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Abstract: West Nile virus primarily infects birds and mosquitoes but has also caused over 2000 human 12 

deaths, and >50,000 reported human cases. Present-day West Nile virus risk was described for the 13 

Northeastern United States, using a negative binomial model. Changes in risk due to climate change 14 

were examined for the next decade using a temperature-trait model. West Nile virus risk was generally 15 

expected to increase over the next decade due to changes in temperature, but the changes in risk were 16 

generally small. Many, but not all, populous counties in the northeast are already near peak risk. Several 17 

years in a row of low case numbers is consistent with a negative binomial, and should not be interpreted 18 

as a change in disease dynamics. Public health budgets need to be prepared for the expected infrequent 19 

years with higher-than-average cases. Absence of reported cases from low-population counties is 20 

consistent with similar risk as nearby counties with cases.  21 
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Introduction: Climate change is predicted to adversely affect human health and economic productivity 25 

(USGCRP, 2018, p. 18). One way climate change is expected to affect human health is through changes 26 

to patterns of infectious disease (e.g., Ryan et al., 2015). West Nile virus (WNV) is a vector-borne disease 27 

of public health concern (Hayes et al., 2005; Keyel, Gorris, et al., 2021) and is expected to change its 28 

distribution due to climate change (Chen et al., 2013; Hoover & Barker, 2016; Keyel, Raghavendra, et al., 29 

2021). Broadly, WNV is expected to shift northward, but regional temperature-based analyses show that 30 

changes may vary depending on regional differences in temperature (Keyel, Raghavendra, et al., 2021; 31 

Morin & Comrie, 2013). For most of the Northeast, temperatures are predicted to warm, especially 32 

minimum (night-time) temperatures (Liu et al., 2017). Precipitation is also predicted to increase, 33 

especially in winter, due in part to an increased number of storms (Lynch et al., 2016; Thibeault & Seth, 34 

2014). Summers may see increased run-off and periods of dryness (Lynch et al., 2016). In the next ten 35 

years, the climate is expected to warm by 0.2 – 0.5 °C (Liu et al., 2017). These predicted changes are 36 

within the range of variation in temperature currently experienced (Fig. 1). 37 

 38 

Probabilistic null models have been previously developed for the United States (Keyel et al., 39 

unpublished). These models consider a range of possible outcomes, rather than predicting one single 40 

number of cases for the future. In one instance, a model that worked well in a non-probabilistic context 41 

(e.g., Keyel et al., 2019) was not able to outperform a probabilistic negative binomial null model in a 42 

predictive context. As a consequence, current models for the Northeastern US are very good at 43 

describing the range of possible outcomes, but do not provide much information on where in the range 44 

of outcomes a particular year will fall. 45 

 46 
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The goal of this manuscript was to apply the probabilistic null models to gain useful insights into 47 

patterns of West Nile virus, and compare them to short-range climate change predictions with an aim of 48 

identifying short-term adaptation measures that can be taken. 49 

 50 

Methods 51 

Negative binomial model 52 

Negative binomial model predictions were taken from Keyel et al. (Keyel et al., unpublished), as that was 53 

found to be among the strongest null models in the Northeast. The negative binomial was chosen 54 

instead of the historical null model due to the long time series, and the capacity to downscale model 55 

results based on population (Klenke, 2008). The model used here was implemented in R (R Core Team, 56 

2017). This distribution allowed us to cleanly calculate probability of an arbitrary number of human 57 

neuroinvasive cases for an arbitrary number of years into the future. While this model does not identify 58 

a good year vs. a bad year, it can give insights into the overall probability of a bad year for WNV. 59 

 60 

A negative binomial was fit to each county individually, and to groups of multiple counties (Figure S1). 61 

Group assignment was subjective and followed the following guidelines: Each group needed to be 62 

contiguous with surrounding counties, contain counties from only one state, and include a minimum of 63 

