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Abstract 

Wearable assistive technology for the lower extremities has shown great promise 

towards improving gait function in people with neuromuscular injuries. But common 

secondary impairments, such as hyperreflexia, have been often neglected. Adding 

hyperreflexia prediction to the control loop would require expensive or complex 

measurement of muscle fiber characteristics. In this study, we explore a clinically 

accessible biomechanical predictor set that can accurately predict rectus femoris (RF) 

reaction after knee flexion assistance in pre-swing by a powered orthosis. We examined 

a total of 14 gait parameters based on gait kinematic, kinetic, and simulated muscle-

tendon states from 8 post-stroke individuals with Stiff-Knee gait (SKG) wearing a knee 

exoskeleton robot. We independently performed both parametric and non-parametric 

variable selection approaches using machine learning regression techniques. Both 

models revealed the same four kinematic variables relevant to knee and hip joint motions 

were sufficient to effectively predict RF hyperreflexia. These results suggest that control 
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of knee and hip kinematics may be a more practical method of incorporating quadriceps 

hyperreflexia into the exoskeleton control loop than the more complex acquisition of 

muscle fiber properties.  

INTRODUCTION 

 Gait disorders are common in stroke survivors. More than 80% of stroke 

survivors have varying degrees of gait abnormalities11,21, and about 25% have a 

residual impairment that requires full physical assistance, despite rehabilitation efforts17. 

Recent technological advances have introduced wearable robots as potential solutions 

to mitigate physical barriers for people with impaired mobility. There are various 

commercialized and research purpose lower-body exoskeletons showing promise in 

performance augmentation, mobility assistance, and gait therapy following neurological 

injuries12,41. Assistive strategies using exoskeletons incorporate force, torque, 

electromyography (EMG), and gait kinematics into the control loop22,41. More recently, 

human-in-the-loop approaches have been introduced to maximize the benefit of the 

assistive device with feedback of metabolic energy measures in a real-time 

optimization43. However, existing exoskeletons have only addressed weakness and 

ignored critical neuromuscular impairments, such as hyperreflexia, defined as a 

hypersensitive stretch reflex, governed by musculotendon fiber stretch velocity42.   

Stiff-Knee gait (SKG) is a common abnormal gait pattern following stroke, 

characterized by diminished knee flexion during the swing phase of the gait cycle. We 

previously developed a lightweight, remotely actuated powered knee orthosis38 to assist 

post-stroke individuals with SKG. This robotic knee exoskeleton was expected to 
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improve swing-phase knee flexion kinematics. While kinematics improved somewhat, 

hyperreflexia in the rectus femoris (RF), represented by excessive early swing-phase 

muscle activation, primarily followed exoskeletal assistance, but occasionally without 

assistance as well2. Musculoskeletal modeling and simulation revealed that increased 

RF fiber stretch velocity preceded increases in RF muscle activation2. In a new cohort of 

individuals with SKG, Akbas et al. found that RF reflex excitability was highly associated 

with reduced swing phase knee flexion angle1. Taken together, this evidence indicates 

that robotic knee perturbations on post-stroke individuals with SKG could elicit 

counterproductive quadriceps hyperreflexia, a reaction likely spurred on by 

suprathreshold RF fiber stretch velocity. Thus, if excessive RF fiber stretch velocity 

could be avoided, it may be possible to enable the full benefits of exoskeletal assistance 

in those with post-stroke SKG. However, real-time measurement of fiber stretch velocity 

requires difficult to access equipment such as ultrasound and a real-time analysis and 

control system29.  Another approach could be to identify clinically accessible correlates 

of fiber stretch velocity to avoid the hyperreflexia elicited by exoskeletal assistance.  

 The objective of this study was to determine to what degree kinematic and kinetic 

features could substitute for RF fiber stretch velocity in predicting hyperreflexive RF 

muscle activation following exoskeletal assistance. To achieve this, we performed 

parametric and nonparametric multivariate regression analyses for variable selection on 

a knee exoskeleton gait data from 8 post-stroke participants with SKG38. We 

hypothesized that hip and knee flexion kinematics would predict RF hyperreflexia due to 

the biarticular characteristics of the RF. This work represents a novel statistical and 

machine learning regression approach to identify predictors of hyperreflexia. Obtaining 
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clinically accessible predictors for hyperreflexia will lead to more effective human-in-the-

loop assistive strategies that account for neural impairments.  

