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Abstract 

There are currently limited molecular markers of Parkinson’s disease, and there is an urgent need 

for new markers to guide clinical care, support earlier diagnosis, and hasten drug development. 

Here, we performed CSF and plasma proteomics in 5 Parkinson’s disease cohorts to identify novel 

protein biomarkers for these purposes, resulting in one of the largest such resources for Parkinson’s 

disease to date. We discovered a consistent upregulation of the protein L-Aromatic Acid 

Decarboxylase (AADC, EC 4.1.1.28, DDC) in the CSF and plasma of Parkinson’s disease patients. 

AADC is a key protein in the synthesis of dopamine and other monoamine neurotransmitters. We 

found that higher CSF AADC levels are associated with greater motor symptom severity in 

Parkinson’s patients. We replicated and extended these findings in another undescribed proteomics 

cohort of de novo Parkinson’s disease participants from the Parkinson’s Progression Marker 

Initiative, where we found that AADC expression is upregulated in treatment naïve participants and 

is associated with motor and cognitive symptoms. We found that AADC expression can accurately 

distinguish Parkinson’s disease from healthy participants and Alzheimer’s disease participants in 

multiple independent cohorts, and developed a panel of 16 proteins that achieves 95% receiver 

operator area under the curve (ROC AUC) in distinguishing these three states. Our results suggest 

that CSF AADC is a marker of the underlying disease process in Parkinson’s disease with potential 

utility in multiple contexts. 
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Introduction 

 

Parkinson’s disease (PD) is characterized by selective neuronal degeneration of the substantia nigra 

and the accumulation of alpha-synuclein protein aggregates in the brain1. The defining 

histopathologic feature of the disease is the loss of dopaminergic neurons in the substantia nigra but 

can also include noradrenergic neurons in the locus coeruleus2 and serotonergic neurons in the 

dorsal raphe nuclei3. Notably, there is a delay between the first damage to the dopaminergic neurons 

and the development of clinical motor symptoms, which makes diagnosing PD in the earliest stages 

of neurodegeneration very challenging4. Among those at risk for PD it is even more difficult to 

identify who has already developed asymptomatic neurodegeneration. There is an urgent need for 

biomarkers to diagnose PD early and accurately, and to assess disease severity, progression, and 

response to therapeutics5–7. Biomarkers that reflect the earlier, underlying pathophysiologic 

processes or that reflect early compensatory mechanisms that preclude symptom development 

despite active neurodegeneration hold most promise for disease identification before clinical 

symptoms develop. The power of cerebral spinal fluid (CSF) biomarkers that are specific for the 

signature pathology underlying neurodegeneration, which can aid in early diagnosis and 

therapeutics development, has been convincingly shown by the Alzheimer’s disease (AD) field. 

Beta amyloid (Aβ) and Tau biomarkers can be identified as abnormal in individual patients prior to 

cognitive decline8, and have revolutionized translational AD research over the last decade; 

however, there are no analogous biomarkers for PD.   

 

Quantitative proteomics has recently been used to develop disease-specific protein signatures as 

diagnostic biomarkers and holds great promise to enhance our current understanding of the 

molecular mechanisms underlying neurological diseases. In this study, we quantified the levels of 

1,196 proteins in CSF and blood plasma in five human neurodegenerative disease cohorts to 

identify disease-specific protein signatures of PD that correlated with observed disease severity and 

could distinguish PD participants from cognitively normal individuals and Alzheimer’s disease 

participants.  

 

Methods 

Participants 
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We included participants from five concurrent longitudinal cohorts of aging and neurodegeneration 

at Stanford University: 1) Biomarkers in PD Study (BPD), 2) the Pacific Udall Center (PUC), 3) 

Stanford Alzheimer’s Disease Research Center (ADRC), 4) Stanford Center for Memory Disorders 

Cohort Study (SCMD), and 5) Stanford Aging and Memory Study (SAMS). Data were collected 

between 2012 and 2018. Inclusion criteria for these analyses were i) ages between 40 and 90 years 

ii) English or Spanish fluency for comprehensive neuropsychological testing, and iii) no 

contraindications to lumbar puncture. All participants provided written informed consent to 

participate in the parent studies following protocols approved by the Stanford Institutional Review 

Board.  

 

A consensus panel consisting of one board-certified movement disorders neurologist or behavioral 

neurologist, one board-certified neuropsychologist, and other study personnel adjudicated the 

diagnosis for each participant. PD diagnosis was based on UK PD Society Brain Bank clinical 

diagnostic criteria9. We defined Early PD as participants with less than three years disease duration 

at the time of CSF collection. Participants on the AD spectrum (AD-s) included those with 

dementia or mild cognitive impairment likely due to AD based on the NIH Alzheimer’s Disease 

Diagnostic Guidelines10,11. Participants with mild cognitive impairment, who have decreased CSF 

Aβ-42 concentration, are more likely to have cognitive impairments due to AD12. To exclude 

participants without AD from the AD-s group, we excluded mild cognitive impairment participants 

who had CSF Aβ-42 concentration more than 2 standard deviations from the mean in AD13,14. 

Participants with PD include those with no cognitive impairment, those with mild cognitive 

impairment15 and those with dementia due to PD. Healthy controls (HC) were older individuals 

without a neurological diagnosis adjudicated as cognitively normal for age at the consensus 

meeting. A flowchart of included and excluded participants is illustrated in extended data figure 1.   

 

Neurologic, Motor and Cognitive assessments 

All participants completed a general neurological exam. PD participants completed the Movement 

Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III)16 in the Off- and 

On-medication states, according to published criteria17. We calculated the Levodopa Equivalent 

Daily Dose (LEDD) using previously reported conversion factors18,19.   

Global cognitive function was assessed using the Montreal Cognitive Assessment (MoCA)20 in the 

ADRC, PUC and BPD, and the Mini-Mental State Exam21 in the SAMS and SCMD studies. A 
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comprehensive neuropsychological battery was administered as part of each cohort study as 

previously described22–25. PD participants underwent neuropsychological testing in the on-

medication state in order to assess cognitive function without interference by motor deficits.   

 

CSF collection and assessment  

A neurologist performed a lumbar puncture to collect CSF samples according to standardized 

procedures26. Briefly, a 20-22 G spinal needle was inserted in the L4-L5 or L5-S1 interspace and 

CSF was collected in polypropylene tubes. The tubes were immediately frozen at -80 °C in a 

centralized freezer in the Neuropathology Core of the Stanford ADRC and sent to Quanterix 

(Quanterix ®, MA, USA), for the quantification of seven major neurology biomarkers present in the 

Neurology 3-plex A assay (total Tau, Αβ42, Aβ40), Neurology 4-plex A assay (Nf-L, total Tau, 

GFAP, UCHL1) and p-Tau181.  

