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Abstract  127 

The complement system, including complement components 3 and 4 (C3, C4), traditionally has been 128 
linked to innate immunity. More recently, complement components have also been implicated in 129 
brain development and the risk of schizophrenia. Based on a large, population-based case-cohort 130 
study, we measured the blood concentrations of C3 and C4 in 68,768 neonates. We found a strong 131 
correlation between the concentrations of C3 and C4 (phenotypic correlation = 0.65, P-value < 132 
1.0×10-100, genetic correlation = 0.38, P-value = 1.9×10-35). A genome-wide association study (GWAS) 133 
for C4 protein concentration identified 36 independent loci, 30 of which were in or near the major 134 
histocompatibility complex on chromosome 6 (which includes the C4 gene), while six loci were found 135 
on six other chromosomes. A GWAS for C3 identified 15 independent loci, seven of which were 136 
located in the C3 gene on chromosome 19, and eight loci on five other chromosomes. We found no 137 
association between (a) measured neonatal C3 and C4 concentrations, imputed C4 haplotypes, or 138 
predicted C4 gene expression, with (b) schizophrenia (SCZ), bipolar disorder (BIP), depression (DEP), 139 
autism spectrum disorder, attention deficit hyperactivity disorder or anorexia nervosa diagnosed in 140 
later life. Mendelian randomisation (MR) suggested a small positive association between higher C4 141 
protein concentration and an increased risk of SCZ, BIP, and DEP, but these findings did not persist in 142 
more stringent analyses. Evidence from MR supported causal relationships between C4 143 
concentration and several autoimmune disorders: systemic lupus erythematosus (SLE, OR and 95% 144 
confidence interval, 0.37, 0.34 – 0.42); type-1 diabetes (T1D, 0.54, 0.50 - 0.58); multiple sclerosis 145 
(MS, 0.68, 0.63 - 0.74); rheumatoid arthritis (0.85, 0.80 - 0.91); and Crohn’s disease (1.26, 1.19 - 146 
1.34). A phenome-wide association study (PheWAS) in UK Biobank confirmed that the genetic 147 
correlates of C4 concentration were associated a range of autoimmune disorders including coeliac 148 
disease, thyrotoxicosis, hypothyroidism, T1D, sarcoidosis, psoriasis, SLE and ankylosing spondylitis. 149 
We found no evidence of associations between C3 versus mental or autoimmune disorders based on 150 
either MR or PheWAS. In general, our results do not support the hypothesis that C4 is causally 151 
associated with the risk of SCZ (nor several other mental disorders). We provide new evidence to 152 
support the hypothesis that higher C4 concentration is associated with lower risks of autoimmune 153 
disorders.  154 

Keywords: Complement Component, C3, C4, schizophrenia, psychiatric disorders, autoimmune 155 
disorders, genome-wide association study, Mendelian randomization, phenome-wide association 156 
study, dried blood spots.   157 
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Introduction 159 

The complement systems are an integral part of the innate immune response1-4. These 160 
phylogenetically-ancient systems involve complex and interlinked amplification cascades, which can 161 
be triggered to protect the body from pathogens. Elements of the system are also involved in a 162 
range of additional physiological functions. For example, a growing body of evidence links elements 163 
of the complement systems (e.g.  Complement Component 4; C4) to brain development and 164 
psychiatric disorders5-7.  165 

Several of the genes that encode components of the complement system, including C4, are located 166 
within the major histocompatibility complex (MHC). Linking disease phenotypes with loci within the 167 
MHC is difficult because of the long-range linkage disequilibrium (LD) in this region. Furthermore, 168 
the C4 gene has two homologous isoforms (C4A and C4B), each of which can vary according to an 169 
insertion of a human endogenous retrovirus (HERV) transposon, and which can vary between one to 170 
three genocopies per haplotype8. Sekar and colleagues9 proposed that genetic variants involving the 171 
C4 gene could account for the strong signal over this region detected in genome-wide association 172 
studies (GWAS) of schizophrenia10. They found that the expression of mRNA transcripts coding for 173 
the C4A-related isoform was increased in post-mortem schizophrenia brain samples (cases = 35, 174 
controls = 70), and also reported that the C4A copy number was associated with both increased C4A 175 
expression in the brain and increased risk of schizophrenia. These findings are of interest to 176 
neurodevelopmental disorders, given evidence that C4 and related members of the complement 177 
systems are involved in synaptic pruning during early brain development9,11-13. Apart from the links 178 
with schizophrenia, increased C4A copy number has also been associated with a decreased risk of 179 
autoimmune disorders14,15. In light of the shared genetic architecture between different types of 180 
mental disorders16, and the links between C4A alleles and risk of autoimmune disorders, there is a 181 
need to explore if the putative risk haplotypes are associated with a wider range of both mental- and 182 
autoimmune disorders. 183 

As more copies of the C4A gene are associated with increased expression of C4A-related transcripts 184 
in the brain9,17, it is reasonable to assume that an increased copy number of the C4A gene would also 185 
be reflected in increased expression of the C4 protein. C4 is an abundant circulating protein, 186 
produced mainly in the liver, and evidence from transgenic mouse experiments12 and human 187 
observational studies18,19 confirms a dose-response relationship between increased C4 copy number 188 
and increased concentration of C4 protein in the peripheral circulation. The concentration of the C4 189 
protein is correlated with other members of the complement family, including complement 190 
component C3 (encoded by the C3 gene)20. A recent systematic review and meta-analysis found that 191 
the serum concentrations of C4 and C3 did not differ in those with schizophrenia versus controls21. 192 
However, the neurodevelopmental hypothesis of schizophrenia suggests that early life disruption of 193 
brain development may underpin the subsequent adult-onset disorder22,23. Additional evidence 194 
suggests that complement-related synaptic pruning may be most prominent during early life (e.g. C3 195 
protein expression peaks in the early post-natal period and decreases with age)7,24. We are aware of 196 
one study that examined neonatal C4 concentration in a schizophrenia case-control study (cases = 197 
75, controls = 644)25. This study found evidence that an increased concentration of one of the two 198 
measured peptides within the protein encoded by C4A was associated with an increased risk of 199 
subsequent schizophrenia. There is a need to explore the association between complement-related 200 
protein concentrations and later mental disorders based on larger samples of neonatal blood 201 
samples.  202 

We examined the association between neonatal C3 and C4 concentrations and later health 203 
outcomes based on a population-based case-cohort study that had access to archived neonatal dried 204 
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blood spots26,27. Building on the only published GWAS of serum complement components C3 and C4 205 
(studies based on 3,495 Han Chinese men18), we completed GWASs for C3 and C4 neonatal 206 
concentrations based on 68,768 samples and estimated the heritability of these phenotypes. We 207 
were also able to assess the association between imputed C4 haplotypes and observed neonatal C4 208 
protein concentration. We examined the association of both (a) imputed C4 haplotypes and (b) 209 
observed C3 and C4 protein concentration in neonatal dried blood spots versus the risk of a range of 210 
clinically observed mental disorders in the case-cohort study (i.e. schizophrenia, bipolar disorder, 211 
depression, autism spectrum disorder, attention deficit hyperactivity disorder and anorexia 212 
nervosa). Based on the results of the GWASs of C3 and C4, we used: (a) bioinformatics tools to 213 
explore gene properties of the genome-wide significant loci (summary-data-based MR [SMR],  gene-214 
based analyses and gene set analyses); (b) Mendelian randomization analyses to explore the 215 
associations between C3 and C4 protein concentrations versus a range of mental disorders (as listed 216 
above) and autoimmune disorders (multiple sclerosis [MS], type-1 diabetes [T1D], Crohn’s disease 217 
[CD], ulcerative colitis [UC], rheumatoid arthritis [RA], and systemic lupus erythematosus [SLE]), and 218 
finally, (c) phenome-wide association studies (PheWAS)28 to examine the relationship between the 219 
genetic correlates of C3 and C4 protein concentrations versus mental and autoimmune disorders, as 220 
well as a wide range of other health phenotypes.  A summary of the overall methods is shown in 221 
Figure 1. 222 

 223 

 224 

Figure 1. Methods figure. 225 
  226 
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METHODS 227 
 228 
The iPSYCH2012 study 229 
 230 
Key elements of this study were based on the Lundbeck Foundation Initiative for Integrative 231 
Psychiatric Research (iPSYCH) sample26, a population-based case-cohort designed to study the 232 
genetic and environmental factors of schizophrenia (SCZ), bipolar disorder (BIP), depression (DEP), 233 
autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The original 234 
iPSYCH sample (known as iPSYCH2012) included information on case status complete through 31 235 
December 2012. We also included 4,791 anorexia nervosa cases (AN; ANGI-DK) from the Anorexia 236 
Nervosa Genetics Initiative (ANGI)29, which had the same design as iPSYCH2012. Henceforth, we 237 
refer to iPSYCH2012 as the combined dataset with the ANGI samples. The iPSYCH2012 sample is 238 
nested within the entire Danish population born between 1981 and 2005 (n=1,472,762). Diagnoses 239 
were identified in the Danish Central Psychiatric Research Register30,31, which includes all inpatient 240 
contacts in Danish psychiatric hospitals since 1969 and all outpatient and emergency contacts since 241 
1995. The ICD-10 codes used to classify the psychiatric disorder cases can be found in 242 
Supplementary Table 1. The phenotype information for the iPSYCH2012 participants was updated 243 
for the target mental disorders until December 2016. The case-cohort sample includes a population-244 
based random sub-cohort32 (N = 30,000) with an inclusion probability of 2.04% of the study base 245 
(30,000 / 1,472,762). This sub-cohort also includes some participants with the target mental 246 
disorders of interest. The genotypes and C3 and C4 protein concentrations were measured in 247 
neonatal dried bloodspots (DBSs) taken as part of routine screening at birth from all babies born in 248 
Denmark since 1981 and stored in the Danish Neonatal Screening Biobank33. Dried blood spot 249 
samples have been collected from practically all neonates born in Denmark since 1st May 1981 and 250 
stored at −20 °C. Samples are collected 4–7 days after birth. After the dried blood spots were 251 
retrieved from the biobank, samples were extracted in a PBS buffer and stored for further use at -252 
80°C. Subsequently, DNA was extracted according to previously published methods34. After storage 253 
the protein extracts were assayed for C3 and C4 concentrations. Thus, all genotypes and C3/C4 254 
protein concentration data originated from a single DBS extraction. Additional details related to 255 
blood spot extraction and storage are provided in Supplementary Methods 1.  256 
 257 
Ethical framework 258 