MATERIALS AND METHODS 

Experimental Data 

We obtained previously collected data from 8 chronic, hemiparetic participants 

with post-stroke SKG who gave written informed consent using procedures approved by 

the local Institutional Review Board37. Inclusion criteria for the hemiparetic participants 

included their peak paretic knee flexion during swing was at least 15° less than their 

peak nonparetic knee flexion and the ability to walk for 20 min without rest at 0.55 m/s 

on a treadmill. A lightweight, powered knee orthosis was used to provide knee flexion 

torque perturbations during the pre-swing phase without affecting the remainder of the 

gait cycle38. Analog data, including GRF from the instrumented split-belt treadmill 

(Tecmachine, Andrez Boutheon, France) and applied torque by the powered orthosis, 

were acquired at 1 kHz. Motion capture data (Motion Analysis, Santa Rosa, CA) on the 

lower limbs was collected at 120 Hz. Electromyography (EMG) (Delsys Inc., Boston, 

MA) from the RF muscle was measured at 1 kHz. 

The experimental protocol involved steps with and without pre-swing knee flexion 

assistance. Steps with knee flexion assistance ranged from 10 Nm to 40 Nm. A mean of 

less than 1 Nm of resistance was measured on the knee for the remainder of the gait 

cycle.  The weight of the device did not alter walking kinematics.  In this study, a total of 

406 gait cycles were extracted including 260 gait cycles with knee flexion assistance 
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(Mean ± SD: 23.32 ± 5.85 Nm; Min: 11.40 Nm; Max 34.51 Nm). Previous work 

describes further details of the protocol37. 

Musculoskeletal Modeling and Simulation 

 In order to determine muscle-tendon states (i.e., RF muscle fiber stretch velocity 

at each time instance), we employed musculoskeletal modeling and simulation through 

OpenSim 4.310 using a method validated in previous work2,4. To summarize, we 

condensed upper body segments in the gait 2392 model of OpenSim to the pelvis 

segment to account for a lower body marker set, so that it had 18 degrees of freedom 

and 90 muscle-tendon actuators. The modified model was scaled to match the 

anthropometry of each subject. Marker data were fed into the inverse kinematics tool, 

which generated joint kinematics with the least square fit of marker trajectories. A 

residual reduction algorithm (RRA) adjusted the model to minimize dynamic 

inconsistencies between the experimental GRFs and body segment kinematics. Based 

on the adjusted model after RRA, computed muscle control (CMC)39 estimated muscle-

tendon states and excitation patterns that reproduced the motion while minimizing the 

sum of excitations squared. Unmeasured handrail forces were estimated  as previously 

described3. The dynamic consistency of the simulations was evaluated by examining 

the resulting residual forces and moments and verifying them with the OpenSim 

guidelines18.  

Dependent Variable 

 The dependent variable for the regression analysis was RF activity. The raw RF 

EMG signals were filtered with a fourth-order band-pass Butterworth filter with cutoff 
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frequencies of 20–400 Hz to remove artifacts, demeaned, rectified, and low-pass filtered 

with a 4th order Butterworth filter at 10 Hz. To reduce inter-individual variability, we used 

the mean of the EMG envelope in the trial as the normalization reference8. The 

processed signals were divided into gait cycles based on a paretic limb heel-strike event 

using vertical GRFs and then normalized into 100-time frames. A reflex response would 

occur within 120ms after stimulus onset through mono- or polysynaptic mechanisms31. 

This time interval has been employed to detect quadriceps stretch reflexes following 

mechanical knee perturbations during gait27. In addition to the 120ms window, we 

accounted for timing errors from computation of RF fiber stretch velocity and evaluated 

windows of 90ms and 150ms. We defined the initiation of reflex as the timing of the 

peak pre-swing muscle fiber stretch velocity estimated from the musculoskeletal 

simulation. We then numerically integrated the RF EMG envelopes following stimulus 

onset to obtain integrated EMG (iEMG) measures representing an involuntary response. 

Figure 1 visualizes RF iEMG for involuntary responses.  
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Figure 1: Visualization of the rectus femoris EMG signals, knee flexion torque 
assistance, and simulated RF muscle fiber stretch velocity. Gray line indicates 
simulated RF fiber velocity. Red solid line represents the external knee torque 
assistance profile by the powered knee exoskeleton device. Vertical bars show iEMG of 
RF. The involuntary response is captured from the peak simulated RF fiber velocity until 
120 ± 30ms following (yellow).  
 