 

CSF and plasma proteomics 

201 CSF and 249 blood plasma samples, (including 173 matched samples from the same 

participants) were sent to Olink Proteomics AB (Uppsala, Sweden. www.olink.com) for the 

quantification of 1196 proteins in each tissue using a multiplex proximity extension assay27 . This 

technology has been extensively vetted in biomarker studies and detailed methodology of the assay 

has been previously published27. Briefly, the proximity extension assay uses DNA oligonucleotide-

labeled polyclonal antibodies which bind to each protein target. When two antibodies targeting 

different epitopes bind the same protein target, a proximity-dependent DNA ligation and elongation 

reaction can occur. The requirement for coincident binding leads to high specificity. The target 

protein levels can then be read out using quantitative PCR (qPCR). This technology enables 

multiplex measurement of 96 protein targets in a single assay. Proteins from 13 different protein 

panels were measured, resulting in quantification of 1,196 CSF and plasma proteins. CSF and 

plasma protein levels were analyzed using the Cardiometabolic (v.3602), Cardiovascular II 

(v.5005), Cardiovascular III (v. 6112), Cell Regulation (v.3701), Development (v.3512), Immune 

Response (v.3201), Inflammation (v.3012), Metabolism (v.3402), Neuro Exploratory (v.3901), 

Neurology (v.8011), Oncology II (v.7002), Oncology III (v.4001) and Organ Damage (v.3301) 96-

plex immunoassay Olink panels.  

 

Proteomics data processing and quality control  
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As previously described27, 8 control samples are run on each plate: two are external pooled plasma 

samples, which are used to assess potential intra-plate/run variation, three are Inter-Plate Controls 

(IPCs) and three are buffer blanks. The IPCs are formed from a pool of 92 antibodies. The median 

of the IPCs is used to normalize each assay and compensate for potential variation between runs 

and plates.  

 

Protein expression data are reported in Normalized Protein eXpression (NPX), which is a 

normalized unit on a log2-scale. The NPX values are derived from the Ct or “threshold cycle” . This 

is the number of qPCR cycles needed for the signal to pass a fluorescence signal threshold. NPX is 

calculated from the Ct values using the following equations:  

Extension Control: CtAnalyte – CtExtension Control = dCtAnalyte 

Inter-plate Control: dCtAnalyte – dCtInter-plate Control = ddCtAnalyte 

Adjustment against a correction factor: Correction factor – ddCtAnalyte = NPXAnalyte 

 

Statistical Analyses  

To examine demographic and clinical group differences, we used an independent sample t-test or a 

one-way analysis of variance (ANOVA) for normally distributed variables, or a non-parametric 

Wilcoxon sign-rank test or a Kruskal Wallis H-test for non-normally distributed variables. We 

performed post-hoc Tukey correction for multiple comparisons.  

 

We ran differential expression analysis on protein levels using a multi-level linear-mixed effects 

model controlling for age, sex, race, ethnicity, and sample-relatedness when using longitudinal 

sample data. Sample-relatedness refers to longitudinally collected samples from a single individual, 

which we expect to be more correlated than samples from different individuals.  We used a linear 

model controlling for age, sex, race, and ethnicity when looking at samples from one timepoint 

only. We used Benjemani-Hochberg false discovery rate control to account for multiple testing. We 

studied the association between AADC levels and clinical measures of disease severity (MDS-

UPDRS III, LEDD, MoCA) using linear regression analyses corrected for age, sex and education. 

We used principal component analysis to explore the relationship between global differences in 

protein expression profile and clinical/demographic variables. We tested correlations between 

principal components with a spearman correlation test with Bonferroni correction for multiple 
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testing. All statistical analysis was done in R 4.0. We used the package lmerTest28 and the dream 

function from the R package variancePartition29 for mixed effects models.  

 

Disease classification 

We used the glm function with a binomial link in R 4.0 to perform binary logistic regression. We 

used the step function in R 4.0 to perform step-wise logistic regression when building multivariate 

linear classifiers, and used the Akaike Information Criterion for model selection. We used the 

multinom function from the R package nnet30 with L2 regularization for multi-class logistic 

regression. We used the caret package31 to perform cross-validation (CV) on our multiclass models, 

which was used to optimize regularization and estimate model performance. We used a repeated 

2x10 CV scheme to minimize overfitting: each model instance in the CV was trained on half of the 

data and evaluated on the other half. We used the pROC32 and multiROC33 packages in R 4.0 to 

generate and visualize receiver operator sensitivity-specificity curves and calculate area under the 

ROC curve.   
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Results 

Participant characteristics  

Table 1 lists demographic and clinical characteristics of the CSF study population. The final cohort 

included 71 PD, 78 HC and 52 AD-s, who were matched for age and sex but not education 

(p=0.033). Twenty-one PD participants were early in disease (less than three years duration) and 

two were dopamine naïve.  

Table 1: Demographic and clinical participant characteristics of CSF study population 

 

 HC  

  

AD-s 

 

PD  P-value  

 

N 78 52 71  

Age (yrs) 67.7± 7.4  

(55-87) 

67.7 ± 8.71  

(41-85) 

68.6 ± 7.56  

(50-85)  

0.763 

Education (yrs) 17.1 ± 2.0  

(12-20) 

16.1 ± 2.3  

(12-20) 

16.0 ± 2.3 

(12-20) 

0.033* 

Sex 49.5% F, 50.5% 

M 

48.8% F, 51.2% 

M 

46.6% F, 53.4% 

M 

0.950 

MoCA  
 

27.2 ± 2.3  

(19-30, n=48) 

14.6 ± 8.0  

(1-26, n=14) 

24.4 ± 5.0  

(8-30)  

<0.001* 

MMSE 29.5 ± 0.9  

(25-30 n=45) 

26 ± 3.4  

(17-30, n=26) 

-- <0.001* 

MDS-UPDRS III Off -- -- 36.7 ± 13.0  

(6-75) 

-- 

MDS-UPDRS III On    23.6 ± 11.0  

(4-51) 

 

Duration of PD (in 

years) 

-- -- 6.1 ± 4.3  

(0-21) 

-- 

LEDD -- -- 626.9 ± 389.5  

(0-1580) 

-- 

 

Table 1: Demographic and clinical participant characteristics.  