Material from the Danish Neonatal Screening Biobank has been used primarily for screening for 259 
congenital disorders, but are also stored for follow-up diagnostics, screening, quality control and 260 
research. According to Danish legislation, material from The Danish Neonatal Screening Biobank can 261 
be used for research after approval from the Biobank, and the relevant Scientific Ethical Committee. 262 
There is also a mechanism in place ensuring that one can opt out of having the stored material used 263 
for research. The Danish Data Protection Agency and the Danish Health Data Authority approved this 264 
study. According to Danish law, informed consent is not required for register-based studies. All data 265 
accessed were deidentified. 266 

C3 and C4 protein concentrations  267 

These methods have been described in a related study35. Two 3.2 mm discs of DBS were punched 268 
into 96 well polymerase chain reaction plates (72.1981.202, Sarstedt). The extracts were analyzed 269 
with a multiplex immunoassay (also measuring vitamin D binding protein35) using U-plex plates 270 
(Meso-Scale Diagnostics (MSD), Maryland, US) employing antibodies specific for complement C3 271 
(HYB030-07 and HYB030-06) and complement C4 (MA1-72520 (ThermoFisher Scientific) and 272 
HYB162-04). The antibodies were purchased from SSI Antibodies (Copenhagen, Denmark) except if 273 
otherwise stated. Extracts were analyzed diluted 1:70 in diluent 101 (#R51AD, MSD). Capture 274 
antibodies (used at 10 µg/mL as input concentration) were biotinylated in-house using EZ-Link Sulfo-275 
NHS-LC-Biotin (#21327, Thermo Fisher Scientific) and detection antibodies were SULFO-tagged 276 
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(R91AO, MSD), both at a challenge ratio of 20:1. As calibrators, we used complement components 277 
purified from human: C3: #PSP-109 (Nordic Biosite, Copenhagen, DK), C4: abx060108 (Abbexa, 278 
Cambridge, UK). Calibrators were diluted in diluent 101, detection antibodies (used at 1 µg/mL) were 279 
diluted in diluent 3 (#R50AP, MSD). Controls were made in-house from part of the calibrator solution 280 
in one batch, aliquoted in portions for each plate, and stored at -20°C until use. The samples were 281 
prepared on the plates as recommended by the manufacturer and were read on the QuickPlex SQ 282 
120 (MSD) 4 min after adding 2x Read buffer T (#R92TC, MSD). Analyte concentrations were 283 
calculated from the calibrator curves on each plate using 4PL logistic regression using the MSD 284 
Workbench software. 285 

Intra-assay variations were calculated from 38 measurements analyzed on the same plate of a pool 286 
of extract made from 304 samples. Inter-assay variations were calculated from controls analyzed in 287 
duplicate on each plate during the sample analysis, 1022 plates in total. Lower limits of detections 288 
were calculated as 2.5 standard deviations from 40 replicate measurements of the zero calibrator. 289 
The higher detection limit was defined as the highest calibrator concentration. The lower and upper 290 
detection limits for: (a) C3 were 95.4 and 7.98×104 µg/L respectively, and (b) C4 were 55.2 and 291 
7.98×104 µg/L respectively.  The intra- and inter-assay coefficient of variation (CV) for (a) C3 were 292 
5.2% and 18.1% respectively; and for (b) C4 were 3.9% and 8.5% respectively. To validate the 293 
stability of the samples during storage, we randomly selected 15-16 samples from five years (1984, 294 
1992, 2000, 2008, and 2016; a total of 76 samples). After extracting the samples and adding them to 295 
an MSD plate, the rest of the extracts were frozen for 2 months, thawed and measured as described 296 
above to imitate the freeze-thaw cycle of the samples in the study. The oldest samples (from 1984) 297 
recorded higher concentrations, most probably due to a change in the type of filter paper after 298 
1989. In light of this artefact, we adjusted all DBP values by plate (the sequence of testing followed 299 
the date of birth of the sample). This is described below. Additional details related to pre-analytic 300 
variation are provided in Supplementary Methods 1. 301 

Imputation of genotypes 302 

DNA genotyping was conducted at the Broad Institute (Boston, MA, USA) using the Infinium 303 
PsychChip v1.0 array (Illumina, San Diego, CA, USA)36. We restricted the genotyped SNPs to 252,339 304 
high quality, common SNPs based on build hg19 (the same human genome reference build was used 305 
throughout this study). Details of the filtering can be found elsewhere (Schork et al., 2019). Briefly, 306 
we excluded SNPs with minor allele frequency (MAF) < 0.01, Hardy Weinberg Equilibrium (HWE) p-307 
value < 1.0×10-6 or non-SNP alleles (i.e., insertions and deletions, INDELs). 245,328 autosomal and 308 
7,011 X-chromosome (chrX) SNPs were retained and used to impute SNPs using the Ricopili 309 
pipeline37 with the Haplotype Reference Consortium (HRC)38 as the imputation reference panel 310 
(accession number: EGAD00001002729). 6,743,499 autosomal SNPs, 227,371 chrX SNPs for males 311 
and 184,517 chrX SNPs for females were retained with missing rate < 0.02 and genotype call 312 
probability > 0.8. We further excluded the imputed SNPs with imputation info score < 0.8, MAF < 313 
0.01 or HWE p-value < 1.0×10-6. 5,201,724 SNPs were retained in autosomes and 126,109 SNPs were 314 
retained on chrX. We then used the common SNPs to infer the genetic ancestries of 80,873 315 
participants in the iPSYCH2012 study, 75,764 individuals of European ancestry and 5,109 individuals 316 
of non-European ancestry. Details are provided in Supplementary Method 2. 317 

Imputation of C4 haplotypes 318 

C4 haplotypes were imputed from reference data9,14 using the genotyped SNPs in the iPSYCH2012 319 
sample. The human C4 haplotypes have various copy numbers, including two isotypic 320 
polymorphisms, C4A (A) and C4B (B). Each isotype has two length-polymorphisms due to a human 321 
endogenous retroviral (HERV) insertion, long form (L, with HERV insertion) and short form (S, 322 
without HERV insertion). The isotypic and length polymorphisms lead to four alleles in a C4 copy, AL, 323 
AS, BL and BS. Using the genotyped SNPs, the C4 haplotype reference was used to impute the C4 324 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.09.22281216doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22281216
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

alleles and the number of C4 copies (with a maximum copy number of 4). The C4 haplotype 325 
imputation panel comprised whole genome sequencing data from 1,234 individuals of multiple 326 
ancestries, which enabled us to identify C4 alleles with high accuracy. We used Beagle software39 for 327 
the imputation with the C4 haplotype reference. The imputation results provided the counts of 328 
alleles, but were unable to confidently distinguish all combinations of variants, for example, 329 
between the haplotypes AS-BL and AL-BS. We counted the two C4 alleles (C4A and C4B) with 330 
combination of HERV using a subset of the imputed result, where combinations can be confidently 331 
distinguished (details are provided in Supplementary Method 3). Both counts of C4 allele 332 
combinations and reported studies40 indicated that the C4A gene is more likely to carry HERV 333 
insertion than the C4B gene. Therefore, the C4 haplotype is assumed to be AL-BS rather than AS-BL, 334 
consistent with methods described by Sekar et al9. The imputed counts were converted to the C4 335 
haplotypes. Eight common C4 haplotypes (allele frequencies ≥ 0.01) were imputed in the 336 
iPSYCH2012 study (Supplementary Table 3). The allele frequencies of the 8 haplotypes were 337 
consistent with other studies14,41. Given the common C4 haplotypes, we counted the copy numbers 338 
of the C4 alleles (Supplementary Figure 2) for each participant. 28 individuals (0.04%) carried 4 339 
copies of C4B and 35 individuals (0.05%) carried 6 copies of HERV insertion. Therefore, we excluded 340 
these individuals with very rare copy numbers. The C4A copy number is strongly correlated with C4B 341 
and HERV copy numbers (Pearson correlation between C4A and C4B = -0.52; between C4A and HERV 342 
= 0.73). 343 

Quality control of the C3 and C4 protein concentrations 344 

The C3 and C4 protein concentrations were measured in 78,268 iPSYCH2012 participants of multiple 345 
ancestries. We focused on 68,768 individuals of European ancestry with measures of C3 and C4 346 
protein concentrations. The protein assay plates captured a substantial amount of variance (C3 = 347 
49.4%, C4 = 45.3%). Therefore, we used a linear mixed model (LMM)42 approach to adjust protein 348 
concentrations, y = Σzplateuplate + e, where y represents the C3/4 protein concentration; zplate 349 
represents protein assay plate, a random variable; uplate represents the random effect of protein 350 
assay plate; and e represents residual. The mixed model regression was conducted by the R package 351 
of lme4 (Bates et al., 2015). The rank-based inverse normal transformation (RINT)43 was applied to 352 
the residuals to have mean 0 and variance 1. The standard deviations (SDs) adjusted for variance 353 
captured by protein assay plate were used for the interpretation of results of C3 and C4 protein 354 
concentrations, for C3 protein concentration, 1 SD unit = 2.56 µg/L (3.60 µg/L × √(1 - 0.49)), and for 355 
C4 protein concentration, 1 SD unit = 2.46 µg/L (3.33 µg/L × √(1 - 0.45)). 356 