Independent Variables 

 A total of 14 predictors were extracted from each gait cycle based on muscle-

tendon states as well as gait kinematic and kinetic data. One muscle-tendon relevant 

variable was selected from the musculoskeletal simulation: the peak pre-swing RF fiber 

stretch velocity. Three variables from hip and knee joint kinematics in the pre-swing 

phase (i.e., peak hip flexion and knee flexion velocity, and relative peak knee flexion 

velocity to peak hip flexion) were chosen due to the biarticular physiology of the RF and 

its associations with post-stroke SKG15. Correspondingly, we used body kinematics 

which are velocities and accelerations based on the configuration (center of mass 

position and orientation) of each body segment. Specifically, we used 3 body kinematic 

variables from the thigh and shank segments (i.e., peak thigh and shank angular 

velocity, and relative peak shank angular velocity to peak thigh) in the pre-swing phase. 

Additionally, we used the pelvic segment acceleration in the anteroposterior plane as a 

proxy for body acceleration7. The remaining six variables were acquired from 

propulsive/brake impulse and ground reaction forces. Specifically, we computed the 

paretic limb’s propulsive, braking, and net impulse during the pre-swing phase 6. GRF 

signals were processed to obtain the peak anterior/posterior GRF in the pre-swing 

phase, peak medial/lateral GRF in the stance phase, and peak vertical GRF in the 

stance phase (Table 1).  
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Table 1: List of parameters. 

Description Abbreviation Category 

Peak rectus femoris fiber stretch velocity in 
pre-swing2 (m/s) 

RectusFemoris_Vel Muscle-tendon 
mechanics 

Peak hip flexion velocity in pre-swing (rad/s) HipFlex_Vel Joint kinematics 

Peak knee flexion velocity in pre-swing30 
(rad/s) 

KneeFlex_Vel Joint kinematics 

Relative peak knee flexion velocity with 
respect to peak hip flexion (rad/s) 

relKneeHip_Vel Joint kinematics 

Peak pelvic segment anterior/posterior 
acceleration in pre-swing7 (m/s2) 

Pelvic_AntPost_Acc Body kinematics 

Peak thigh segment angular velocity in pre-
swing (rad/s) 

Thigh_Vel Body kinematics 

Peak shank segment angular velocity in pre-
swing (rad/s) 

Shank_Vel Body kinematics 

Relative peak shank angular velocity with 
respect to thigh (rad/s) 

relShankThigh_Vel Body kinematics 

Paretic propulsive impulse in pre-swing6 
(%BW · s) 

Propulsive_Impulse Impulse 

Paretic braking impulse in pre-swing6 (%BW 
· s) 

Braking_Impulse Impulse 

Paretic net impulse in pre-swing6 (% BW · s) Net_Impulse Impulse 

Peak anterior/posterior ground reaction 
force in pre-swing (% BW) 

AntPost_GRF GRF 

Peak mediolateral GRF in stance (% BW) MedLat_st_GRF GRF 

Peak vertical GRF in stance (% BW) Vert_st_GRF GRF 

* BW: body weight 
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Variable Selection  

 Variable selection is a procedure to select appropriate variables from a complete 

list of variables by removing those that are irrelevant or redundant. This step could be 

achieved by either parametric or nonparametric regression. The parametric approaches 

provide generalizable and interpretable statistical inference but require assumptions of 

linearity and normal distribution. Conversely, nonparametric machine learning methods 

do not need stringent distribution assumptions, but their models are less interpretable 

and risk overfitting without optimal tuning of hyper-parameters. In this study, we aimed 

to achieve a comprehensive variable selection by utilizing both parametric and 

nonparametric regression methods to address unknown variable relationships.  

 As a parametric approach, we deployed the least absolute shrinkage and 

selection operator (LASSO) method which is a penalized regression technique that uses 

an L1-norm penalty on the regression coefficients40. By the addition of the regularization 

term on linear regression, the LASSO regression produces a sparse and interpretable 

linear model with important variables automatically selected. In this study, we used 

glmmLasso package in R statistical software16 for modeling generalized linear mixed 

model using LASSO. We set a random intercept model with subjects as random effects 

and all predictors as fixed effects. We then built repeated 5-fold cross-validation to avoid 

a bias in the evaluation regression model. In data splitting, stratified sampling was 

applied based on subjects to obtain a sample population that best represents the entire 