Kruskal Wallis H-test was used to determine group differences in non-normally distributed variables (education, MoCA 

and MMSE).  

*MoCA score is lower in AD-s compared to HC and PD. Education is higher in HC compared to AD-s.  

The table presents mean ± standard deviation (range) with bolded values indicating p < 0.05. 
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AD-s, Alzheimer’s Disease spectrum; F, female; HC, Healthy Controls;  Levodopa Equivalent Daily Dose, LEDD; M, 

male; MMSE, Mini-mental state exam; MoCA, Montreal Cognitive Assessment; PD, Parkinson’s Disease. 

 

CSF and plasma proteomics identify biomarkers of PD 

We first compared the CSF and plasma proteomes of people with PD or AD-s and HC. Exploratory 

principal component analysis (PCA) including all CSF and plasma proteins indicated that there 

were not strong global differences in protein expression between the disease groups or reported 

gender. The global CSF proteome profile did show a significant correlation between the first 

principal component and age (spearman p = 0.0005) (Extended data figure 2). The plasma proteome 

showed no significant global correlation with age.  

 

To identify proteins whose expression differed across groups, we next performed differential 

protein expression analysis on the CSF and plasma proteomes using linear mixed-effects models 

while controlling for age, sex, education, ethnicity, and sample relatedness (Figure 1). When 

comparing people with PD to HC, there was 1 significant hit in CSF (Figure 1A, Supplementary 

Table 1) and 10 significant hits in plasma (Figure 1B, Supplementary Table 2) after multiple testing 

correction. Comparing people with PD or AD-s there were 3 significant hits in CSF (Figure 1C, 

Supplementary Table 3) and 9 significant hits in plasma (Figure 1D, Supplementary Table 4). We 

also performed differential expression for age and sex (Extended data figure 3, Supplementary 

Tables 5, 6, 7, 8), and replicated known top hits such as PTN and WFDC2 as significantly up in 

aging in plasma34,35, and CGA and CGB3 as significantly differential between sexes35,36.  

 

Notably, the protein Aromatic L-Amino Acid Decarboxylase (AADC EC 4.1.1.28), also known as 

DOPA Decarboxylase (DDC), was the top upregulated hit in PD when compared to both HC and 

AD-s, in both CSF and plasma. We elected to explore this further because AADC is directly 

involved in dopamine synthesis in dopaminergic neurons and is highly expressed in the substantia 

nigra (Extended data figure 4A). This mechanistic link to known PD pathogenesis makes it an 

appealing biomarker candidate.  

 

AADC expression is associated with disease symptom severity in five independent cohorts. 

After identifying AADC as a top hit in the differential expression analysis for PD, we directly 

compared AADC CSF levels in PD to HC and AD-s. We found a significant difference across 

groups (F2,207=47.7, p<0.001). Specifically, AADC is elevated in PD compared to both HC and 
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AD-s (Figure 2A). AADC remained significantly elevated after controlling for age, sex and LEDD, 

(F2,200=10.515, p<0.001, partial η2=0.095). We further validated this finding using an orthogonal 

proteomics platform, the SomaScan assay37, and found CSF AADC to be significantly upregulated 

in PD participants compared to both AD and HC (Extended data figure 4B). We then studied 

AADC as an early marker of PD and found significantly elevated concentrations in Early PD (<= 3 

years since symptom onset) compared to HC, F113=9.101, p<0.001 (Figure 2B). We next tested if 

ADDC levels in CSF and plasma were associated with PD symptom severity and could thus have 

potential prognostic and clinical utility. We found that AADC levels in CSF were significantly 

associated with severity of motor symptoms assessed on the MDS-UPDRS III Off (β = 2.85, p = 

0.022) (Figure 2C), and On scores (β = 3.29, p = 0.0017) (Figure 2D).  

 

While these findings are encouraging, a key challenge to assessing AADC as a biomarker in our 5 

cohorts is its link to a primary treatment modality for PD. AADC is an essential component of 

dopamine and levodopa metabolism. The possibility that elevated AADC levels are driven by 

dopamine replacement therapy could not be excluded in our current cohort because nearly all PD 

participants were taking some form of dopamine replacement therapy at the time of blood and CSF 

collection.  

 

Therefore, we turned to a CSF and plasma proteomics study generated in the Parkinson’s 

Progression Marker Initiative (PPMI), which is a multicenter international prospective cohort study 

that recruited HC and treatment naïve, de novo PD participants and collected baseline and annual 

plasma and CSF. Complete study aims and methodology have been published elsewhere38,39. From 

the PPMI cohort, 37 HC and 36 PD had data available using the same Olink proteomics assay. Data 

from baseline and longitudinal follow-up averaging 4 years in duration was available, for a total of 

219 CSF and 219 plasma samples (see Supplementary Table 9 for demographic and clinical 

characteristics). To our knowledge, our study is the first comprehensive description of the plasma 

and CSF proteomics in this cohort.  

 

We examined the baseline visit proteomics in PPMI and found that in treatment naïve de novo PD 

participants, AADC was again the most significantly upregulated protein in CSF, but was not a top 

upregulated protein in plasma (Figure 3A-C, supplementary Tables 10,11). When considering all 

timepoints, AADC remained the most significantly upregulated protein in both CSF and plasma 
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(Extended data figure 5, Supplementary Tables 12,13). In PPMI, we found that AADC levels were 

again significantly associated with symptom severity (Figure 3). CSF AADC levels were associated 

with MDS-UPDRS III Off scores, (β =1.53, p = 0.020) and MDS-UPDRS total symptom score (β = 

2.17, p = 0.045) (Figure 3D-F). Further, plasma AADC levels were also associated with MDS-

UPDRS III Off scores, (β =2.45, p = 1.67e-4) and MDS-UPDRS total symptom score (β = 4.18, p = 

9.90e-5) (Figure 3D-F), as well as global cognition measured by the MoCA (β = -0.43, p = 0.028). 

This is in contrast to our findings in the Stanford cohorts, where plasma AADC level is not 

associated with motor symptom severity (extended data figure 6). The reasons for this difference 

are unclear, but could be related to the fact that the PPMI cohort is much earlier in disease than the 

Stanford cohorts (mean time since diagnosis = 0.06 ± 0.05 years vs 6.1 ± 4.3 years).  

