$\mathbf{1}$

- -
Ti
m $\begin{array}{c} \n\text{1} \quad \text{1} \quad \$
- 1 The Patterns of West Nile virus in the Nile virus in the Northeastern United States using negative binomial and
1
4 Author: Alexander C. Keyel^{1,2}
-
- $\begin{array}{c} 4 \\ 5 \\ 6 \end{array}$
- 3
4 Author: Alexander C. Keyel^{1,2}
5 ORCIDs: ACK: 0000-0001-5256-6
- Author: Alexander C. Keyel^{4,2}
5 ORCIDs: ACK: 0000-0001-525
6 ¹ Division of Infectious Diseas
7 United States of America ¹ Division of Infectious Diseases, Wad
7 United States of America
8 ² Department of Atmospheric and En
-
- 1 1 Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY,
2 1 United States of America
2 2 Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Alb ² Department of Atmosph
9 United States of America
0 Contact information (ACK 2 Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY,
-
- 8 Department of Atmospheric and Environmental Sciences, Environmental Sciences, United States of America

8 Octobridge Contact information (ACK): <u>alexander.keyel@health.ny.gov</u>

1

9 Dimensioner Economics
1
2 **Abstract**: West Nile virus 11
12 **Abstract**: West Nile virus primarily infects birds and mosquit
13 deaths, and >50,000 reported human cases. Present-day We 12
13
14 12 Abstract: West Nile virus primarily infects birds and mosquitoes but has also caused over 2000 human
13 deaths, and >50,000 reported human cases. Present-day West Nile virus risk was described for the
14 Northeastern Un deaths, and >50,000 reported human cases. Present-day West Nile virus risk was described for the
14 Northeastern United States, using a negative binomial model. Changes in risk due to climate change
15 were examined for th 15 were examined for the next decade using a temperature-trait model. West Nile virus risk was generally
16 expected to increase over the next decade due to changes in temperature, but the changes in risk were
17 generally expected to increase over the next decade due to changes in temperature, but the changes in risk were
17 generally small. Many, but not all, populous counties in the northeast are already near peak risk. Several
18 vears i 17 generally small. Many, but not all, populous counties in the northeast are already near peak risk. Several
18 years in a row of low case numbers is consistent with a negative binomial, and should not be interpreted
19 a 18 years in a row of low case numbers is consistent with a negative binomial, and should not be interpreted
19 as a change in disease dynamics. Public health budgets need to be prepared for the expected infrequent
19 years 19 as a change in disease dynamics. Public health budgets need to be prepared for the expected infrequent
18 years with higher-than-average cases. Absence of reported cases from low-population counties is
18 consistent wit 19 are vears with higher-than-average cases. Absence of reported cases from low-population counties is
21 consistent with similar risk as nearby counties with cases.
22 22 consistent with similar risk as nearby counties with cases.
22 Keywords: Arbovirus; vector-borne disease; negative binomial; temperature-trait model; climate

22
23 Eleywords: Arbovirus; vector-borne disease; negative bino
24 Eleange; public health --
23
24 24 Change; public health
23 Keywords: Arboric health
23 Keywords: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical pr $\begin{aligned} \text{NOTE: This preprint report} \end{aligned}$

 $\overline{2}$

 $\overline{3}$

- -
Tł
pa
id $\frac{1}{1}$
- 17 The goal of this manuscript was to apply the probabilistic numbers in gain useful insights into

48 patterns of West Nile virus, and compare them to short-range climate change predictions with an

49 identifying short-t
- 19 particular of West Nile virus, and compared the measures that can be taken.
19 pathods
19 **Methods** with an aim of the short-range predictions with an aim of the short-range predictions with an aim of the short-range pr
-

49 identifying short-term adaptation measures that can be taken.
50
52 **Negative binomial model** 51
52
53

51 Methods
52 **Negative**
53 Negative I
54 found to k 52 Negative binomial model
53 Negative binomial model
54 found to be among the str
55 instead of the historical nu

55 instead of the historical null model due to the long time series, and the capacity to downscale model
56 results based on population (Klenke, 2008). The model used here was implemented in R (R Core Te
57 2017). This dis

54 found to be among the strongest null models in the Northeast. The negative binomial was chosen
55 instead of the historical null model due to the long time series, and the capacity to downscale model
56 results based on For instead of the historical numbers and to the history and the capacity to do interact in the long
The model used here was implemented in R (R Core Tean
2017). This distribution allowed us to cleanly calculate probabilit

2017). This distribution allowed us to cleanly calculate probability of an arbitrary number of human
158 meuroinvasive cases for an arbitrary number of years into the future. While this model does not identify
159 a good y 58 neuroinvasive cases for an arbitrary number of years into the future. While this model does not ider
59 a good year vs. a bad year, it can give insights into the overall probability of a bad year for WNV.
60