population. In every cross-validation loop, the parameter λ was tuned by grid search 

using Bayesian Information Criteria (BIC). To quantify the importance of each predictor 

variable in regression, we ranked variables based on the selection proportions defined 
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by frequencies of each selected variable in trained LASSO models from repeated cross-

validation. The selection proportions have a score ranging from 0 (always shrunk, 

unimportant feature) to 1 (never shrunk, essential feature) by averaging variable 

selection frequencies so that we could infer individual feature importance in the 

regression model. The same ranking method was used in a previous regression study 

for post-stroke clinical outcomes25. In this study, we repeated 50 cross-validation 

repetitions to obtain variable selection proportions from the LASSO regression analysis. 

Variables above the threshold were determined as critical parameters for prediction. 

The threshold was 0.95 meaning 95% of the chance for selection across repeated 

cross-validation.  

 As a nonparametric approach, we deployed Bayesian Additive Regression Trees 

(BART), which is a nonparametric, ensemble method of regression tree models9. BART 

combines the advantages of the Bayesian model, incorporating past information about a 

parameter and forming a prior distribution for future analysis, and ensemble methods. It 

recently has gained popularity due to its superior prediction performance over other 

machine learning techniques (i.e., random forests, gradient boosting model, neural 

networks) in various study settings9,19. To evaluate the relative importance of each 

predictor variable from BART, Chipman et al. proposed the variable inclusion proportion 

corresponding to the proportion of times each variable is selected for splitting nodes 

across Markov chain Monte Carlo iterations in the sum-of-trees model9. Intuitively, 

variables with higher inclusion proportions are the more important variables in 

prediction. In this study, we implemented BART and extracted the variable inclusion 

proportions as a feature importance metric by using the BART package publicly 
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available in R statistical software36. We performed a repeated 5-fold cross-validation 

with a total of 50 repetitions for unbiased regression outcomes. The stratified split 

dataset across repetitions was the same as the one used for glmmLASSO for a lateral 

comparison. Variables above the threshold, denoted by 1 / (total number of predictors), 

were determined as a crucial subset. This threshold stands for the probability of equal 

inclusion for all predictors in the model.  

Reduced Model Selection 

With key variables resulting from both parametric and nonparametric variable 

selection, we fit reduced models using a linear mixed and BART regression. For linear 

mixed model regression, we formulated a random intercept model with nested random 

effects in terms of subjects and exoskeletal assistance. Parametric and nonparametric 

models were compared to each other based on goodness-of-fit measures, such as 

adjusted R2 and Root Mean Square Error (RMSE) acquired by 50 repetitions of 5-fold 

cross-validations. Based on the reduced fit model, we additionally performed a model 

selection through backward stepwise elimination. This stepwise regression eliminated 

insignificant variables resulting in the final best fit model with minimum numbers of 

predictors. Additionally, the relationships between variables were examined by 

Spearman’s rank correlation coefficient. The overall workflow was summarized in Figure 

2. 
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Figure 2: Overall workflow. AIC, Akaike information criterion; Adj. R2, Adjusted R2.  
 

RESULTS 

Parametric and non-parametric models showed similar results (Figure 3). Four 

parameters from kinematic and muscle-tendon state variables in the pre-swing phase 

remained (>95% of selection proportion) in the LASSO model across all 50 iterations: 

peak shank velocity, relative peak knee velocity with respect to hip, peak RF fiber 

stretch velocity, and peak knee flexion velocity. Using BART, six predictor variables 

from kinematic and muscle-tendon state variables in the pre-swing phase were 

determined as crucial variables. These were four common important variables between 

the parametric and nonparametric variable selection: the peak shank velocity, relative 

peak knee velocity with respect to the peak hip flexion, the peak RF fiber stretch 

velocity, and the peak knee flexion velocity. All parameters above the significance 
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threshold using LASSO were also above the significance threshold using BART. Both 

variable selections resulted in low importance scores for all variables related to GRF 

and impulse.  

           

 

Figure 3: Variable selection results from glmmLASSO (left) and BART (right) 
for a total of 14 predictors. The square markers represent the average, and the solid 
lines are the standard deviation of total 50 repetitions. The red-colored variables are 
essential variables showing above threshold (vertical dashed line) denoted by 95% of 
selection proportions and 1/total number of variables for glmmLASSO and BART, 
respectively. The common essential variables between methods denoted by superscript 
symbol of ‡.  
 