 

In contrast to these findings on AADC, CSF alpha-synuclein level was not significantly associated 

with any of these symptoms (Extended data figure 7), suggesting that AADC levels are an earlier 

and more quantitative correlate of clinical symptoms than CSF alpha-synuclein. Additional trending 

data that CSF AADC level was associated with time since diagnosis at baseline and time since 

symptom onset at baseline support the possibility that CSF AADC level in undiagnosed, treatment 

naïve patients could be a marker of underlying disease progression and dopaminergic neuronal 

degeneration (Extended data figure 8).  

 

AADC discriminates PD from AD-s and HC 

Given that CSF AADC levels are consistently and uniquely elevated in people with PD, we sought 

to determine if AADC levels could accurately discriminate PD from HC and AD-s participants. We 

trained a logistic regression classifier of PD diagnosis against HC and AD-s diagnosis within a 

subset of the cohorts we measured in this study (PUC/BPD/SCMD), and evaluated its performance 

in the remaining held out cohorts (ADRC/SAMS) and on the independent PPMI dataset (Figure 4A-

E). We found that both CSF and plasma AADC levels were capable of discriminating PD. In the 

ADRC/SAMS cohort, combining CSF and plasma levels improved classification performance, 

while in the PPMI cohort, CSF levels alone performed as well as the combination.  

 

Finally, as a proof of concept for a high-performance molecular biomarker diagnostic tool, we used 

an iterative approach to generate a minimal biomarker panel that could discriminate people with PD 

from both HC and AD-s with high accuracy. Starting from a pool of the top 15 differentially 
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expressed proteins in both CSF and plasma for PD compared to HC and for PD compared to AD-s 

(40 proteins total), we used step-wise forward logistic regression to select a minimal biomarker set 

with optimal performance using the Akaike Information Criterion (AIC) to select the best 

performing set. We then trained a penalized multi-class logistic regression model to simultaneously 

distinguish PD from HC and AD. A model with CSF DDC and 15 additional protein biomarkers 

plus age and sex had the lowest AIC (Extended data figure 9), and performed with near-perfect 

classification accuracy across all datasets (Multiclass AUC = 0.95, Figure 4F). We calculated 

positive and negative predictive value of this classifier and found them to be high (PPV = 0.83, 

NPV = 0.91, Figure 4G). 

 

Discussion 

There is an urgent need for biomarkers to diagnose PD and to monitor disease severity objectively 

in clinical trials and clinical practice7. In a search for PD-related biomarkers, we discovered CSF 

AADC (aka DDC) as a potential diagnostic and monitoring biomarker of PD-related 

neurodegeneration. Our observations show that CSF AADC is specifically and consistently elevated 

in people with PD, even early in the disease and in treatment naïve individuals. Rather than a global 

marker of neurodegeneration40, our findings suggest AADC might be a more specific marker of 

monoaminergic neuronal degenerative processes that occur in PD.  

 

A key question for future research is whether elevated CSF AADC is a direct result of neuronal loss 

or the result of compensatory upregulation in response to neurodegeneration. Both mechanisms 

would have significant implications for monitoring and therapeutics. Previous studies have 

suggested that the increasing loss of endogenous AADC in the brain leads to waning treatment 

responses to dopaminergic medication over time41–43. Currently, phase II clinical trials are 

investigating increasing AADC enzymatic expression via gene therapy as a potential therapeutic 

intervention for PD motor fluctuations44,45. Our data raise the need for further study into the 

mechanisms of elevated CSF AADC levels.  If elevated CSF levels of AADC are due to 

compensatory upregulation of AADC elsewhere in the brain as a response to nigrostriatal 

degeneration, this could suggest that the location of AADC in the brain, or other non-dopamine 

functions of nigrostriatal neurons, play a key role in disease symptoms and progression.  

 

AADC as a monitoring biomarker of PD 
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The potential clinical applications of CSF AADC in PD resemble those of serum L-alanine 

aminotransferase and L-aspartate aminotransferase as biomarkers of hepatocellular damage46. 

Despite their ubiquitous presence in the body, these enzymes are often elevated in hepatic disorders 

and are implemented as biomarkers of hepatic injury. In parallel, we speculate that increased levels 

of CSF AADC in people with PD with more severe motor symptoms reflects the underlying 

pathological progression of the disease, and perhaps even the active degeneration of monoaminergic 

neurons. This is consistent with the hypothesis that the waning benefit of levodopa therapy over the 

course of PD is due to declining levels of AADC in surviving dopaminergic neurons. This is also 

supported by recent gene therapy interventions with an adeno-associated viral vector encoding the 

DNA for AADC, which show delivery to intact striatal neurons leads to improved patient reported 

outcomes.45,47–49  

 

The primary outcome measure for almost all disease modifying interventions in PD remains the 

Off-medication UPDRS or MDS-UPDRS. While these are robust measures for severity of motor 

symptoms5011/9/2022 11:15:00 AM, the remarkable placebo effect51,52 creates a barrier for exam-

based outcome measures in clinical trials. Thus, there is urgency to identify objective measures of 

nigrostriatal dopaminergic degeneration due to underlying Lewy body pathology6.  While α-

synuclein appeared to be a promising candidate, its application is limited due to the fluctuating CSF 

levels in PD patients53.  Here, we found that CSF AADC concentrations are significantly associated 

with severity of motor symptoms in both treatment naïve patients and those receiving dopamine 

replacement therapy.  The ability to measure severity of the underlying disease regardless of 

dopamine medications is highly desirable, as this property could both mitigate burdensome Off-

medication exams during clinical trials and provide new endpoints for treatment response. We also 

note the finding that plasma AADC levels showed a relationship with symptom severity in the de 

novo PD cohort studied here. Given the high potential impact of a minimally invasive monitoring 

biomarker in early PD, this relationship should be confirmed and investigated in future studies.  

 

AADC as a specific biomarker of PD  

We found that AADC can differentiate PD from neurologically healthy older adults and from adults 

with Alzheimer’s spectrum disease with good sensitivity and specificity. While it is typically not 

difficult to differentiate people with PD clinically from people with AD, this analysis lends 

additional support to the specificity of the underlying disease process measured by AADC and 
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distinguishes it from biomarkers of general brain health such as neurofilament light chain and CSF 

total Tau40,54. Future studies are needed to determine if AADC is also elevated in patients with 

nigrostriatal dopaminergic degeneration due to non-Lewy body diseases, such as multiple system 

atrophy or progressive supranuclear palsy, which are challenging to distinguish clinically from PD 

in early stages of the disease.  