600,000 people in each group. No upper group size was imposed, but groups with more than 1,200,000 64 

were examined to see if they could be split into two or more groups. Secondarily, counties with similar 65 

population density were preferentially grouped together. The probability a county would have zero 66 

West Nile virus cases by chance was calculated, assuming the down-scaled group negative binomial 67 

distribution was true.  68 

 69 
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Neuroinvasive case data are available from the Centers for Disease Control ArboNET (CDC, 2019), and R 70 

code is available from a public repository (software citation pending). Maps were created using ArcGIS 71 

10.6.1 (Redlands, CA) with 2017 US Census TIGER/Shapefiles as the county base layer (US Census 72 

Bureau, 2021). Population data were derived from US Census data (US Census Bureau, 2017, 2019). 73 

 74 

Climate change predictions 75 

Mosquito-temperature-trait models have been productively used to understand vector-borne diseases 76 

(Mordecai et al., 2019). They were recently adapted to WNV (Shocket et al., 2020). It was previously 77 

found that statistical models trained on human cases that included an adequate temperature range 78 

largely supported the results of mosquito-trait-based models for West Nile virus in New York and 79 

Connecticut (Keyel, Raghavendra, et al., 2021). This manuscript builds upon this prior work by expanding 80 

the use of the mosquito temperature-trait models to the entire northeast. Briefly, these models use 81 

mosquito life history traits to estimate a relative R0 for mosquito risk based on temperature. Traits are 82 

combined in a multiplicative framework (see Eqn 1, modified from (Shocket et al., 2020), see (Keyel, 83 

Raghavendra, et al., 2021) for details), then scaled to give an index of risk between 0 and 1. 84 

 85 

����� � ������ � 	
��� � � �����

������ � �
����� � ����� � ������ � ������ � ������  (Eqn 1) 86 

 87 

Host density and disease duration were assumed to be constant (but see Kilpatrick et al., 2006 for the 88 

potential for host heterogeneity to affect these results). Critically, these models look at the contribution 89 

of temperature only to risk, other important factors such as breeding habitat availability, land cover 90 

(Bradley et al., 2008), or precipitation are not considered (Shocket et al., 2020). Please note that these 91 

models were developed in the context of Culex pipiens, and therefore predicted risk will likely be 92 

different for different mosquito species (Shocket et al., 2020). However, Cx. pipiens is one of the most 93 
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important mosquito vectors across the Northeastern US (Andreadis, 2012; Kilpatrick et al., 2005; 94 

Simpson et al., 2012; Turell et al., 2005). Present day conditions and risk expected for 0.5 °C warming 95 

were examined. Present-day July – September mean temperatures were derived from gridMET 96 

(Abatzoglou, 2013), using the GridMET downloader tool (Wimberly & Davis, 2019) and averaged over 97 

the entire period. Model results up to 4°C warming were generated and are available (data citation 98 

pending). Up to 4°C warming for the 5 most densely populated counties in the Northeast was also 99 

examined (Table 1). Warming of up to 4°C is within the realm of possible temperature changes for the 100 

Northeast by the end of the century (IPCC, 2014; Liu et al., 2017). This is also the rationale for 0.5°C for 101 

an upper-bound for the increase in temperature in the next decade (4°C / 8 decades = 0.5°C per 102 

decade). Note that the analyses here calculated trait-based risk on mean temperatures for the region. 103 

Due to the non-linear response curve, the quantitative results would have differed if relative risk were 104 

calculated first, and then averaged. A second source of error for this approach is microclimatic 105 

variability, which can affect disease risk (Haider et al., 2017). Future research could refine these results, 106 

but the broad patterns are expected to be qualitatively similar. 107 

 108 

Results 109 

Most counties (374 of 433) in the study region had a low probability (<20% chance) of having a single 110 