59 a good year vs. a bad year, it can give insights into the overall probability of a bad year for WNV.
60
61 A negative binomial was fit to each county individually, and to groups of multiple counties (Figure S1). 59 a good year vs. a bad year, it can give insights into the overall probability of a bad year for WNV.
60
61 A negative binomial was fit to each county individually, and to groups of multiple counties (Figure S1).
62 Grou 61
62
63 62 Group assignment was subjective and followed the following guidelines: Each group needed to be
63 contiguous with surrounding counties, contain counties from only one state, and include a minimum of
64 600,000 people in 63 contiguous with surrounding counties, contain counties from only one state, and include a minimu
64 600,000 people in each group. No upper group size was imposed, but groups with more than 1,200
65 were examined to see 63 600,000 people in each group. No upper group size was imposed, but groups with more than 1,200,000
were examined to see if they could be split into two or more groups. Secondarily, counties with similar
population densi were examined to see if they could be split into two or more groups. Secondarily, counties with similar
66 population density were preferentially grouped together. The probability a county would have zero
67 West Nile viru 66 population density were preferentially grouped together. The probability a county would have zero
67 West Nile virus cases by chance was calculated, assuming the down-scaled group negative binomial
68 distribution was t West Nile virus cases by chance was calculated, assuming the down-scaled group negative binomial
distribution was true.
69 68 distribution was true.
69 69
69

 $\overline{4}$

85
\n86
$$
R_0(T) = \sqrt{a(T)^3 * vc(T) * e^{\frac{-u(T)}{PDR(T)}} * EFGC(T) * EV(T) * pLA(T) * MDR(T) * u(T)^{-3}}
$$
 (Eqn 1)
\n87
\n88 Host density and disease duration were assumed to be constant (but see Kilpatrick et al., 2006 for the

BEFOLUTE: $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ 88
89
90 88 Botential for host heterogeneity to affect these results). Critically, these models look at the contribution
88 Boten disease only to risk, other important factors such as breeding habitat availability, land cover
81 (B 89 potential for host heterogeneity to affect these results). Critically, these models look at the contributio
80 of temperature only to risk, other important factors such as breeding habitat availability, land cover
81 (B 91 (Bradley et al., 2008), or precipitation are not considered (Shocket et al., 2020). Please note that the:
92 models were developed in the context of *Culex pipiens*, and therefore predicted risk will likely be
93 differ 91 models were developed in the context of *Culex pipiens*, and therefore predicted risk will likely be
93 different for different mosquito species (Shocket et al., 2020). However, *Cx. pipiens* is one of the most 93 different for different mosquito species (Shocket et al., 2020). However, Cx. pipiens is one of the r
93 different for different mosquito species (Shocket et al., 2020). However, Cx. pipiens is one of the r 933 different for different mosquito species (Shocket et al., 2020). However, Cx. pipiens is one of the most

 $\overline{5}$

 $\sqrt{6}$

 $\overline{7}$

r
Fu
ne |
|
| 141 Further, areas with low rates of WNV may want to adopt a regional response approach that ensures
142 counties have access to resources when cases occur. For most of the Northeast, a previous absence of a
143 neuroinvas 143 neuroinvasive WNV case over the past 20 years is not an indicator that the county will remain free of
144 neuroinvasive WNV cases in the future, or even is lower risk than counties that have previously had
145 cases. T 144 neuroinvasive WNV cases in the future, or even is lower risk than counties that have previously had
145 cases. This suggests that these counties do not have some special protecting factors, but simply did no
146 have c 145 cases. This suggests that these counties do not have some special protecting factors, but simply did
146 have cases due to low populations and random chance. The exceptions to this are in most of Maine
147 2) and south 146 have cases due to low populations and random chance. The exceptions to this are in most of Maine (Fig
147 2) and southwestern Virginia, where no cases have been reported. Both of these areas are predicted to
148 have i 147 and southwestern Virginia, where no cases have been reported. Both of these areas are predicted to
148 have increased risk in the next decade due to climate change (Fig. 3). This is likely to be more relevant
149 for M 148 have increased risk in the next decade due to climate change (Fig. 3). This is likely to be more relevant
149 for Maine than Virginia, as current temperature-based risk is relatively low in Maine. In Virginia,
150 temp 149 for Maine than Virginia, as current temperature-based risk is relatively low in Maine. In Virginia,
150 temperature-based risk is already high, suggesting some other factor is responsible for the reduced
151 number of 149 for Maine than Virginia, as current temperature-based risk is relatively low in Maine. In Virginia,
150 temperature-based risk is already high, suggesting some other factor is responsible for the reduced
151 number of 151 number of cases. Therefore, southwestern Virginia may not see an increase in number of cases due
152 warming.
153 152 warming.
153
154 In the long-run, WNV risk is expected to increase across most of the Northeast, with the largest 153
153
154 In the long
155 increases 154
155
156 154 In the long-run, WNV risk is expected to increase across most of the Northeast, with the largest
155 increases predicted in areas with relatively low present-day risk. Decreases in risk are predicted for the
156 southe 156 southern portion of the region. Locations where West Nile virus is relatively rare will need to be on the
157 look-out for an increase in cases (Fig. 3b). These counties can expect to see substantial increases in
158 t 157 look-out for an increase in cases (Fig. 3b). These counties can expect to see substantial increases in
158 temperature-based risk in the coming decades. Some of these regions should prepare to begin
159 surveillance pr 158 temperature-based risk in the coming decades. Some of these regions should prepare to begin
159 surveillance programs, doctors should familiarize themselves with WNV symptoms and lab work, ar
160 mosquito control opera 159 surveillance programs, doctors should familiarize themselves with WNV symptoms and lab wor
160 mosquito control operations should be prepared for expanded operations to reduce disease ris
161 said, temperature-based ri 160 mosquito control operations should be prepared for expanded operations to reduce disease risk. That
161 said, temperature-based risk is currently high in some localities that have low observed WNV risk, and
162 therefo 161 said, temperature-based risk is currently high in some localities that have low observed WNV risk, and
162 therefore other factors may also be critical in determining how WNV risk may change into the future.
163 162 therefore other factors may also be critical in determining how WNV risk may change into the future.
163 163 therefore other factors may also be critical in determining how WNV risk may change into the future.
163