 

In this study, CSF AADC showed similar diagnostic capability to recently developed alpha-

synuclein seeding assays (αSyn-SAAs)55. In our view, the greatest potential advantage to AADC is 

its apparent quantitative relationship to disease symptom severity, as αSyn-SAAs have repeatedly 

shown no relationship to disease severity55–59. Other potential advantages include reduced cost, 

greater robustness, and faster diagnostic times, since αSyn-SAAs are complex assays that take 

multiple days and specialized equipment to perform. Finally, αSyn-SAA is unlikely to be helpful in 

LRRK1-PD or Parkin-PD patients, who lack Lewy body pathology despite substantial nigrostriatal 

degeneration60. However, this study is just a proof of concept, and the diagnostic potential of 

AADC needs to be established in larger cohorts and evaluated with additional methods beyond 

discovery-focused proteomics. Given that Olink proteomics is an antibody-based platform, we 

anticipate that the results will translate to other antibody-based detection methods such as ELISA 

and SIMOA, which could further improve the accuracy and robustness of our results.  

 

AADC as an early biomarker of PD  

Identifying individuals at risk of developing PD could open a window for earlier intervention61. 

Years before the onset of motor symptoms, there is a dramatic loss of dopaminergic, noradrenergic 

and serotonergic neurons1,62–65. We found that CSF AADC concentrations were already elevated at 

baseline in participants of the PPMI study, all of whom were within two months of diagnosis 

(average time since diagnosis = 21 days) and had not yet started dopamine replacement therapy.  

Recent post-mortem studies have suggested that the nigrostriatal pathway terminals degenerate 

years before substantia nigra neuron death66.  We hypothesize that AADC may be elevated in the 

prodromal stages of PD, and future studies should test the prognostic ability of AADC in prodromal 

individuals.  

 

Methodological Considerations 
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This study analyzed discovery proteomics in five Stanford cohorts and one multi-continent cohort 

from the PPMI. Batch effects between the PPMI and Stanford cohorts affected our ability to train 

the multi-protein classifier – it was prone to over-fitting which led to decreased test performance 

between Stanford and PPMI. We believe this is largely due to proteomics batch effects, since 

training our model in the 2x10 repeated CV paradigm, in which the model learns on a randomly 

partitioned half of all data (Stanford and PPMI) and its performance is tested on the other half, 

yielded very high performance. This design limits overfitting better than more traditional CV 

schemes such as “leave one out” and 10x10 CV. However, 2x10 CV performance is nonetheless 

likely higher than true out-of-sample performance, so it must be emphasized that this is a proof of 

concept for high accuracy classification that should be built on in future studies.  

 

While not a multi-site study, we included samples from participants that were recruited 

independently from five different aging and neurodegeneration cohorts at Stanford.  One study 

strength is that all cohorts include a comprehensive neurological and neuropsychological evaluation 

as well consensus diagnosis that included a neurologist and neuropsychologist.  In addition, all PD 

participants were evaluated both off and on dopaminergic medications.  Further, all five cohorts 

included at least one longitudinal visit, and three of the cohorts are still being followed either 

annually, bi-annually or tri-annually (PUC, ADRC, SAMS). Therefore, clinical diagnoses are more 

accurate than would be from a cross-sectional cohort.  For instance, one participant was enrolled as 

AD-s but at a later visit was found to have clear parkinsonism on exam and met criteria for 

dementia with Lewy bodies (this participant was excluded from the analysis, see extended data 

Figure 1).  We cannot exclude the possibility that additional PD or AD-s participants had more than 

one disease contributing to clinical symptoms at the time CSF was collected, but a majority of these 

participants have agreed to autopsy, which will provide the final pathological diagnoses.   

 

Conclusion  

We have for the first time reported elevated levels of CSF AADC in people with PD and 

demonstrate that AADC concentrations may be used to differentiate people with PD from healthy 

older adults and non-nigrostriatal neurodegeneration (AD-s). Notably, AADC is higher in PD 

participants with more severe motor impairment both on and off dopaminergic medications, and in 

de novo participants with no previous exposure to dopamine replacement therapy. Together, our 

findings suggest AADC reflects degeneration of dopaminergic neurons in the nigrostriatal pathway 
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as well as other monoaminergic neurons and may serve as an adjunct monitoring and diagnostic 

biomarker of PD. 

 

Acknowledgements 

We thank Dr. Jacob Hall, Dr. Veronica Santini, Dr. Sharon Sha and Dr. Laurice Yang for 

performing lumbar punctures in these cohorts. We thank Michelle Fenesy and Anisa Marshall for 

assistance with neuropsychological testing and scoring.  We thank Jeffrey Bernstein, Nicole Corso, 

Wanjia Guo, Marc Harrison, Madison Hunt, Manasi Jayakumar, Anna Khazenzon, Celia Litovsky, 

Natalie Tanner, and Monica Thieu for assistance with SAMS data collection.  

 

We thank participants and family members from the Stanford Alzheimer’s Disease Research Center 

(ADRC) and the Pacific Udall Center (PUC), and we thank Stanford ADRC and PUC investigators 

for their contributions to these data.  Stanford ADRC investigators are Victor W. Henderson 

(principal investigator); Administrative Core—Nusha Askari, Katrin I. Andreasson, Victor W. 

Henderson (leader), Frank M. Longo, Tony Wyss-Coray, and Jerome A. Yesavage; Clinical Core—

Carolyn A. Fredericks, Jacob N. Hall, Victor W. Henderson (leader), Kathleen L. Poston, Veronica 

Rameriz, Allyson C. Rosen, Veronica E. Santini, Sharon J. Sha, Christina Wyss-Coray, Laurice 

Yang, and Maya V. Yutsis; Biostatistics and Data Management Core—Janet Hwang and Lu Tian 

(leader); Neuropathology and Biospecimens Core—Donald E. Born, Divya Channappa, Thomas J. 

Montine (leader), Ahmad Salehi, O. Hannes Vogel, and Tony Wyss-Coray; Outreach, Recruitment, 

and Education Core—Allyson C. Rosen, Vyjeyanthi S. Periyakoil (leader); Imaging Core—Michael 

D. Greicius (leader), Elizabeth C. Mormino; Stanford University, Stanford, CA, and the Veterans 

Affairs Palo Alto Health Care System, Palo Alto, CA.   

 

Contribution Statement 

J.R., K.P., T.W-C., B.L., and P.Z conceptualized the study. J.R. performed all analysis and 

statistics. J.R. and K.P. wrote the manuscript, which was approved by all authors. B.L. and P.Z. 

assisted in analysis on early PD. B.L. assisted with binary classifiers. All data was processed and 

normalized by J.R, B.L., P.Z., and P.M.L. All other authors contributed to data collection in the 5 

Stanford cohorts analyzed in this study.    