Heritability and SNP-based heritability of the C3 and C4 protein concentrations 357 

The iPSYCH2012 cohort had 75,764 participants of European ancestry. 19,113 participants who 358 
shared a genetic relatedness (entry of genetic relationship matrix, rGRM) ≥ 0.05 with at least one 359 
other individual were considered as relatives; 3,253 first degree (rGRM ≥ 0.4), 2,077 second degree 360 
relatives (0.2 ≤ rGRM < 0.4) and 13,783 third degree relatives (0.05 ≤ rGRM < 0.2). We jointly estimated 361 
both the heritability (h2) and the SNP-based h2 (h2

SNP) of the C3 and C4 protein concentrations by 362 
using the method proposed by Zaitlen et al44. This method assumes a normal distribution of SNP 363 
effect sizes. The GWAS studies of protein concentrations45-47 observed that SNPs in or near the 364 
coding genes would capture more phenotypic variance than the remaining SNPs. Therefore, we used 365 
two approaches to further explore the h2

SNP, 1) estimating it using all common SNPs by BayesR48, 366 
which assumes a mixture distribution of SNP effect sizes and can be used to test number of SNPs 367 
with nil, small, median and large genetic variance (small R2 < 0.01%, median 0.01% ≤ R2 < 0.1%, and 368 
large 0.1% ≤ R2 < 1%) in addition to estimation of h2

SNP, and 2) partitioning h2
SNP into (a) h2

cis-chr, 369 
explained by SNPs on the chromosome where the coding gene (cis-chr SNPs) was positioned, and (b) 370 
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h2
trans-chr, explained by the remaining SNPs (trans-chr SNPs). To partition h2

SNP, we divided SNPs into 371 
two subsets, 1) cis-chr and 2) trans-chr SNPs. The h2

cis-chr and h2
trans-chr were estimated by using GCTA-372 

GREML49 and BayesR. Only genetically unrelated participants were included in the two analyses. The 373 
genetic relationship matrix used in the Zaitlen and GREML analyses were estimated from 5,201,724 374 
common SNPs. Only the subset of HapMap phase 3 (HM3) SNPs were included in the BayesR 375 
analyses because of the computation complexity (853,129 HM3 SNP in total; for C3 protein 376 
concentration, 132,239 cis-chr SNPs and 839,891 trans-chr SNPs; for C4 protein concentration, 377 
60,631 cis-SNPs and 792,498 trans-SNPs). The Zaitlen method and GREML were implemented in 378 
Genome-wide Complex Trait Analysis (GCTA)50. BayesR was implemented in Genome-wide Complex 379 
Trait Bayesian analysis (GCTB). The URLs for these programs are provided below.  380 

We estimated the genetic correlation between C3 and C4 concentrations by BOLT-REML51. To further 381 
examine if the genetic correlation was primarily driven by the two protein-coding genes (i.e. C3 and 382 
C4), we conducted the BOLT-REML and Haseman-Elston regression52 analyses using the trans-chr 383 
SNPs. The Haseman-Elston regression was implemented in GCTA.  384 

GWAS of C3 and C4 protein concentrations 385 

We performed the GWAS analysis of the C3 and C4 protein concentrations by fastGWA53. The 386 
fastGWA is a LMM method which can include all individuals of European ancestry regardless of 387 
relatedness. 5,201,724 imputed SNPs were analysed in the GWAS. In addition, fastGWA can include 388 
candidate markers which optimizes power if particular SNPs capture a large proportion of the total 389 
variance54. Therefore, we excluded the SNPs in and near the coding gene for the required GRM in 390 
the GWAS, C3: chr19, 4.67Mb – 8.74Mb, C4: chr6, 24.8Mb – 33.9Mb. For each GWAS, we fitted 391 
birthyear, sex, wave (i.e., genotyping batch) and the first 20 PCs as covariates in the model. The PCs 392 
were estimated by FastPCA55, excluding the same SNPs as we did for the required GRM. We 393 
conducted the GWASs using all SNPs on autosomal and sex chromosomes. SNPs on X chromosome 394 
for males (coded as 0/2) were tested as diploid, assuming X chromosome of males has half dosage 395 
compensation56. We used GCTA-COJO50 to identify the SNPs which were independently associated 396 
with the two concentrations. We randomly sampled 10,000 participants from the population-based 397 
sub-cohort of iPSYCH2012 as the LD reference cohort. The GWAS significance threshold was 5.0×10-398 
8. 399 

To explore if the enrichment of mental disorder cases in the iPSYCH2012 case-cohort could induce 400 
bias within the GWASs, we conducted simulations with ascertained individuals and performed 401 
GWASs in the population-based sub-cohort (Supplementary Method 4).   402 

Associations between C4 haplotypes and protein concentrations 403 

We examined the associations between the imputed C4 haplotypes and the two observed C3 and C4 404 
protein concentrations. We first examined the associations of C4 copy numbers using a LMM 405 
approach, yprotein = xcopybcopy + Σxcbc + Σz-MHCu-MHC + e, where yprotein was C3/4 protein concentration; 406 
xcopy was copy number of C4 allele, either C4A, C4B or HERV; bcopy represents effect of copy number; 407 
xc was covariate with bc being its effect; Both bcopy and bc were fixed effects. The covariates in the 408 
model were the same as those fitted in the GWAS of C4 protein concentration. Because of the strong 409 
linkage disequilibrium in the MHC region, fitting SNPs in the region is likely to underestimate the 410 
effects of C4 allele count and reduce power. Therefore, we fitted the SNPs outside the MHC region 411 
(z-MHC) in the model with u-MHC being their random effects. In practice, the effect of copy number 412 
from the linear mixed model could be estimated by generalized least squares (GLS) method, b = (XTV-413 
1X)-1XTV-1yprotein, where X = {xcopy, xc} and V was phenotypic covariance matrix of C3/4 protein 414 
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concentration. It was implemented by GCTA-GREML. All the individuals of European ancestry were 415 
included in the analysis. The three C4 allele counts were correlated. Therefore, we estimated the 416 
joint effects using the same LMM approach as above, yprotein = xC4AbC4A + xC4BbC4B + xHERVbHERV + Σxcbc + 417 
Σz-MHCu-MHC + e. In the model, xC4A, xC4B and xHERV represent respectively counts of C4A, C4B and HERV. 418 
The remaining variables were defined as above. Secondly, we further examined the associations of 419 
the imputed C4 haplotypes using the LMM approach. Previous studies have reported a strong effect 420 
for the C4A gene9, while the effect of C4B remains unclear57. Therefore, we used ‘BS’ as the 421 
reference haplotype to estimate joint effects of the remaining haplotypes. The regression model can 422 
be expressed as, yprotein = Σxalleleballele + Σxcbc + Σz-MHCu-MHC + e, where xallele represents C4 haplotype. 423 
Seven C4 haplotypes were included in the model, except for BS. The remaining parameters were 424 
defined as above. The estimated effect can be interpreted as the effect of the C4 haplotype 425 
compared to BS. All the European participants were included in the analysis. The significance 426 
threshold for these analyses was the same as the main GWAS significance threshold (i.e., 5.0×10-8). 427 

FUMA and SMR  428 

We conducted gene-based analysis by Functional Mapping and Annotation of Genome-Wide 429 
Association Studies (FUMA)58. There were 18,305 genes available for the gene-based analysis, thus 430 
the Bonferroni corrected threshold was 1.4×10-6 (= 0.05 / (18,305 × 2)). We conducted Summary-431 
data-based Mendelian Randomisation (SMR)59 to identify pleiotropic genes for C3 and C4 432 
concentrations. For the SMR analysis, the eQTL data (i.e., summary statistics from associations of 433 
gene expressions), was Genotype-Tissue Expression version 8 (GTEx v8)60. The LD reference sample 434 
with 10,000 participants was the same as the above GCTA-COJO analysis. 22,338 gene-tagged probes 435 
within 49 tissues (200,144 probes in total) which had significant SNPs were included in the SMR 436 
analysis. The Bonferroni significance threshold was 1.2×10-6 (= 0.05 / (200,144 × 2)).  437 

Associations between C4 haplotypes and mental disorders observed within the iPSYCH2012 case-438 
cohort study 439 

Based on the associations with protein concentrations, we conducted the associations between C4 440 
haplotypes and 6 iPSYCH2012 disorders (SCZ, BIP, DEP, ASD, ADHD and AN). We used three 441 
approaches to examine the relationships, 1) associations with C4 allele counts, 2) associations with 442 
imputed C4 haplotypes, 3) associations with predicted C4 gene expression in the brain. Because the 443 
iPSYCH2012 case-cohort study has person-level data on the age-at-first contact with psychiatric 444 
services, we were able to assess the risk of mental disorders within the more informative time-to-445 
event framework, using Cox proportional hazards regression (Cox PH) to analyse the hazards of C4 446 
allele counts and haplotypes with respect to the mental disorder of interest. For C4 allele count, we 447 
examined the joint effects due to their correlations, h(t) = h0(t)exp(xC4AbC4A + xC4BbC4B + xHERVbHERV + 448 
Σxcbc). In the model, h0(t) represents the baseline hazard while h(t) represents the hazard at time t 449 
between baseline and December 2016. The remaining variables were defined as above. For C4 450 
haplotypes, we examined the joint effects using the Cox PH model, h(t) = h0(t)exp(Σxalleleballele + 451 
Σxcbc). All the variables were defined as above. In addition to C4 haplotypes, we used the predicted 452 
C4A and C4B gene expressions as outlined in the post-mortem brain study of Sekar et al.9 The 453 
association was conducted with a Cox PH model, h(t) = h0(t)exp(xC4A_predictedbC4A_predicted + xC4B_predicted 454 
bC4B_predicted + Σxcbc), where xC4A_predicted and xC4B_predicted represent the predicted C4A and C4B gene 455 
expressions, respectively. We included only unrelated individuals of European ancestry in the three 456 
analyses.  457 