 To ensure the model was both representative and not overly complex, we fitted a 

reduced model using all six significant predictors from Figure 3, and then evaluated the 

goodness-of-fit of models. We used the same random effects and the same 

hyperparameter setting as the variable selection. Table 2 summarizes accuracy 
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measures for full and reduced regression models from repeated 5-fold cross-validation. 

The reduced model showed slightly degraded goodness-of-fit (i.e., increased RMSE 

and decreased adjusted R2) compared to the full model. Except for the parametric 

regression model’s out-of-bag test, all accuracy measurements differed significantly 

between full and reduced models (p < .001). 

Table 2: Summary of regression model accuracy (Mean ± SD) from repeated 5-
fold cross-validation.  

 
glmmLASSO BART 

No. Predictors 14 
(ModelFull) 

6 
(ModelReduced) 

14 
(ModelFull) 

6 
(ModelReduced) 

RMSE (A.U.) Train 5.20 ± 0.01 5.39 ± 0.07 3.12 ± 0.08 3.86 ± 0.04 

Test 5.68 ± 0.06 5.64 ± 0.06 5.41 ± 0.11 5.52 ± 0.08 

Adj. R2 Train 0.47 ± 0.00 0.43 ± 0.00 0.83 ± 0.01 0.73 ± 0.01 

Test 0.40 ± 0.11 0.41 ± 0.01 0.46 ± 0.02 0.43 ± 0.02 

 

Backward stepwise elimination additionally cut down the number of variables 

from the reduced model of six important predictors. The stepwise elimination on the 

parametric model was based on the Akaike information criterion (AIC). The adjusted R2 

was used for the nonparametric model’s stepwise elimination. Stepwise regression 

using the parametric linear mixed model determined the last four crucial variables 

including two joint kinematic and another two body kinematic variables: peak hip flexion 

velocity, relative peak knee velocity to peak hip flexion, peak shank velocity and the 

relative peak shank velocity to peak thigh velocity. Table 3 represents the summary of 

the final regression model by a random intercept mixed model with nested random 

effects with respect to subject and assistance. Small marginal R2 (0.074) but moderate 
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conditional R2 (0.505) accounted for the most variance of this model. The adjusted R2 of 

this final model was 0.533. Backward elimination based on the nonparametric model, 

BART, revealed the same last four critical predictors. Figure 4 illustrates the goodness-

of-fit changes through backward elimination using BART. Once the model consisted of 

less than four predictors, its adjusted R2 started decreasing significantly meaning that 

variables in the gray shaded area of Figure 4 were the minimum crucial predictor set. 

The adjusted R2 of BART model with four variables was 0.638. The results were robust 

to differences in timing (Supplementary material). 

Table 3: Summary of final model from stepwise backward regression. 

Marginal R2 / Conditional R2: 0.074 / 
0.505 
Adjusted R2: 0.533 

 

Category Predictors Slope estimates [95% CI] 

Joint kinematics HipFlex_Vel [rad/s] 11.30 ** [2.61, 19.98] 

relKneeHip_Vel [rad/s] 11.59 * [3.38, 19.71] 

Body kinematics Shank_Vel [rad/s] -21.11 ** [-37.10, -5.12] 

relShankThigh_Vel [rad/s] 10.54 ** [1.96, 19.11] 

* p<0.05   ** p<0.01   *** p<0.001 
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Figure 4: Goodness-of-fit changes by BART stepwise backward elimination. 
The variable names shown in the bottom axis are the predictors removed at each step. 
For example, “KneeFlex_Vel” was removed at the first step of elimination from a model 
with six variables. The gray shaded area indicates the steps that the adjusted R2 was 
significantly affected by the elimination.  
 

Table 4: Spearman’s rank correlation coefficient (⍴) between key kinematic 
predictors and pre-swing rectus femoris fiber stretch velocity.   