 

Funding Sources 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.09.22282149doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22282149
http://creativecommons.org/licenses/by-nc-nd/4.0/


This research was supported by grants from the NIH (NS075097, KP; NS115114, KP; AG048076, 

AW; P50 AG047366 and P30 AG066515, VWH, KP, LT, TJM, and TWC;  NS062684 TJM, LT, 

and KP), Michael J. Fox Foundation for Parkinson’s disease Research (KP, TWC), Alzheimer’s 

Association and McKnight Foundation (GK), The Knight Initiative for Brain Resilience (KP and 

TWC). 

 

References 

1. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. 

Aging 24, 197–211 (2003). 

2. Gesi, M. et al. The role of the locus coeruleus in the development of Parkinson’s disease. 

Neurosci. Biobehav. Rev. 24, 655–668 (2000). 

3. Guttman, M. et al. Brain serotonin transporter binding in non-depressed patients with 

Parkinson’s disease. Eur. J. Neurol. 14, 523–528 (2007). 

4. Cheng, H.-C., Ulane, C. M. & Burke, R. E. Clinical progression in Parkinson disease and the 

neurobiology of axons. Ann. Neurol. 67, 715–725 (2010). 

5. Qiang, J. K. et al. Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann. Neurol. 

74, 119–127 (2013). 

6. Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18, 573–

586 (2019). 

7. Sieber, B.-A. et al. Prioritized research recommendations from the National Institute of 

Neurological Disorders and Stroke Parkinson’s Disease 2014 conference. Ann. Neurol. 76, 469–

472 (2014). 

8. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: 

Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups 

on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011). 

9. Litvan, I. et al. SIC Task Force appraisal of clinical diagnostic criteria for parkinsonian 

disorders. Mov. Disord. 18, 467–486 (2003). 

10. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: 

Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups 

on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 7, 

263–269 (2011). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.09.22282149doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22282149
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Petersen, R. C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194 

(2004). 

12. Jack, C. R. et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease 

biomarkers. Neurology 87, 539–547 (2016). 

13. Shaw, L. M. et al. Cerebrospinal Fluid Biomarker Signature in Alzheimer’s Disease 

Neuroimaging Initiative Subjects. Ann. Neurol. 65, 403–413 (2009). 

14. Sonnen, J. A. et al. Biomarkers for cognitive impairment and dementia in elderly people. 

Lancet Neurol. 7, 704–714 (2008). 

15. Litvan, I. et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: 

Movement Disorder Society Task Force guidelines. Mov. Disord. 27, 349–356 (2012). 

16. Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. 

Disord. 23, 2129–2170 (2008). 

17. Ng, B. et al. Distinct alterations in Parkinson’s medication-state and disease-state connectivity. 

NeuroImage Clin. 16, 575–585 (2017). 

18. Su, P. C. et al. Metabolic changes following subthalamotomy for advanced Parkinson’s disease. 

Ann. Neurol. 50, 514–520 (2001). 

19. Tomlinson, C. L. et al. Systematic review of levodopa dose equivalency reporting in 

Parkinson’s disease. Mov. Disord. 25, 2649–2653 (2010). 

20. Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool 

For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005). 

21. Molloy, D. W. & Standish, T. I. M. A Guide to the Standardized Mini-Mental State 

Examination. Int. Psychogeriatr. 9, 87–94 (1997). 

22. Weintraub, S. et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): The 

Neuropsychological Test Battery. Alzheimer Dis. Assoc. Disord. 23, 91–101 (2009). 

23. Hendershott, T. R. et al. Comparative Sensitivity of the MoCA and Mattis Dementia Rating 

Scale-2 in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 34, 285–291 (2019). 

24. Kerchner, G. A. et al. Hippocampal CA1 apical neuropil atrophy and memory performance in 

Alzheimer’s disease. NeuroImage 63, 194–202 (2012). 

25. Hendershott, T. R., Zhu, D., Llanes, S. & Poston, K. L. Domain-specific accuracy of the 

Montreal Cognitive Assessment subsections in Parkinson’s disease. Parkinsonism Relat. 

Disord. 38, 31–34 (2017). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.09.22282149doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22282149
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Engelborghs, S. et al. Consensus guidelines for lumbar puncture in patients with neurological 

diseases. Alzheimers Dement. Diagn. Assess. Dis. Monit. 8, 111–126 (2017). 

27. Assarsson, E. et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, 

Specificity, and Excellent Scalability. PLOS ONE 9, e95192 (2014). 

28. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear 

Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017). 

29. Hoffman, G. E. & Roussos, P. Dream: powerful differential expression analysis for repeated 

measures designs. Bioinformatics 37, 192–201 (2021). 

30. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). 

31. Kuhn, M. caret: Classification and Regression Training. (2022). 

32. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC 

curves. BMC Bioinformatics 12, 77 (2011). 

33. Wei, R. & Wang, J. multiROC: Calculating and Visualizing ROC and PR Curves Across Multi-

Class Classifications. (2018). 

34. Walker, K. A. et al. Large-scale plasma proteomic analysis identifies proteins and pathways 

associated with dementia risk. Nat. Aging 1, 473–489 (2021). 

35. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. 

Nat. Med. 25, 1843–1850 (2019). 

36. Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 

(2018). 

37. Gold, L. et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. 

PLOS ONE 5, e15004 (2010). 

38. Marek, K. et al. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95, 

629–635 (2011). 

39. Marek, K. et al. The Parkinson’s progression markers initiative (PPMI) – establishing a PD 

biomarker cohort. Ann. Clin. Transl. Neurol. 5, 1460–1477 (2018). 

40. Ashton, N. J. et al. Increased plasma neurofilament light chain concentration correlates with 

severity of post-mortem neurofibrillary tangle pathology and neurodegeneration. Acta 

Neuropathol. Commun. 7, 5 (2019). 

41. Sánchez-Pernaute, R., Harvey-White, J., Cunningham, J. & Bankiewicz, K. S. Functional Effect 

of Adeno-associated Virus Mediated Gene Transfer of Aromatic L-Amino Acid Decarboxylase 

into the Striatum of 6-OHDA-Lesioned Rats. Mol. Ther. 4, 324–330 (2001). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.09.22282149doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22282149
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Ciesielska, A. et al. Depletion of AADC activity in caudate nucleus and putamen of Parkinson’s 

disease patients; implications for ongoing AAV2-AADC gene therapy trial. PLOS ONE 12, 

e0169965 (2017). 