In the time-to-event analysis, the cases were the diagnosed participants by December 2016, and the 458 
non-cases are defined as the entire cohort excluding those individuals with the disorder of interest. 459 
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Therefore, we defined six psychiatric-disorder samples for the time-to-event analyses. The sample 460 
sizes for cases and non-cases are shown in Supplementary Table 1. 461 

Associations between protein concentrations and mental disorders observed within the 462 
iPSYCH2012 case-cohort study 463 

Based on the associations between C4 haplotypes and 1) the two protein concentrations (C3 and C4) 464 
and 2) six mental disorders, we explored the associations between C3 and C4 protein concentrations 465 
and mental disorders observed in the iPSYCH2012 case-cohort study, using Cox PH models. We first 466 
tested the marginal effects of two concentrations, using the model h(t) = h0(t)exp(xproteinbprotein + 467 
Σxcbc). The variables were defined as above. Due to the high correlation, we then fitted both 468 
concentrations jointly, h(t) = h0(t)exp(xC3_proteinbC3_protein + xC4_proteinbC4_protein + Σxcbc), where xC3_protein 469 
and xC4_protein represent C3 and C4 concentration, respectively. bC3_protein and bC4_protein, effects of two 470 
protein concentrations, were fixed effects. In the three analyses, we included only unrelated 471 
individuals of European ancestry.  472 

Mendelian Randomisation analysis based on summary statistics 473 

We explored the relationships between protein concentrations and mental and autoimmune 474 
disorders using the generalised summary-data-based Mendelian Randomisation (GSMR) method61. 475 
Because of the possible link between C3 and C4 and brain function7, we also included two 476 
neurodegenerative disorders—Alzheimer’s disease, and amyotrophic lateral sclerosis in these 477 
analyses. Thus, there were 8 broadly-defined neuropsychiatric disorders (i.e., SCZ62, DEP63, BIP64 , 478 
ASD65, ADHD66, AN67, Alzheimer’s disease68, amyotrophic lateral sclerosis69), and 6 autoimmune 479 
disorders (i.e., multiple sclerosis70, type-1 diabetes71, Crohn’s disease72, ulcerative colitis72, 480 
rheumatoid arthritis73, systemic lupus erythematous74). The GWAS summary statistics for these 481 
disorders were publicly available (additional details provided in Supplementary Table 19).  482 
Unfortunately, detailed GWAS summary statistics for Sjögren's syndrome were not available. The 483 
GSMR method was implemented in GCTA. The GSMR method includes options to exclude potentially 484 
pleotropic loci (HEIDI filtering). Similar to the methods for pleiotropy exclusion, it assumes fewer 485 
pleiotropic SNPs than valid variants and MR estimates may fluctuate with the inclusion of those SNP 486 
outliers61. Given that a substantial proportion of the variance in C4 concentration was associated 487 
with SNPs in the MHC region (including the C4 gene), genetic variants used in the GSMR analysis may 488 
be dominated by those positioned in or near the region. Therefore, the interpretation of results 489 
based on the large effect loci within the MHC can be misleading. As a planned analyses, we ran the 490 
GSMR method again based on summary statistics from the GWAS of C4 concentration adjusted for 491 
COJO SNPs within MHC region (as a covariate). In addition, in the presence of bidirectional GSMR 492 
findings (i.e., evidence of both protein concentration impacting on phenotype of interest, and vice 493 
versa; forward and reverse direction respectively), symmetrical (i.e., equivalent) effect sizes may 494 
reflect the presence of pleiotropy. It is of note that effects of C3/4 protein concentration on these 495 
mental and autoimmune disorders by GSMR were equivalent to log odds ratio (OR) from logistic 496 
regression if we have all the phenotypes in a cohort61. We, therefore, reported the logOR and 95% CI 497 
in the results. The effects of mental and autoimmune disorders on C3/4 protein concentration may 498 
be required to be transformed for better interpretation75. However, we only used the reserve GSMR 499 
results to examine the presence of reverse causation and pleiotropy. Therefore, we reported the 500 
GSMR estimates directly. The LD reference sample which included 10,000 participants was the same 501 
as for the GCTA-COJO analysis. We conducted both forward (from C3/4 concentration to disorder) 502 
and reverse (from disorder to C3/4 concentration) analyses. We set HEIDI-outlier threshold at 0.01 503 
to filter horizontal pleiotropy. The GSMR Bonferroni corrected significance threshold was 1.9×10-3 (= 504 
0.05 / (2 × 13)).  505 
 506 
 507 
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PheWAS based on UK Biobank phenotypes 508 

Based on the GSMR analysis results, we conducted phenome-wide association studies (PheWASs) to 509 
explore the relationships with disorder outcomes. The PheWASs were conducted in the UK Biobank 510 
(UKB) cohort76, a large population cohort with 487,409 participants of multiple ancestries. The 511 
genotypes were imputed to the HRC38 and UK10K77 reference panels by the UKB group. The quality 512 
controls were described in detail elsewhere78, including generic ancestry determination, quality 513 
controls of imputed SNPs, and estimation of principal components. In the study, we included 514 
1,130,559 HM3 SNPs on autosomal chromosomes, with MAF ≥ 0.01, HWE P-value ≥ 1.0 ×10−6, 515 
because only effects of HM3 SNPs were predicted by BayesR. The genetic relationship matrix was 516 
estimated by GCTA. 347,769 unrelated participants of European ancestry were retained with genetic 517 
relationship < 0.05. In the PheWAS analysis, we included 1,148 UKB phenotypes, 1) 1,027 disorders 518 
which were classified by ICD-10 codes, 2) 51 anthropometric measurements and brain imaging traits, 519 
and 3) 70 infectious disease antigens. The quantitative traits were standardised by RINT to have 520 
mean 0 and variance 1. We then used the model to test the associations, for quantitative traits, y = 521 
xprotein_prsbprotein_prs + Σxcbc + e, where y represents quantitative trait in UKB; xprotein_prs represents 522 
polygenic scores for neonatal C3 and C4 protein concentrations predicted by BayesR; xc represent 523 
the covariate variables including birth year, sex and 20 PCs. For dichotomous traits, logit(y) = 524 
xprotein_prsbprotein_prs + Σxcbc + e, where y represents the dichotomous trait and definitions of the 525 
remaining variables were the same as above. In addition, we conducted the PheWAS analyses for 526 
males and females separately using the same approach. Polygenic scores were predicted using 527 
GWASs in both sexes. The Bonferroni corrected significance threshold was 7.3×10-6 (= 0.05 / (1148 × 528 
3 × 2)).  529 

 530 
RESULTS 531 
 532 
The iPSYCH2012 study, a population-based case-cohort, was designed to study the genetic and 533 
environmental factors of 6 mental disorders (Supplementary Table 1), SCZ, BIP, DEP, ASD, ADHD and 534 
AN. The study included 80,873 individuals of multiple ancestries. 75,764 European individuals were 535 
retained by principal components (PCs) projection (Supplementary Figure 1). The following analyses 536 
in our study were based on the European individuals. We imputed C4 haplotypes using the reference 537 
data9,14. The imputation process predicted the counts of three C4 alleles (C4A, C4B and HERV), but is 538 
not able to confidently distinguish all combinations. From the subset of imputation result without 539 
ambiguity, C4A allele is more likely to carry a HERV than C4B allele (~1.5 higher) while C4A allele is 540 
much less likely to not carry a HERV (Supplementary Table 2, for C4A, 0.2%, for C4B, 21.2%), which is 541 
consistent with previous studies40. Based on that, eight common C4 haplotypes were imputed with 542 
allele frequency (AF) ≥ 0.01 (Supplementary Table 3). Their frequencies were respectively BS (12%), 543 
AL (4%), AL-BS (23%), AL-BL (43%), AL-BS-BS (2%), AL-AL (11%), AL-AL-BS (3%), and AL-AL-BL (2%), 544 
consistent with the published studies14,41. We counted the copy numbers of the three types of C4 545 
alleles (C4A, C4B and HERV, Supplementary Figure 2). The copy numbers (i.e., count) for the 546 
different types of C4 alleles were correlated. C4A count was negatively correlated with C4B count (r 547 
= -0.52, P-value < 1.0×10-100). HERV count was positively correlated with C4A count (r = 0.73, P-value 548 
< 1.0×10-100), but negatively correlated with C4B count (r = -0.17, P-value < 1.0×10-100). 549 
 550 
There were 68,768 participants of European ancestry with measures of C3 and C4 protein 551 
concentrations. The distributions of the observed neonatal C3 and C4 protein concentrations were 552 
right skewed, with mean, median, SD, and interquartile range being respectively 7.1, 6.7, 3.6, and 553 
5.1 - 9.2 µg/L for C3 protein concentration, and 6.9, 6.5, 3.3 and 4.9 - 9.0 µg/L for C4 protein 554 
concentration (Supplementary Table 4). Significant differences were observed in the protein 555 
concentrations between males and females (C3 protein concentration: difference = -0.32, SE = 0.03, 556 
P-value = 6.5×10-32; C4 protein concentration: difference = -0.30, SE = 0.03, P-value = 2.7×10-33). 557 
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While the variance captured by sex was small (R2 = 0.19% for C3 protein concentration and 0.20% for 558 
C4 protein concentration), we fitted sex as a covariate in the following analyses. To account for the 559 
influence of duration of storage (Supplementary Figure 3) and between-protein assay plate 560 
variation, we regressed the concentrations of the plates using a linear mixed model (LMM) 561 
approach. The residuals were standardised (mean 0, variance 1) using rank-based inverse normal 562 
transformation (RINT). After standardisation, the concentrations of C3 and C4 were positively 563 
correlated rP = 0.65 (P-value < 1×10-100, Supplementary Figure 4).  564 
 565 
Heritability of C3 and C4 protein concentrations 566 
The h2 of C4 by Zaitlen’s method44 was 40% (SE = 0.03, P-value = 2.7×10-44, Supplementary Table 5) 567 
while the h2

