485 

variation of Dengue Cases over Kerala. (c).  Interannual variation of monthly Rainfall over 486 

Kerala. (d).  Monthly distribution of Outbreak frequency of Malaria Cases (Mean + 1 SD). (e).  487 

Outbreak frequency of Malaria Cases (Mean + 1 SD). (f).  Outbreak frequency of Dengue Cases 488 

(Mean + 0.5 SD). (g).  Outbreak frequency of Dengue Cases (Mean + 0.5 SD). 489 

Figure 2a to 2f: Power spectrum for Malaria, Dengue, Maximum Temperature, Minimum 490 

Temperature, Rainfall and Relative Humidity at 12 UTC. 491 

Figure 3: A schematic model of Malaria dynamics with Climate Forcing. 492 

Figure 4: Correlation of Malaria and Dengue cases with different climate parameters. (a). 493 

Malaria and Rainfall (b). Malaria and Relative Humidity (c). Malaria and Maximum & Minimum 494 

temperatures (d). Dengue and Rainfall (e). Dengue and Relative Humidity (f). Dengue and 495 

Maximum & Minimum temperatures  496 

Figure 5(a-e). Mean and standard deviation of malaria cluster 1 to cluster 5.   (f). Monthly 497 

variation of malaria frequencies in cluster4. (g). Monthly distribution of average malaria 498 

cases in each cluster along with malaria climatology.  499 

Figure 6(a-e). Mean and standard deviation of dengue cluster 1 to cluster 5. (f). Monthly 500 

variation of dengue frequencies in cluster4. (g). Monthly distribution of average dengue cases 501 

in each cluster along with dengue climatology.  502 

Figure 7: Composite of Malaria and different climate parameters for cluster2 at different 503 

lags (a). Maximum Temperature (b). Minimum Temperature (c). Relative Humidity at 12 504 

UTC (d). Rainfall 505 

Figure 8: Composite of Dengue and different climate parameters for cluster2 at different lags 506 
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 540 

Figure 1. (a). Interannual variation of monthly Malaria Cases over Kerala. (b).  Interannual variation of Dengue 
Cases over Kerala. (c).  Interannual variation of monthly Rainfall over Kerala. (d).  Monthly distribution of 
Outbreak frequency of Malaria Cases (Mean + 1 SD). (e).  Outbreak frequency of Malaria Cases (Mean + 1 SD). 
(f).  Outbreak frequency of Dengue Cases (Mean + 0.5 SD). (g).  Outbreak frequency of Dengue Cases (Mean + 
0.5 SD). 
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Figure 2a to 2f: Power spectrum for Malaria, Dengue, Maximum Temperature, Minimum 
Temperature, Rainfall and Relative Humidity at 12 UTC. 
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 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.10.22282112doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282112
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

Figure 3: A schematic model of Malaria dynamics with Climate Forcing   
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 4: Correlation of Malaria and Dengue cases with different climate parameters. (a). Malaria and 
Rainfall (b). Malaria and Relative Humidity (c). Malaria and Maximum & Minimum temperatures (d). 
Dengue and Rainfall (e). Dengue and Relative Humidity (f). Dengue and Maximum & Minimum 
temperatures 
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(a) (b) 

(c) (d) 

(e) 
(f) 

Figure 5(a-e). Mean and standard deviation of malaria cluster 1 to cluster 5.   (f). Monthly 
variation of malaria frequencies in cluster4. (g). Monthly distribution of average malaria 
cases in each cluster along with malaria climatology.  

(g) 
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(a) (b) 

(c) 
(d) 

(e) 

(f) 

Figure 6(a-e). Mean and standard deviation of dengue cluster 1 to cluster 5. (f). Monthly 
variation of dengue frequencies in cluster4. (g). Monthly distribution of average dengue cases 
in each cluster along with dengue climatology.  

(g) 
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Figure 7: Composite of Malaria and different climate parameters for cluster2 at different lags (a) . 
Maximum Temperature (b). Minimum Temperature (c). Relative Humidity at 12 UTC (d). Rainfall 
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Figure 8: Composite of Dengue and different climate parameters for cluster2 at different lags (a). 
Maximum Temperature (b). Minimum Temperature. (c). Relative Humidity at 12 UTC (d). Rainfall 
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