43. Poewe, W. Treatments for Parkinson disease—past achievements and current clinical needs. 

Neurology 72, S65–S73 (2009). 

44. Ghilardi, M. F. et al. L-Dopa infusion does not improve explicit sequence learning in 

Parkinson’s disease. Parkinsonism Relat. Disord. 13, 146–151 (2007). 

45. Christine, C. W. et al. Magnetic resonance imaging–guided phase 1 trial of putaminal AADC 

gene therapy for Parkinson’s disease. Ann. Neurol. 85, 704–714 (2019). 

46. Pratt, D. S. & Kaplan, M. M. Evaluation of Abnormal Liver-Enzyme Results in Asymptomatic 

Patients. N. Engl. J. Med. 342, 1266–1271 (2000). 

47. Mittermeyer, G. et al. Long-Term Evaluation of a Phase 1 Study of AADC Gene Therapy for 

Parkinson’s Disease. Hum. Gene Ther. 23, 377–381 (2012). 

48. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson 

disease. Neurology 73, 1662–1669 (2009). 

49. Eberling, J. L. et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson 

disease. Neurology 70, 1980–1983 (2008). 

50. Levodopa and the Progression of Parkinson’s Disease. N. Engl. J. Med. 351, 2498–2508 (2004). 

51. Lidstone, S. C. et al. Effects of Expectation on Placebo-Induced Dopamine Release in 

Parkinson Disease. Arch. Gen. Psychiatry 67, 857–865 (2010). 

52. Goetz, C. G. et al. Placebo response in Parkinson’s disease: Comparisons among 11 trials 

covering medical and surgical interventions. Mov. Disord. 23, 690–699 (2008). 

53. Mollenhauer, B. et al. Longitudinal analyses of cerebrospinal fluid α-Synuclein in prodromal 

and early Parkinson’s disease. Mov. Disord. 34, 1354–1364 (2019). 

54. Ballatore, C., Lee, V. M.-Y. & Trojanowski, J. Q. Tau-mediated neurodegeneration in 

Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007). 

55. Russo, M. J. et al. High diagnostic performance of independent alpha-synuclein seed 

amplification assays for detection of early Parkinson’s disease. Acta Neuropathol. Commun. 9, 

179 (2021). 

56. Luan, M. et al. Diagnostic Value of Salivary Real-Time Quaking-Induced Conversion in 

Parkinson’s Disease and Multiple System Atrophy. Mov. Disord. 37, 1059–1063 (2022). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.09.22282149doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22282149
http://creativecommons.org/licenses/by-nc-nd/4.0/


57. Poggiolini, I. et al. Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification 

in synucleinopathies. Brain 145, 584–595 (2022). 

58. Orrù, C. D. et al. A rapid α�synuclein seed assay of Parkinson’s disease CSF panel shows high 

diagnostic accuracy. Ann. Clin. Transl. Neurol. 8, 374–384 (2020). 

59. Rossi, M. et al. Diagnostic Value of the CSF α-Synuclein Real-Time Quaking-Induced 

Conversion Assay at the Prodromal MCI Stage of Dementia With Lewy Bodies. Neurology 97, 

e930–e940 (2021). 

60. Schneider, S. A. & Alcalay, R. N. Neuropathology of Genetic Synucleinopathies with 

Parkinsonism – review of the literature. Mov. Disord. Off. J. Mov. Disord. Soc. 32, 1504–1523 

(2017). 

61. Yazdani, U. et al. Blood biomarker for Parkinson disease: peptoids. Npj Park. Dis. 2, 1–7 

(2016). 

62. de la Fuente-Fernández, R. et al. Age-specific progression of nigrostriatal dysfunction in 

Parkinson’s disease. Ann. Neurol. 69, 803–810 (2011). 

63. Grosch, J., Winkler, J. & Kohl, Z. Early Degeneration of Both Dopaminergic and Serotonergic 

Axons – A Common Mechanism in Parkinson’s Disease. Front. Cell. Neurosci. 10, (2016). 

64. Buddhala, C. et al. Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. 

Ann. Clin. Transl. Neurol. 2, 949–959 (2015). 

65. Sommerauer, M. et al. Decreased noradrenaline transporter density in the motor cortex of 

Parkinson’s disease patients. Mov. Disord. 33, 1006–1010 (2018). 

66. Kordower, J. H. et al. Disease duration and the integrity of the nigrostriatal system in 

Parkinson’s disease. Brain 136, 2419–2431 (2013). 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.09.22282149doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22282149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Differential expression analysis of Parkinson’s disease participants in our 5 cohorts using a multi-level 

mixed effects model controlled for age, sex, demographics, and sample-relatedness. Lower horizontal dotted line 

indicates FDR significance threshold, upper horizontal line indicates Bonferroni significance threshold. Dotted 

vertical lines indicate an arbitrary 0.25 log2 fold change cutoff for differential expression. Significant hits are 

colored and shaded by cutoff. DDC encodes the enzyme AADC, it is labeled here as DDC to remain consistent 

with the naming convention of the Olink proteomic platform. A). Results comparing PD participants to healthy 

controls in CSF. B). Results comparing PD participants to AD-s participants in CSF. C.) Results comparing PD 

participants to healthy controls in plasma D.) Results comparing PD participants to AD-s participants in plasma. 
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Figure 2. A). CSF AADC levels are elevated in AD and PD participants, with greater elevation in PD. Test 

statistics from Wilcoxen Rank Sum test. B.) AADC levels are elevated in early PD participants. Test statistics 

from Wilcoxen Rank Sum test. C.) CSF AADC levels are associated with clinician-assessed motor symptom 

severity in Parkinson’s disease participants as measured by the MDS-UPDRS III Off score. D.) CSF AADC 

levels are associated with clinician-assessed motor symptom severity in Parkinson’s disease participants as 

measured by the MDS-UPDRS III On score. E.) Effect size and significance for relationships in C,D. 
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Figure 3: Replication of AADC findings in an independent treatment naive Parkinson’s Disease population. 

A,B.) CSF (A) and plasma (B) differential expression analysis of treatment naïve Parkinson’s participants at 

baseline compared to healthy control participants at baseline. Linear modeling controlled for age, sex, and 

demographics. P values are shown instead of FDR-corrected p values. Due to small sample size of the cohort, no 
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proteins pass FDR multiple testing for proteome-wide significance. C.) .) Plot of CSF AADC levels at the baseline 

visit for treatment naïve PD participants and healthy controls, prior to start of dopamine replacement therapy. 