SNP was 26% (SE = 0.006, P-value < 1.0×10-100). For C3, h2 was 21% (SE = 0.03, P-value = 568 
1.1×10-11) and the h2

SNP was 4% (SE = 0.005, P-value = 3.2×10-14). The high genetic variance of C4 569 
concentration was confirmed by BayesR48 — the h2

SNP for C4 was 24% (SE = 0.004, P-value 1.0×10-100 570 
and 6% (SE = 0.005, P-value = 4.4×10-39) for C3. Moreover, ~50 HM3 SNPs captured substantial 571 
genetic variance (R2 > 0.1%), for C3 protein concentration 39 SNPs and for C4 protein concentration 572 
62 SNPs. The observation was consistent with our expectation that SNPs in or near the salient 573 
encoding genes would capture a substantial proportion of phenotypic variance for these two 574 
circulating proteins. Thus, we partitioned SNPs into two subsets; (a) those on the chromosome 575 
where the coding gene is located (cis-chr SNPs), and (b) those on the remaining chromosomes 576 
(trans-chr SNPs), and jointly estimating SNP-based h2 at the two subsets of SNPs, SNP-based h2

cis-chr 577 
and h2

trans-chr, using GREML49. For C4, h2
cis-chr = 14% (SE = 0.005, P-value < 1.0×10-100) and h2

trans-chr = 4% 578 
(SE = 0.006, P-value = 9.4×10-13). For C3, h2

cis-chr was 0.4% (SE = 0.001, P-value = 1.1×10-3) and h2
trans-chr 579 

= 3% (SE = 0.006, P-value = 1.4×10-7). The cis-chr SNPs of C4 concentration captured more genetic 580 
variance than the trans-chr SNPs. A higher genetic variance was found at cis-chr SNPs by BayesR. For 581 
C4, h2

cis-chr = 22% (SE = 0.003, P-value < 1.0×10-100) and h2
trans-chr = 5% (SE = 0.004, P-value = 6.2×10-30). 582 

For C3, h2
cis-chr = 2% (SE = 0.001, P-value = 3.9×10-80) and h2

trans-chr = 5% (SE = 0.004, P-value = 5.9×10-583 
26). Both the Zaitlen method and GREML assume genetic variance at each SNP follows a normal 584 
distribution while BayesR assumes a mixture distribution. The BayesR estimates are expected to 585 
better model the true underlying genetic architecture. We only used individual-level-data-based 586 
methods (such as Zaitlen’s method, GREML and BayesR) in the analysis as genotypes and 587 
phenotypes were all available, since summary-level-data-based methods modelling LD from 588 
reference cohorts are less accurate. In summary, both C3 and C4 concentrations were heritable 589 
traits. SNPs positioned in the C4 gene accounted for a substantial proportion of the genetic variance 590 
of C4 concentration.  591 
 592 
The genetic correlation (rg) between the two concentrations based on BOLT-REML51 was 0.38 593 
(Supplementary Table 6, SE = 0.03, P-value = 1.9×10-35), smaller than the phenotypic correlation 594 
(0.65). Given the large genetic effects at the coding genes for C3 and C4 we then estimated rg using 595 
SNPs other than chromosomes 6 or 19 (related to the location of C4 and C3 genes, respectively) to 596 
further investigate if the correlation was driven by cis-chr SNPs, rg = 0.82 (SE = 0.05, P-value = 597 
4.8×10-65). The high correlation was confirmed by Haseman-Elston regression52 (rg = 0.78, SE = 0.19, 598 
P-value = 4.1×10-5), using trans-chr SNPs. These results indicated that C3 and C4 were genetically 599 
correlated, and this genetic correlation was not driven by SNPs in or near their respective encoding 600 
genes.  601 
 602 
GWAS of C3 and C4 protein concentrations 603 
We used fastGWA53 to conduct the GWAS analysis based on 75,764 participants of European 604 
ancestry and 5,327,833 common SNPs, 5,201,724 in autosomes and 126,109 on the X chromosome 605 
(Figure 2). We conducted a GCTA-COJO79 analysis to help identify putative independent SNPs. For C4 606 
protein concentration, 34 autosomal SNPs were identified as genome-wide significant 607 
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(Supplementary Table 7), and all were autosomal. For C3 protein concentration, 14 significant SNPs 608 
were identified, again all were autosomal (Supplementary Table 8).  609 
 610 
 611 
 612 
 613 

 614 
 615 
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Figure 2 GWASs of neonatal C4 and C3 protein concentrations. a) unadjusted C4 protein 616 
concentration, b) C4 protein concentration adjusted for COJO SNPs in the MHC region (fitted as 617 
covariates in the regression model), c) unadjusted C3 protein concentration and d) C3 protein 618 
concentration adjusted for COJO SNPs on chromosome 19. The COJO SNPs fitted as covariates in 619 
GWAS of adjusted protein concentration (panels b and d) were identified from GCTA-COJO analysis 620 
of unadjusted protein concentration. The COJO SNPs were highlighted with red colour. The top-621 
associated SNPs were annotated with their overlapped or nearest genes. The GWAS threshold was 622 
5.0×10-8. 623 
 624 
Of the 34 SNPs significantly associated with C4 protein concentration, 30 (88.2%, 30/34) were found 625 
on chromosome 6. Of these 29 were in the MHC region and 27 (79.4%, 27/34) SNPs were positioned 626 
within 2Mb of the C4 gene (chr6, 31.9 Mb). These 27 SNPs explained 16.7% of phenotypic variance in 627 
C4 concentration, which is consistent with the estimated h2

cis-chr. SNP rs113720465 (32,005,355bp, 628 
~1Kb away from C4B-AS1 [32,000-32,004Kb]) had the largest effect size (the A allele was associated 629 
with an increase of 0.76 standard deviation units of C4 protein concentration), however SNP 630 
rs3117579 had the smallest P-value (within an exon of GPANK1). Given this large effect size, it is 631 
possible that SNPs in LD at r2 < 0.01 (the COJO threshold of independence) could also be reported as 632 
genome-wide significant through correlation. Thus, we conducted a GWAS fitting the COJO SNPs in 633 
and near MHC region as fixed effects (Figure 2). We identified 8 significant loci by COJO, 6 of which 634 
were significant from GWAS of unadjusted C4 protein concentration. The 2 additional loci were on 635 
chromosomes 9 (rs6477754) and X (rs12012736). Interestingly, nearly all the 8 COJO SNPs were 636 
annotated to the genes biologically related to complement-related pathways (Supplementary Figure 637 
5). For example, C4BPA (rs12057769) encodes a binding protein of C4. The IL6 gene (rs2066992) 638 
encodes a cytokine stimulated in response to infections and injuries. C1S (7.1Mb on chr12) and C1R 639 
(7.2Mb on chr12), the nearest genes of rs11064501, are the protein-coding genes of two C1 sub-640 
components.  641 
 642 
With respect to C3 protein concentration, 7 COJO SNPs were positioned within 2Mb of the C3 gene 643 
(chr19, 6.7Mb) — these loci explained 3% of phenotypic variance in C3 concentration. After fitting 644 
these 7 COJO SNPs as covariates, 8 significant COJO SNPs were identified (Supplementary Figure 6). 645 
We found a SNP within the ABO gene, which has recently been identified as a ‘master regulator’ of 646 
plasma protein concentration46,80. The gene annotations of the remaining SNPs encode proteins 647 
which involve immune- and/or C3-related pathways: (a) FCGR2B (rs844), which encodes an 648 
inhibitory receptor for the Fc region of immunoglobulin gamma (IgG), (b) CFH (rs558103 and 649 
rs11580821) which encodes Complement Factor H, a key factor that inhibits the alternative pathway 650 
and the amplification loop downstream from C3, (c) STK19 gene (rs114492815) which is close to the 651 
C4A gene, and (d) FAM117A (rs12949906), which has enhanced gene expressions in dendritic cells 652 
(i.e., antigen-presenting cells involved in the immune system81.  653 
 654 
For both GWASs of C3 and C4 protein concentration, we found no evidence of potential 655 
ascertainment bias related to the enrichment of cases with mental disorders in the iPSYCH2012 656 
case-cohort study (Supplementary Method 4, Supplementary Figures 8-10). Therefore, the 657 
following post-GWAS analyses were based on the results from the full iPSYCH2012 sample. 658 
 659 
Associations between C4 haplotypes and C3/4 protein concentration 660 
Both h2