Category Predictors ⍴ 

Joint kinematics HipFlex_Vel [rad/s] 0.59 *** 

relKneeHip_Vel [rad/s] 0.90 *** 

Body kinematics Shank_Vel [rad/s] 0.87 *** 

relShankThigh_Vel 
[rad/s] 

-0.18 *** 

* p<0.05   ** p<0.01   *** p<0.001 

 The relationships between selected kinematic predictors and muscle-tendon 

state, pre-swing rectus femoris fiber stretch velocity, were examined by Spearman’s 

rank correlation coefficient. Table 4 summarizes the coefficients.  
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DISCUSSION 

Exoskeletal assistance has the potential to unload some of the effort from 

clinicians and caregivers but does not yet account for other neuromuscular impairments 

such as hyperreflexia1,37. The aim of this study was to determine accessible 

biomechanical predictors of quadriceps hyperreflexia based on walking data from those 

with post-stroke SKG with and without knee flexion exoskeletal assistance. We used 

both parametric and non-parametric regression techniques to obtain two different 

perspectives of the key kinematic, kinetic and muscle-tendon predictors of rectus 

femoris hyperreflexia. We found four kinematic predictors obtained during pre-swing 

phase were shared between the regression techniques: peak hip flexion velocity, the 

relative peak knee to peak hip flexion velocity, peak shank angular velocity, and the 

relative peak shank to peak thigh angular velocity. These parameters can be measured 

by two or three wearable sensors. The implication of these findings is that these 

parameters can be used to predict hyperreflexia and control during exoskeletal 

assistance.  

Spasticity is often characterized as velocity-dependent hyperexcitability of the 

stretch reflex23. Since it was widely believed that the spindle proprioceptive receptors 

encode information for muscle length and velocity changes20,26, spasticity modeling has 

been based on muscle length and velocity feedback24. Our group’s previous 

musculoskeletal simulation analysis confirmed the strong association between 

simulated RF muscle fiber stretch velocity and RF excitability2. In this study, both 

parametric and nonparametric regression techniques for variable selection resulted in 

the same finding that kinematic variables are predictive of an RF reflex. Indeed, there 
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were strong correlations (⍴ ≃ 0.90) between some of the selected predictors (relative 

peak knee flexion velocity to peak hip flexion velocity, peak shank angular velocity) and 

RF fiber stretch velocity (Table 4), as we expected. We did not expect that these 

parameters would be more predictive of a reflex than RF fiber stretch velocity, the 

physiological mechanism of a stretch reflex. The fiber stretch velocity was computed 

using generic Hill-type muscle models and mathematically driven cost functions39, rather 

than direct measurement, a model validated in our previous work2. Yet, it remains 

possible that RF fiber stretch velocity could have played a stronger statistical role if the 

true value could have been obtained. Regardless of the level of significance between 

variables, it is notable that out of all 14 parameters, the ones found to be most 

predictive of a reflex were ones related to hip and knee kinematics as well as RF fiber 

stretch velocity. This finding is consistent with our hypothesis that more easily 

measurable kinematic variables can serve as a proxy for fiber stretch velocity in 

exoskeletal control. 

Over the past decade, the exoskeleton community has moved towards human-in-

the-loop design43, including the incorporation of real-time estimation of musculotendon 

mechanics32, and ultrasound imaging13,29,35. While these approaches provide an exciting 

potential for the future of personalized robotics, the extra equipment remains limited to a 

few research institutes and adds significant complexity. In this work we found that joint 

kinematics accurately predict reflex responses in the RF. We estimate that kinematic 

predictors from this study could be measured by only two or three portable motion 

sensors such as inertial measurement units. This is significant because it questions the 

basis for using complex imaging or computational technology in lieu of simpler proxies.  
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Enabling the use of ubiquitous sensor systems would allow exoskeleton engineers and 

rehabilitation researchers to design practical and effective devices. 

It is possible that this work could lack a wide range of variables. Due to the 

exponential increase in the sampling volume, adding extra dimensionality is not always 

beneficial in regression analysis, specifically when there are sparse relevant predictors 

compared to the total number of predictors or the fundamental relationships are 

nonlinear (so called “curse of dimensionality”)14. To avoid these adverse effects, we 

limited the scope of parameter sources among previously assessed associations with 

post-stroke SKG. Additionally, we did not include parameters that were unable to be 

directly measured, such as joint kinetics, except for simulated muscle fiber stretch 

velocity. This omission was due to the practical difficulty in measuring real time joint 

kinetics. Therefore, in this work, we aimed to balance comprehensiveness, practicality 

and overfitting.  