D.) CSF AADC level is associated with clinician-assessed motor symptom severity in the PPMI cohort.  E.) CSF 

AADC level is associated with total symptom severity score in the PPMI cohort. F.) Effect size and significance 

values for models plotted in D,E.  G.) plasma AADC levels are negatively associated with global cognition 

assessed by the MoCA score H.) plasma AADC level is associated with clinician-assessed motor symptom 

severity in the PPMI cohort. I.) plasma AADC level is associated with total symptom severity score in the PPMI 

cohort. J.) Effect size and significance values for models plotted in G,H,I 
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Figure 4. Development and testing of logistic regression classifiers to discriminate PD participants from healthy 

controls and AD participants using AADC levels in CSF and plasma. Receiver operating characteristic (ROC) 

sensitivity-specificity curves of classifier performance are plotted. Area Under the Curve (AUC) is a measure of 

classifier performance, with an AUC of 1 being perfect classification with no false positives (perfect specificity) 
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and no false negatives (perfect specificity). The diagonal line represents the performance of a random guess. 

Classifier using CSF AADC levels plus age and sex is shown in blue. Classifier using plasma AADC levels is 

shown in red. Classifier using both CSF and plasma AADC levels is shown in black. Top row A,B,C). ROC 

curves for the training and testing of the PD vs HC classifier. A.) Performance on PD vs HC in the BPD, PUC, 

and SCMD cohorts which was used to train the model. CSF AUC = 0.88. Plasma AUC = 0.87. Combined AUC = 

0.92. B.) Performance of the PD vs ADHC model in the independent test sets ADRC and SAMS. CSF AUC = 

0.80. Plasma AUC = 0.84. Combined AUC = 0.89 C). Performance of the PD vs ADHC model in the independent 

test set PPMI. . CSF AUC = 0.75. Plasma AUC = 0.64. Combined AUC = 0.74. D,E) ROC curves for the training 

and testing of the PD vs AD classifier. D.) PD vs AD performance in the training cohorts. CSF AUC = 0.75. 

Plasma AUC = 0.81. Combined AUC = 0.79 E.) PD vs AD performance in the ADRC/SAMs cohort. CSF AUC = 

0.67. Plasma AUC = 0.78. Combined AUC = 0.73. Note there are no AD participants to evaluate in the PPMI so 

data is not shown. F.) Performance of the 16-protein classification model. Statistics from 2x10 repeated cross-

validation shown. Multiclass AUC is calculated by micro-state averaging. G.) Negative and positive predictive 

values of the multi-protein classifier. 
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Extended data figure 1: Flowchart of included and excluded participants in the 5 Stanford cohorts analyzed in 

this study.  
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AD-s, Alzheimer’s Disease spectrum; CSF, Cerebrospinal Fluid; HC, Healthy Controls; PD, Parkinson’s 

Disease. 
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Extended data figure 2. Principal component analysis results for global protein expression in CSF and plasma. 

A,C) Correlation between top 10 principal components from CSF (A) or plasma (C) protein expression and 

demographic/disease diagnostic variables of interest. * indicates Bonferroni-adjusted p < 0.05. ** indicates 

Bonferroni-adjusted p < 0.01. B,D) Scree plots showing the proportion of variance explained by each of the top 

10 principal components in CSF (B) and plasma (D). 

 

 

Extended data figure 3. Differential expression of proteomics in the Stanford cohorts for Age and Gender. 

Lower horizontal dotted line indicates FDR significance threshold, upper horizontal line indicates Bonferroni 
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significance threshold. Dotted vertical lines indicate an arbitrary 0.25 log2 fold change cutoff for differential 

expression. Significant hits are colored and shaded by cutoff. A,B) CSF expression. C,D) Plasma expression. 

 

Extended data figure 4. A) Tissue RNA expression level of the DDC gene in the human Genotype Tissue 

Expression (GTEx) resource. DDC is highly expressed in the substantia nigra of the brain compared to other 

brain regions. . B) CSF AADC expression measured by the SomaScan proteomics platform confirms levels are 

specifically elevated in Parkinson’s disease. 
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Extended data figure 5. plasma AADC levels are not associated with motor symptom severity in the 5 Stanford 

cohorts.   

 

Extended data figure 6. Differential expression analysis of Parkinson’s disease participants in the PPMI cohort 

using all longitudinal samples. Differential expression is performed with a multi-level mixed effects model 

controlled for age, sex, demographics, and sample-relatedness. Lower horizontal dotted line indicates FDR 

significance threshold, upper horizontal line indicates Bonferroni significance threshold. Dotted vertical lines 

indicate an arbitrary 0.25 log2 fold change cutoff for differential expression. Significant hits are colored and 
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shaded by cutoff. A) DDC (aka AADC) is the only protein that passes proteome-wide Bonferroni significance for 

differential expression in CSF. P values are shown instead of FDR-corrected p values. Due to small sample size 

of the cohort, only DDC passes FDR multiple hypothesis testing correction for proteome-wide significance. B) 

Plasma differential expression as in A. 

 

 

Extended data figure 7. CSF alpha synuclein level is not associated with motor or cognitive symptoms at baseline 

in the treatment naïve PPMI cohort A) MDS-UPDRS III, clinician-assessed motor symptoms. B) MDS-UPDRS 

total symptom score. C) MoCA score. D) Correlation between CSF ADC levels at baseline in treatment naïve 

PPMI cohort and CSF alpha synuclein levels. 
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Extended data figure 8. A) Correlation between CSF ADC levels at baseline in treatment naïve PPMI cohort and 

time since Parkinson’s diagnosis in months. B) Correlation between CSF ADC levels at baseline in treatment 

naïve PPMI cohort and time since Parkinson’s symptom onset in months.  
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Extended data figure 9. A stepwise multi-class logistic regression was run using the top 15 hits from differential 

expression of PD vs AD and PD vs HC participants, in both CSF and plasma. A model was built up by iteratively 

testing the addition of one additional biomarker to previous model (one step) and evaluating the Akaike 

Information Criteria (AIC) for all possible stepwise combinations. The baseline model included DDC in CSF, 

age, and gender (step 1). A) The optimal model based on AIC had 15 additional biomarkers, before the AIC 

began to increase and the model performed sub-optimally. B) . Feature weights for the combined biomarker PD 

classification model trained with L2 penalized logistic regression. Proteins are shown in order of model inclusion 

using stepwise forward logistic regression. 
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