SNP and GWAS results indicated strong effects of the SNPs in the MHC region for both C4 and 661 
C3 protein concentrations. Due to the complex LD structure in this region, we used the imputed C4 662 
haplotypes to investigate phenotypic associations of these genetic variants. We first examined the 663 
associations between the imputed C4 haplotypes with the observed C4 protein concentration, using 664 
an LMM approach. As expected, more copies of C4 allele (either C4A, C4B, with or without HERV) 665 
were strongly associated with higher C4 protein concentration (Figure 3). The C4A copy number 666 
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(bC4A) had greater effect than C4B (bC4B) and HERV (bHERV), bC4A = 0.3 (Supplementary Table 9, SE = 667 
0.01, P-value < 1.0×10-100), bC4B = 0.2 (SE = 0.01, P-value < 1.0×10-100), and bHERV = 0.2 (SE = 0.004, P-668 
value < 1.0×10-100). The C4 copy numbers were correlated. Therefore, we fitted all 3 gene copy 669 
numbers in a regression model to estimate the joint effects. The C4A copy number had nearly 670 
identical effect to C4B copy number, bC4A = 0.6 (SE = 0.01, P-value < 1.0×10-100), bC4B = 0.6 (SE = 0.01, 671 
P-value < 1.0×10-100). The beta estimates associated with the HERV copy number was less than the 672 
comparable estimates for C4A and C4B, and was negatively associated with C4 protein 673 
concentration, bHERV = -0.08 (SE = 0.005, P-value = 5.0×10-51). This may reflect the strong correlation 674 
with C4A (r = 0.73) and negative correlation with C4B (r = -0.17). The result suggested 1 more copy of 675 
C4A or C4B is likely to have 1.6 µg/L (~0.6 × SD unit) higher C4 protein concentration given the same 676 
amount of HERV.  We calculated the captured variance (R2 = s2b2) that were comparable between 677 
the C4 copy numbers. In the formula, s2 was variance of C4 copy number, analogous to variance of 678 
allele count. Of interest, the s2 of C4A count was greater than C4B count (Supplementary Table 3, s2 679 
= 0.55 for C4A and 0.31 for C4B). Therefore, C4A count had a larger contribution to C4 protein 680 
concentration than the C4B count (R2 = 23% for C4A and 11% for C4B). In total, both counts captured 681 
17.3% of variance in C4 protein concentration, accounting for the negative correlation between the 682 
two allele counts (r = -0.52). The captured genetic variance was in line with h2

cis-chr, and the genetic 683 
variance at the MHC SNPs. In summary, the imputed counts of both C4A and C4B were associated 684 
with the observed C4 protein concentration and C4A count had a greater contribution than C4B 685 
count. 686 
 687 
 688 

 689 
 690 
Figure 3 Plot of C4 copy number versus C4 protein concentration. There were three C4 alleles, (a) 691 
C4A, (b) C4B and (c) C4L/HERV. The colours represent C4 allele counts. 692 
 693 

 694 

Based on the effects of C4 allele counts, we then examined the association between the commonly 695 
observed C4 haplotypes and C4 protein concentration. For this analysis, we used the BS haplotype as 696 
the reference category (because of [1] the positive association between C4 allele count and C4 697 
protein concentration, and [2] the greater contribution of C4A count to C4 protein concentration). 698 
All the remaining 7 common haplotypes were associated with increased C4 protein concentration. 699 
Due to their higher frequencies, AL-BS and AL-BL haplotypes captured greater variance of C4 protein 700 
concentration (Supplementary Table 10, R2 = 7.6% for AL-BS and 7.1% for AL-BL).  701 
 702 
We then examined C3 protein concentration. In keeping with expectations, we did not identify any 703 
significant associations between either C4 copy number or C4 haplotype, versus C3 protein 704 
concentration. However, we found the AL-BS haplotype was nominally significantly associated with 705 
C3 protein concentration (bAL-BS = 0.23, SE = 0.03, P-value = 5.4×10-3). From the GWAS of C3 706 
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concentration, there was a COJO SNP positioned within the MHC region (rs114492815). While this 707 
SNP was in very weak association with each of the C4 allele counts (R2 < 0.005 for C4A count and C4B 708 
count, 0.01 for C4L/HERV count), there was a moderate association with AL-BS (R2 = 0.11). 709 
Therefore, we ran the analysis again, fitting rs114492815 as an additional covariate. After this 710 
adjustment, none of the haplotypes were associated with the C3 concentration (Supplementary 711 
Table 10). In general, C3 concentration was independent of C4 alleles.  712 
 713 
Functional mapping of GWAS 714 
Having found the significant SNPs from the GWASs, we explored the genes associated with both 715 
concentrations. For C4 concentration, we identified 263 significant genes by Functional Mapping and 716 
Annotation of Genome-Wide association Studies (FUMA), 257 (98%) on chromosome 6 and five (2%) 717 
on the remaining chromosomes (Supplementary Table 11). These findings are consistent with the 718 
high LD between loci in the MHC region and the high gene density in this region. Some 719 
differentiation between genes was achieved by using SMR which integrates the trait associations 720 
with significant eQTL associations. For SMR, using the eQTL summary data GTEx version 8, we 721 
identified 56 pleiotropic genes, 55 on chromosome 6 and one on chromosome 1 (Supplementary 722 
Table 12). We noted that the number of identified genes by SMR was smaller than by FUMA. Many 723 
genes on chromosome 6 were significant on the SMR test but failed to pass HEIDI test (i.e., there 724 
was evidence of pleiotropy). This was because of the complex LD and likely multiple causal alleles. 725 
Interestingly, SMR analysis found that C4A, C4B and C4BPA were all significantly associated with 726 
neonatal C4 protein concentration. These are three of the major genes involved in regulation of C4 727 
protein concentration. The genetic correlates of neonatal C4 protein concentration were associated 728 
with higher C4A gene expressions in 8 brain tissues, amygdala (bXY = 0.70, SE = 0.11, P-value = 729 
3.7×10-10), anterior cingulate cortex (bXY = 0.74, SE = 0.13, P-value = 6.8×10-9), caudate basal ganglia 730 
(bXY = 0.70, SE = 0.09, P-value = 2.6×10-16), cerebella hemisphere (bXY = 0.44, SE = 0.05, P-value = 731 
8.2×10-18), brain cerebellum (bXY = 0.43, SE = 0.04, P-value = 5.1×10-22), hippocampus (bXY = 0.68, SE = 732 
0.10, P-value = 8.0×10-12), hypothalamus (bXY = 0.79, SE = 0.11, P-value = 4.4×10-12), and putamen 733 
basal ganglia (bXY = 0.76, SE = 0.12, P-value = 8.6×10-10). Except for cerebellar hemisphere and 734 
cerebellum, the effect sizes of these associations were comparable with a mean of bXY = 0.73. 735 
Overall, the findings from FUMA and SMR indicate strong associations between genes in the MHC 736 
region and C4 protein concentration, and the C4A gene was likely to have causal effect on C4 protein 737 
concentration in brain tissues. Interestingly, these significant genes were enriched with the Kyoto 738 
Encyclopedia of Genes and Genomes (KEGG) gene-sets of systemic lupus erythematosus (SLE, P-739 
value = 1.1×10-70) and complement systems (P-value = 7.2×10-4) (Supplementary Figure 7). For C3 740 
protein concentration, we identified 19 genes by FUMA (Supplementary Table 13). Within this set of 741 
genes, the DXO gene (chr6: 31.9Mb), which is positioned close to rs114492815, a significant SNP 742 
from the C3 GWAS, passed both SMR and HEIDI (a test of pleiotropy) tests (Supplementary Table 743 
14). All these genes by FUMA and SMR were enriched with KEGG gene-sets of SLE (P-value = 3.5×10-744 
6), leishmania infection (P-value = 5.0×10-6), complement systems (P-value = 9.1×10-6) and Fc gamma 745 
R-mediated phagocytosis (P-value = 9.5×10-4) (Supplementary Figure 7). In general, the identified 746 
genes (especially those within MHC region) suggest an association between SLE and the complement 747 
systems. 748 
 749 
 750 
Associations with mental disorders within the iPSYCH2012 case-cohort study 751 
We did not identify significant associations between C4A, C4B, or HERV copy numbers 752 
(Supplementary Table 15 or C4-related haplotypes (Supplementary Table 16) and any of the six 753 
mental disorders.  Based on the formula between imputed C4 haplotypes and observed C4 gene 754 
expression (i.e., RNA concentration) in post-mortem brain tissue9, we found no significant 755 
associations between these estimates and any of the 6 mental disorders (Supplementary Table 17). 756 
Importantly, we did not find any significant associations between observed neonatal C4 protein 757 
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concentration and any of the six mental disorders. In models that accounted for the strong 758 
correlation between C3 and C4 concentration, we found no significant association between C3 759 
concentration and any of the six mental disorders. (Supplementary Table 18).   760 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.09.22281216doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22281216
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

761 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.09.22281216doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22281216
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Figure 4 Association between C4-related measures and mental disorders, and GSMR analyses with 762 
mental disorders. There were 6 mental disorders in the analyses: SCZ, DEP, BIP, ASD, ADHD and AN. 763 
The results shown in the top row were from time-to-event analyses between mental disorders and 764 
C4-related genotypes and phenotypes, including a) C4 allele counts, b) imputed C4 haplotypes, c) 765 
predicted C4 gene expressions and d) C3 and C4 protein concentrations. The analyses were 766 
conducted in the iPSYCH2012 cohort. The results from Mendelian randomisation analyses 767 
(conducted by GSMR) were shown in the bottom row. The GSMR analysis using GWAS summary 768 
statistics predicted relationships between C4 protein concentration and mental disorders, e) using 769 
genetic variants from GWAS of C4 protein concentration, f) using genetic variants from GWAS of C4 770 
protein concentration adjusted for COJO SNPs in the MHC region. The Bonferroni corrected 771 
thresholds were provided in Methods. Bars represent 95% confidence interval. Significant results 772 
were highlighted with “*”.  773 