WNV neuroinvasive case in the next year (Fig. 2a). More than three times more counties had a high risk 111 

of having at least one neuroinvasive case (>60% chance) in a five-year time frame (63, Fig. 2b) compared 112 

to a 1-year timeframe (17 of 433, Fig. 2a). Relatively few counties (10 of 433) had a high probability 113 

(>60% chance) of having a year with at least 5 neuroinvasive cases within a 5-year timeframe, and these 114 

were predominantly urban areas with high populations (Fig. 2c). Two groups, containing 40 counties, 115 

never had a single case of WNV. For the remaining groups with WNV cases, counties with no observed 116 

cases were predicted to have a low probability of cases based on the group model. Only one county 117 
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(Washington, PA) had a <0.05 probability of having 20 years of no cases by chance assuming a similar 118 

risk to the rest of the counties in the group. When corrected for multiple comparisons, no county 119 

differed significantly from the negative binomial model (with 174 comparisons, ~8-9 counties would be 120 

expected to have a p value <0.05 by chance). 121 

 122 

When risk was divided up into 5 equal intervals, 223 counties had the highest temperature-based risk 123 

for WNV, while 14 were in the lowest risk category (Fig. 3a). Most counties (84%, 365 of 433) were 124 

predicted to increase in temperature-based risk over the next decade (Fig. 3b). 125 

 126 

The five most densely populated urban areas are expected to remain in a suitable temperature range for 127 

WNV under future warming (Table 1). Once 0.5 °C of warming has occurred, 4 of the 5 urban areas will 128 

decrease in risk with further warming. However, substantial reductions in risk for many major urban 129 

areas will not occur with less than 2.5 °C of warming. 130 

 131 

Discussion 132 

A negative binomial distribution does a very good job of describing patterns of WNV in the northeast 133 

(Keyel et al., unpublished). The most important insight for public health is that a series of years with no 134 

or few WNV cases is possible even with a constant WNV risk. This means that reducing public health 135 

expenditures based on a few years with low WNV, on the assumption that it ‘has gone away’ is a poor 136 

strategy and will leave public health unprepared for the expected high years. WNV budgets should 137 

consider WNV risk over at least 5-year time horizons and have an emergency fund or the capacity to roll 138 

over funds from one year to the next, in order to address the expected high WNV years. 139 

 140 
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Further, areas with low rates of WNV may want to adopt a regional response approach that ensures 141 

counties have access to resources when cases occur. For most of the Northeast, a previous absence of a 142 

neuroinvasive WNV case over the past 20 years is not an indicator that the county will remain free of 143 

neuroinvasive WNV cases in the future, or even is lower risk than counties that have previously had 144 

cases. This suggests that these counties do not have some special protecting factors, but simply did not 145 

have cases due to low populations and random chance. The exceptions to this are in most of Maine (Fig. 146 

2) and southwestern Virginia, where no cases have been reported. Both of these areas are predicted to 147 

have increased risk in the next decade due to climate change (Fig. 3). This is likely to be more relevant 148 

for Maine than Virginia, as current temperature-based risk is relatively low in Maine. In Virginia, 149 

temperature-based risk is already high, suggesting some other factor is responsible for the reduced 150 

number of cases. Therefore, southwestern Virginia may not see an increase in number of cases due to 151 

warming.  152 

 153 

In the long-run, WNV risk is expected to increase across most of the Northeast, with the largest 154 

increases predicted in areas with relatively low present-day risk. Decreases in risk are predicted for the 155 

southern portion of the region. Locations where West Nile virus is relatively rare will need to be on the 156 

look-out for an increase in cases (Fig. 3b). These counties can expect to see substantial increases in 157 

temperature-based risk in the coming decades. Some of these regions should prepare to begin 158 

surveillance programs, doctors should familiarize themselves with WNV symptoms and lab work, and 159 

mosquito control operations should be prepared for expanded operations to reduce disease risk. That 160 

said, temperature-based risk is currently high in some localities that have low observed WNV risk, and 161 

therefore other factors may also be critical in determining how WNV risk may change into the future. 162 