This study has several limitations. Regression approaches based on 

observations from only 8 participants may affect generalization of the results. Despite 

the small sample size, the repeated 5-fold cross-validation34 took into account the 

randomness in sampling resulting in unbiased and trustworthy variable and model 

selection results. This study does not provide causal relationships between kinematic 

parameters and quadriceps hyperreflexia. However, it is notable that the predictors of 

RF hyperreflexia (i.e. related to knee-hip velocities) found in this work were all 

physiologically related to the biarticular span of the RF suggesting that this statistical 

approach may help reveal mechanisms of hyperreflexia. For instance, the relative peak 

angular velocity between the knee and hip was the most correlated variable with RF 
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fiber stretch velocity (⍴ = 0.90 in Table 4). Still, the relative peak angular velocity 

between the shank and thigh had a weak negative correlation (⍴ = -0.18 in Table 4) to 

RF fiber stretch velocity. While thigh-shank segment and knee-hip joint velocities are 

not equivalent, the large difference in correlations is difficult to explain mechanistically 

and other approaches may be needed to investigate further. Lastly, our findings were 

based on two types of regression techniques among numerous statistical and machine 

learning approaches. Although there exists an advanced penalized regression approach 

improving the limitations of LASSO33 (i.e., Elastic Net44), glmmLASSO in this study 

could result in a better model due to subjects' random-effects modeling. There were 

also popular tree-based machine learning algorithms, such as gradient boosting28 and 

random forest methods5. It has been reported that BART has outperformed these other 

methods9. Therefore, the use of these two different regression methods was sufficient.  

CONCLUSIONS 

 Despite the rapid growth of wearable robot technology, there is still a lack of 

consideration regarding neuromuscular impairments such as hyperreflexia into device 

design.  In this study, we introduced regression-based variable selection for predicting 

rectus femoris hyperreflexia following pre-swing knee flexion exoskeletal assistance. 

We found that four kinematic variables relevant to knee and hip joint motions were 

sufficient to effectively predict hyperreflexia in people with post-stroke SKG. These 

results suggest that effective monitoring and control of these accessible knee and hip 

kinematics may be more productive at regulating hyperreflexia than the more complex 

acquisition of muscle fiber stretch velocity. This work represents a novel statistical 

approach to identifying biomechanical associations with reflex function. This information 
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could be used to further understand the mechanisms of hyperreflexia and its associated 

clinical interventions. 
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SUPPLEMENTARY MATERIAL  

We performed a sensitivity analysis based on two additional reflex response 
windows by changing time windows for computing involuntary RF muscle activity: 90 ms 
and 150 ms. Figures A1, A2 and Table A1 summarize variable selection for 90 ms time 
window for a reflex response and Figures A3, A4 and Table A2 are for 150 ms. The last 
four key selected variables were invariant regarding the timing error of RF fiber stretch 
velocity estimated by OpenSim simulation.  

           

 

Figure A1: Variable selection results from 90 ms time-window of a reflex 
response. The left figure was from glmmLASSO and the right figure from BART.  
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Figure A2: Goodness-of-fit changes by BART stepwise backward elimination for 
90 ms time-window of a reflex response. 
 

Table A1: Summary of final model from stepwise backward regression for 90 ms 
time-window of a reflex response. 

Marginal R2 / Conditional R2: 0.074 / 
0.505 
Adjusted R2: 0.533 

 

Category Predictors Slope estimates [95% CI] 

Joint kinematics HipFlex_Vel [rad/s] 11.30 ** [2.43, 20.17] 

relKneeHip_Vel [rad/s] 11.59 * [3.24, 19.94] 

Body kinematics Shank_Vel [rad/s] -21.11 ** [-37.38, -4.84] 

relShankThigh_Vel [rad/s] 10.54 ** [1.84, 19.24] 

* p<0.05   ** p<0.01   *** p<0.001 
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Figure A3: Variable selection results from 150 ms time-window of a reflex 
response. The left figure was from glmmLASSO and the right figure from BART.  

 

 

 

Figure A4: Goodness-of-fit changes by BART stepwise backward elimination for 
150 ms time-window of a reflex response. 
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Table A2: Summary of final model from stepwise backward regression for 150 
ms time-window of a reflex response. 

Marginal R2 / Conditional R2: 0.074 / 
0.505 
Adjusted R2: 0.533 

 

Category Predictors Slope estimates [95% CI] 

Joint kinematics HipFlex_Vel [rad/s] 11.30 ** [2.43, 20.17] 

relKneeHip_Vel [rad/s] 11.59 * [3.24, 19.94] 

Body kinematics Shank_Vel [rad/s] -21.11 ** [-37.38, -4.84] 

relShankThigh_Vel [rad/s] 10.54 ** [1.84, 19.24] 

* p<0.05   ** p<0.01   *** p<0.001 
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