 774 
GSMR relationships with candidate neuropsychiatric and autoimmune disorders 775 
 776 
We conducted Mendelian randomization analyses to examine relationships between the two protein 777 
concentrations (C3 and C4) and neuropsychiatric and autoimmune disorders (Supplementary Table 778 
19). The results are shown in Figures 4 and 5. In the unadjusted analysis (i.e., all loci including the 779 
MHC region; with and without HEIDI filtering), higher C4 protein concentration was found to be 780 
associated with three mental disorders (Figure 4 and Supplementary Figure 11, SCZ, DEP, BIP). The 781 
odds ratios for these three findings were small (1.05 or less). We found that these GSMR results 782 
were strongly dependent on SNP instruments that were in and near the MHC region (e.g., for 783 
schizophrenia and bipolar disorder 126 out of 130 SNPs, and for major depression 103 out of 107 784 
SNPs). These three findings did not persist in the analyses adjusted for the MHC region SNPs. Overall, 785 
these analyses do not lend weight to the hypothesis that C4 is causally related to the risk of the 786 
psychiatric disorders included in the analyses.  787 
 788 
In contrast, we found strong, protective effects of C4 concentration for several autoimmune 789 
disorders. Higher C4 concentration was associated with lower risks of multiple sclerosis, type-1 790 
diabetes, rheumatoid arthritis and systemic lupus erythematosus (Figure 5). The effects were very 791 
large, especially for type-1 diabetes (OR = 0.54, 95% confidence interval [CI] = 0.50 – 0.58, NSNP = 47) 792 
and systemic lupus erythematosus (OR = 0.37, 95% CI = 0.34 – 0.42, NSNP = 103) (Supplementary 793 
Table 20). We identified that higher C4 concentration increased the risk of Crohn’s disease (OR = 794 
1.26, 95% CI = 1.19 – 1.34, NSNP = 86). The strong effect of neonatal C4 protein concentration on 795 
these disorders were not caused by reverse causation (Supplementary Table 21 and Supplementary 796 
Figure 12). After removing the pleiotropic SNPs, genetic variants associated with all autoimmune 797 
disorders (except for type-1 diabetes) were not associated with C4 protein concentration in the 798 
reverse GSMR analysis (from autoimmune disorder to neonatal C4 protein concentration). When we 799 
examined the relationships adjusted for the MHC region SNPs, the significant association with SLE 800 
persisted. The effect size was comparable to that found using unadjusted C4 GWAS (with 801 
adjustment, OR = 0.24, 95% CI = 0.12 – 0.47, NSNP = 7; without adjustment, OR = 0.37, 95% CI = 0.34 – 802 
0.42, NSNP = 103). Overall, these findings further support the hypothesis that higher C4 protein 803 
concentration is causally related to a reduced risk of systemic lupus erythematosus—it is predicted 804 
that an increase of 2.46 µg/L (1 SD unit) of C4 concentration would be associated with a 76% 805 
reduced risk (1 – 0.24) of systemic lupus erythematosus.  806 
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Figure 5 GSMR analyses of C4 protein concentration against autoimmune disorders. The top two 809 
panels showed the Mendelian randomisation results a) using genetic variants from GWAS of C4 810 
protein concentration, b) using genetic variants from GWAS of C4 protein concentration adjusted for 811 
COJO SNPs in the MHC region. The Bonferroni corrected threshold was 1.8×10-3. Bars in the top 2 812 
panels represented 95% confidence interval. Significant results were highlighted with “*”. The lower 813 
five panels show the effects of genetic variants for C4 protein concentration without adjustment 814 
against effects for five autoimmune disorders. Significant findings were identified for multiple 815 
sclerosis, Crohn's disease, type-1 diabetes, rheumatoid arthritis and systemic lupus erythematosus. 816 
The estimates in the panels (OR, standard error and P-value) were estimated from GSMR. Slope of 817 
dash line represented logOR. Bars in the bottom 5 panels represented standard errors of SNPs from 818 
GWAS. Potential pleiotropic SNPs were excluded. 819 
 820 

We then explored the relationships between C3 concentration and neuropsychiatric and 821 
autoimmune disorders by bidirectional GSMR. Mindful that analyses based on fewer instruments 822 
may be underpowered to detect small effects, no significant associations were identified with 823 
pleiotropic SNPs removed (Supplementary Table 20). Our findings provide no support for the 824 
hypothesis that C3 protein concentration is related to the risk of the neuropsychiatric nor 825 
autoimmune disorders examined in this study.  826 

C3 and C4 phenome-wide association studies in the UK Biobank 827 

With respect to C4 concentration, the PheWAS study in the UK Biobank identified significant 828 
associations with 35 phenotypes (Supplementary Table 22 and Supplementary Figure 13). Many of 829 
these were related to autoimmunity. Of the top 8 disease associations ranked by P-value, higher C4 830 
concentration was associated with a reduced risk of six disorders, two were associated with an 831 
increased risk. The top 8 were intestinal malabsorption (which includes coeliac disease; ICD10 = K90, 832 
OR = 0.54, 95% confidence interval [CI] = 0.53 - 0.56); thyrotoxicosis [hyperthyroidism] (ICD10 = E05, 833 
OR = 0.77, 95% CI = 0.75 - 0.79); hypothyroidism (ICD10= E03, OR= 0.92, 95% CI = 0.90 – 0.93); 834 
insulin-dependent diabetes mellitus (ICD10 = E10, OR = 0.80, 95% CIs = 0.78 – 0.83); sarcoidosis 835 
(ICD10 = D86; OR = 0.79, 95% CIs = 0.75 – 0.83); psoriasis (ICD10 = L40; OR =  1.08, 95% CIs = 1.06 – 836 
1.10); systemic lupus erythematosus (ICD10 = M32, OR = 0.74, 95% CI = 0.69 - 0.80) and ankylosing 837 
spondylitis (ICD10 = M45, OR = 1.22, 95% CIs = 1.16- 1.28). We also found a significant result for 838 
multiple sclerosis (ICD-10 = G35, OR = 0.88, 95% CI = 0.84 - 0.92). The attenuated results for the 839 
autoimmune disorders that were included in GMSR may be related to the low prevalence of these 840 
disorders (and the smaller number of cases in the UKB). In addition to the disorders which met the 841 
Bonferroni-corrected P-value threshold (P-value < 7.3×10-6), we note that Sjögren's syndrome (ICD10 842 
= M35; OR = 0.95, 95% CI = 0.92 - 0.97) was nominally significant. There were no significant findings 843 
between C4 and any neuropsychiatric disorders (ICD10 F codes). No significant difference was found 844 
between males and females. Overall, these findings lend weight to the hypotheses that neonatal C4 845 
protein concentration is (a) not associated with the risk of neuropsychiatric disorders, but (b) is 846 
associated with reduced risks of several autoimmune disorders. There were no significant 847 
associations between C3 and any of the 1,148 phenotypes, which was in line with our GSMR findings 848 
(Supplementary Table 23 and Supplementary Figure 14).  849 

 850 
DISCUSSION 851 

Our findings provide new insights into the genetic architecture of C3 and C4. Reassuringly, we found 852 
a robust association between C4-related haplotypes (including copy number) and neonatal C4 853 
protein concentration. The C3 and C4 protein concentrations were phenotypically and genetically 854 
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correlated (rp = 0.65, P-value < 1×10-100; rg = 0.35, P-value = 1.9×10-35, using all SNPs; and rg = 0.78, P-855 
value = 4×10-5 using trans-chr SNPs). The C3 and C4 GWAS findings identified variants in genes that 856 
encode important proteins within the inter-connected complement pathways. In contrast to a 857 
previous study9, we found that neither a higher imputed C4 haplotype count nor a higher observed 858 
C4 protein concentration was associated with an increased risk of schizophrenia or any other mental 859 
disorder diagnosed in later life. We did, however, find evidence from Mendelian randomization 860 
studies that support the hypothesis that C4 protein concentration is associated with a range of 861 
autoimmune disorders. In models that incorporate the correlation between C4 and C3 protein 862 
concentrations, we found no association between C3 and an altered risk of any mental disorder nor 863 
autoimmune disorder. This following discussion will focus on 5 key findings.  864 

First, with respect to C4 protein concentration, we found a stronger contribution of the C4A count 865 
compared to the C4B count. In keeping with prior smaller studies18,19, we confirmed that the copy 866 
numbers of C4A and C4B were robustly positively associated with the concentration of the C4 867 
protein (C4A count; b = 0.33, SE = 0.005, P-value < 1×10-100: C4B count; b = 0.18, SE = 0.007, P-value < 868 
1×10-100). In joint analyses that accounted for the pattern of correlations between the different types 869 
of C4 allele counts, the C4A count had twice the contribution to overall C4 concentration compared 870 
with C4B count. 871 

Second, the protein concentrations of C3 and C4, which are key components of the complement 872 
initiation pathways82, were highly heritable. Both pedigree- and SNP-based h2 estimates (standard 873 
error) were appreciable for C4 (0.40 (0.03) and 0.26 (0.006) respectively). The same estimates for C3 874 
were smaller; 0.21 (0.03) and 0.04 (0.005) respectively. As expected, SNPs within and near the 875 
respective coding genes (C4, C3) contributed to more than half of the genetic variance of their 876 
related proteins.  877 

Third, our sample sizes for C3 and C4 concentrations GWASs were nearly twenty times larger than 878 
the only published GWAS for these proteins18. With respect to C4 protein concentration, our series 879 
of linked GWASs provide important information about the genetic correlates of C4 protein 880 
concentration that lie outside of the MHC complex. In the GWAS, 30 quasi-independent hits were on 881 
chromosome six, within the MHC region. Six additional loci were found on chromosomes 1, 7, 9, 12, 882 
14 and X. We identified a locus on chromosome 1 within C4BPA, which encodes C4 binding protein 883 
(closely involved in C4 protein regulation). The locus on chromosome 12 (rs11064501) is adjacent to 884 
two genes that encode proteins involved in complement cascade initiation (C1s, C1R). Interestingly, 885 
a locus (rs12012736) was identified on the X chromosome. This locus may be one of the factors that 886 
contributed to the small sex differences found for the C3 and C4 protein concentrations and to the 887 
known sex differences in the risk of autoimmune disorders83.  888 