 $\bf 8$

 $\overline{9}$

10

 $11\,$

 12

13

-
- --
Wii \overline{a} 284 Program, Washington, DC, USA, Retrieved from https://nca2018.globalchange.gov/chapter 285 Wimberly, M. C., & Davis, J. K. (2019, February 8). GRIDMET_downloader.js (Version 1.1). University Change 286 Oklahoma. Retriev
- 285 Wimberly, M. C., & Davis, J. K. (2019, February 8). GRIDMET_downloader.js (Version 1.1). University of
286 Oklahoma. Retrieved from https://github.com/ecograph/arbomap
287
- 286 Williams P., Wimberly, M. C., & Davis, J. K. (2012). February 8₎. Criminal Components of Christmas J. (Version 1.1). University of Christmas J. (Version 1.1). University of Christmas J. (Version 1.1). University of C 287
288
288

288
|
|

14

291

292 292

293

294 Fig. 1. a) Present-day mean temperature for July - September, b) standard deviation of present-day temperature. Map base layer from 2017 TIGER/Shapefiles (US Census Bureau, 2021). 295 temperature. Map base layer from 2017 TIGER/Shapefiles (US Census Bureau, 2021).

298
299
300

299 the next five years. The negative binomial model was fit based on historical cases. Counties with less
299 than 600,000 people were merged with other contiguous counties in the same state until at least a
202 600,000 p 301 than 600,000 people were merged with other contiguous counties in the same state until at least a
302 600,000 person threshold was reached, to ensure a sufficient population size to detect WNV at low
303 incidence. Res

302 600,000 person threshold was reached, to ensure a sufficient population size to detect WNV at low
303 incidence. Results were then downscaled back to the county level. Underlying spatial data from 201
304 TIGER/Shapefi 502 600,000 person threshold was reached, to ensure a sufficient population size to detect WNV at low
incidence. Results were then downscaled back to the county level. Underlying spatial data from 2017
TIGER/Shapefiles fro

304 INCOLA INCIDENCE AND A CONSULTS WERE THE COUNTY LEVEL.
304 INCOLA TO THE COUNTY LEVEL SPATIAL AND THE COUNTY LEVEL SIDE OF THE COUNTY LEVEL SPATIAL DATA FROM THE COUN
305 305

297

307
308
309 **Fig. 3** a) present-day temperature-trait-predicted relative risk for *Culex pipiens*, and b) the predicted change in temperature-based risk with 0.5 °C warming (on the high end for predicted for warming in the next decade 309 next decade). Note that this amount of warming falls within the range of present day temperature
310 variation around the mean presented in (a). Map base layer from 2017 TIGER/Shapefiles (US Census
311 Bureau, 2021). 310 variation around the mean presented in (a). Map base layer from 2017 TIGER/Shapefiles (US Census
311 Bureau, 2021).
312 311 variation around the mean presented in (a). Map base layer from 2017 μ David Census (US Census Census) μ $\frac{312}{313}$

-
- ---
313

314

Figure S1. Map of population by groups used to fit the negative binomial model. Group assignment
316 included a subjective element, and results for individual counties could vary depending on group
317 assignment. Groups

--
315
316
317

assignment. Groups derived from merging 2017 TIGER/Shapefiles (US Census Bureau, 2021). 317 assignment. Groups derived from merging 2017 TIGER/Shapefiles (US Census Bureau, 2021).