 163 
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Locations with the most WNV cases in the present will have relatively little to do for long-term climate-164 

change-related planning for West Nile virus. Existing mitigation measures should be as effective or more 165 

effective at controlling West Nile virus in the future, as conditions shift to be less suitable for mosquito-166 

based transmission of West Nile virus. An important caveat is this research was purely from the 167 

standpoint of WNV. In locations where WNV is expected to decline, other vector-borne diseases, such as 168 

Zika virus may expand (Ryan et al., 2021). However, warming is not predicted to be sufficient to be 169 

suitable for dengue to become endemic in the Northeast under future climate change scenarios that 170 

extend out to 2080 (Messina et al., 2019). 171 

 172 

The mismatch between probabilistic present-day risk compared to temperature-trait-based risk for the 173 

Northeast is interesting (compare Fig. 2b and Fig. 3a). Virginia and West Virginia are lower risk than 174 

expected based on the temperature models, while western and central Pennsylvania appears to be 175 

higher risk than predicted by the temperature models. Future work can explore whether landcover can 176 

explain these discrepancies, as prior research has suggested that urban areas are more favorable to 177 

WNV amplification (Bradley et al., 2008). 178 

 179 

Another interesting future direction would be to compare probabilistic risk with present-day 180 

surveillance effort. Are some regions under-surveyed for vector-borne diseases? Could additional 181 

surveillance reduce human cases in these regions? Do some areas with high surveillance have fewer 182 

cases than predicted? Are they over-surveyed, or does the enhanced surveillance lead to fewer cases? 183 

 184 
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Table 1. Relative R0’s for 5 major northeastern US metropolitan counties based on different levels of 289 

warming (in C). 290 

County +0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0 

Suffolk (Boston) 0.88 0.92 0.96 0.99 1.00 1.00 0.98 0.96 0.92 

New York (Manhattan) 1.00 1.00 0.98 0.95 0.91 0.86 0.80 0.73 0.66 

Philadelphia 1.00 1.00 0.99 0.96 0.92 0.88 0.82 0.75 0.68 

Baltimore City 0.98 0.95 0.91 0.86 0.80 0.74 0.66 0.58 0.50 

District of Columbia 1.00 0.99 0.96 0.92 0.87 0.82 0.75 0.67 0.597 
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 293 
Fig. 1. a) Present-day mean temperature for July - September, b) standard deviation of present-day 294 

temperature. Map base layer from 2017 TIGER/Shapefiles (US Census Bureau, 2021). 295 
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 297 

Fig. 2. a) Probability of having one case of West Nile virus in the next year, b) probability of having at 298 

least one case of WNV in the next five years, and c) probability of having one year with at least 5 cases in 299 

the next five years. The negative binomial model was fit based on historical cases. Counties with less 300 

than 600,000 people were merged with other contiguous counties in the same state until at least a 301 

600,000 person threshold was reached, to ensure a sufficient population size to detect WNV at low 302 

incidence. Results were then downscaled back to the county level. Underlying spatial data from 2017 303 

TIGER/Shapefiles from US Census bureau (US Census Bureau, 2021). 304 
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 306 

Fig. 3 a) present-day temperature-trait-predicted relative risk for Culex pipiens, and b) the predicted 307 

change in temperature-based risk with 0.5 °C warming (on the high end for predicted for warming in the 308 

next decade). Note that this amount of warming falls within the range of present day temperature 309 

variation around the mean presented in (a). Map base layer from 2017 TIGER/Shapefiles (US Census 310 

Bureau, 2021). 311 
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 314 

Figure S1. Map of population by groups used to fit the negative binomial model. Group assignment 315 

included a subjective element, and results for individual counties could vary depending on group 316 

assignment. Groups derived from merging 2017 TIGER/Shapefiles (US Census Bureau, 2021). 317 
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