With respect to C3 protein concentration, apart from loci within the C3 gene (seven quasi-889 
independent loci within this gene on chromosome 19), we found a locus within FCGR2B (Fc gamma 890 
receptor IIb), which encodes a receptor for the Fc region of immunoglobulin gamma complexes 891 
(IgG). The IgG complex forms part of the machinery required for the phagocytosis of immune 892 
complexes.  One locus in the MHC complex was identified, which is adjacent to the C4A gene. In 893 
keeping with the prior GWAS18, we identified two loci within CFH, the gene that encodes 894 
complement factor H. This protein is involved in complement regulation and has been linked to 895 
several disease phenotypes (most notably, with age-related macular degeneration)84. CHF 896 
specifically regulates C3, which slows the downstream complement activation. We also found a locus 897 
within ABO, which was identified as having associations with over 50 other protein 898 
concentrations46,80, thus variants in this gene could directly or indirectly influence generic protein 899 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.09.22281216doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22281216
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

metabolic pathways (e.g., upstream metabolic steps, downstream protein degradation and 900 
excretion). In summary, our study has highlighted how genetic variants within several components 901 
of the complement cascades (i.e., at the systems level) could influence the concentration of key 902 
circulation proteins such as C3 and C4. We have summarized these findings in Figure 6.  903 

 904 

 905 

 906 

Figure 6 Summary of the results from GWASs of neonatal C3 and C4 protein concentrations 907 
displayed within the complement cascade. For significant loci identified from COJO, proteins 908 
encoded by annotated genes were highlighted with red colour.  909 

 910 

Fourth, convergent evidence found no association between several C4-related measures and risk of 911 
SCZ. Our study measured C4 protein concentration in 68,768 neonates, an age more proximal to the 912 
period of brain development consistent with the impact of C4 expression and synaptic pruning6,24.  913 
The strong association between C4-related copy number and measured C4 protein concentration, 914 
and the biologically-plausible loci/genes identified in the C3 and C4 GWASs lend weight to the 915 
validity of our measures. We found that none of the following variables were associated with an 916 
altered risk of SCZ: (a) observed neonatal C4 concentration, (b) copy numbers of either C4A, C4B, or 917 
HERV, (c) major C4-related haplotypes, nor (d) imputed brain C4A RNA expression. Furthermore, 918 
there were no associations between these C4-related variables and any of the other 5 iPSYCH target 919 
psychiatric disorders. We also note that the PheWAS study found no significant associations 920 
between the summary statistics of C4 protein concentration and the UK Biobank-measured brain 921 
volumes (n = 28,613). Reassuringly, we note that the SMR analyses identified (a) C4A gene 922 
expression was strongly linked to C4 protein concentration, and (b) higher C4 neonatal protein 923 
concentration was associated with increased C4A gene expression in brain tissue (including 924 
amygdala, anterior cingulate cortex, caudate basal ganglia, cerebellum, hippocampus, hypothalamus 925 
and putamen basal ganglia). These particular findings support the hypothesis that the loci we 926 
observed in the GWAS not only influence circulating C4 protein concentration (i.e., as measured in 927 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.09.22281216doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.09.22281216
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

the neonatal dried blood spots), but may also influence the expression of the C4 gene in the brain. In 928 
summary, we found no evidence to support the hypothesis that C4-related variables were causally 929 
related to the risk of SCZ, nor the other mental disorders included in the iPSYCH case-cohort study. 930 
Our findings allow us to refine future directions for schizophrenia research. We note that the most 931 
strongly associated SNPs in the two most recent SCZ GWASes (rs1233578 [28,712,247bp]10 and 932 
rs140365013 [27,523,869bp]62) are both over 3Mb upstream from the C4A gene (31,95 – 31.97Mb). 933 
There are 598 known genes87,88 (including 417 protein-coding genes) annotated between 934 
rs140365013 and the C4A transcription start site, so this region should provide fertile grounds for 935 
the generation of new candidate genes that might explain the top hits in recent SCZ GWASes.  936 

Fifth, we found convergent evidence linking higher C4 protein concentration and a reduced risk of 937 
several autoimmune disorders, and an increased risk for Crohn’s disease. Based on Mendelian 938 
randomization analyses, there was robust evidence with respect to a lower risk of systemic lupus 939 
erythematous. The protective effect remained significant when we adjusted C4 concentration for 940 
MHC SNPs (from C4 with MHC SNPs to SLE: OR = 0.37, 95% CI = 0.34 – 0.42; from C4 adjusted for 941 
MHC SNPs to SLE: OR = 0.24, 95% CI = 0.12 - 0.47). Evidence also emerged for a lower risk of type-1 942 
diabetes, multiple sclerosis, and rheumatoid arthritis. Reassuringly, the UKB-based PheWAS found 943 
variants associated with increased neonatal C4 protein concentration were associated with (a) 944 
reduced risks of a wide range of disorders (including coeliac disease, thyrotoxicosis, hypothyroidism, 945 
type 1 diabetes, sarcoidosis, SLE, nephrotic syndrome, and multiple sclerosis; Sjögren's syndrome.  946 
was nominally significant), and (b) increased risks of several disorders (including psoriasis, ankylosing 947 
spondylitis, iridocyclitis; Crohn’s disease was nominally significant). Our findings are consistent with 948 
a meta-analysis based on 16 case-control studies, where low C4 gene copy number (<4) was 949 
associated with an increased risk of any type of autoimmune disorder, including systemic lupus 950 
erythematous15. A study based on large-scale genetic and transcriptomic datasets by Kim et al.17 951 
suggested that C4A-related gene expression was not associated with risk of schizophrenia-related 952 
synaptic gene expression, but was associated with disorders including inflammatory bowel disease, 953 
rheumatoid arthritis, and lupus. Our findings support these conclusions. Recently, it was reported 954 
that variants in C4A and C4B, which were thought to increase the risk for SCZ, are protective for two 955 
autoimmune disorders (systemic lupus erythematosus, Sjögren's syndrome)14. We also observed 956 
that higher C4 protein concentration was associated with increased risks of several autoimmune 957 
disorders. The mechanisms of action underpinning the pattern of increased and decreased risk of 958 
different autoimmune disorders remain poorly understood87,88. In summary, our findings provide 959 
convergent evidence to support the hypothesis that C4 protein concentration is associated with the 960 
risk of a range of autoimmune disorders.  961 

Many GWASs have found links between loci in the MHC region and risk of autoimmune disorders89-962 
94. Until recently, this has been interpreted as a connection between HLA genes and autoimmune 963 
disease. Recently, Kamitaki et al. have shown that the link between the MHC locus and SLE and 964 
Sjögrens may be explained by C4A-C4B allelic variance14 within the MHC region, thus expanding on 965 
smaller studies linking low copy number of C415,95 and C4A96 with higher risk of systemic lupus 966 
erythematous. This raises the possibility that the correlation between the MHC region and the other 967 
above-mentioned autoimmune diseases are also explained by the C4A-C4B allelic variance. Bian et 968 
al.41 observed strong linkage disequilibrium with HLA alleles and BS (one of the C4 alleles).  969 
Regardless of these speculations, we found no evidence of causal relationships between (a) C4 copy 970 
number and C4 haplotypes, (b) predicted C4A and C4B gene expressions, and (c) C4 protein 971 
concentration versus SCZ and a range of mental disorders. We identified pleiotropy between C4 972 
concentration and three mental disorders (SCZ, DEP, BIP) from GSMR analyses. The complex linkage 973 
disequilibrium between the C4 gene and other genes in MHC region (including HLA genes) suggests 974 
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that we should be cautious when interpreting genotype to phenotype associations for loci within the 975 
MHC region.  976 

Strengths and Limitations of the study 977 

Our study has several strengths. Our sample was nearly 20 times larger than the only other 978 
published GWAS of C3 and C418. With respect to the hypothesis linking complement to brain 979 
development, our complement assays were collected from neonatal samples (versus adult samples). 980 
Because the onset of mental disorders such as SCZ is often in the second and third decade of life, our 981 
samples are unlikely to be impacted by reverse causation (e.g., smoking may be linked to 982 
complement gene expression in the brain17) and medication effects may impact on post-mortem 983 
gene expression studies97. With respect to limitations, because our samples were based on neonatal 984 
C3 and C4 concentrations, it remains to be seen if the genetic correlates we identified are stable 985 
across the lifespan. Also, we used an antibody that has been demonstrated to measure total C4 (i.e., 986 
both C4A and C4B), thus we are unable to isolate the concentrations of the two isoforms. The C3 and 987 
C4 concentrations in our study were derived from circulating plasma proteins, whereas the 988 
concentration of these proteins may vary between organs/tissues and also in response to local tissue 989 
activation pathways.  990 
 991 
The study by Sekar et al.9, which was based on C4 haplotypes imputed from 28,799 schizophrenia 992 
cases and 35,986 controls, found that the AL-AL haplotype was associated with an odds ratio of 1.27 993 
compared with the BS allele (i.e. a 27% increased odds). Our study, based on 2,517 cases and 51,799 994 
non-cases, and using a more informative imputation training set9, found no significant association 995 
for this comparison (HR = 1.14, 95% CI = 0.84 - 1.54; Supplementary Table 16)). Because the Sekar et 996 
al. study included more schizophrenia cases in their analyses, it is feasible that our study was 997 
underpowered to confidently detect an association between C4 haplotypes and SCZ9. However, we 998 
had access to the concentrations of protein product of these haplotypes from a very large sample 999 
size (n = 68,768), and thus we could estimate the variance of neonatal C4 protein concentration. 1000 
Based on this observed variance, our study had 80% power to confidently detect a 25% increased 1001 
risk of SCZ (OR = 1.25) by 2.46 µg/L C4 protein concentration (1 standard deviation unit).  Thus, our 1002 
study had sufficient power to detect the effect size previously identified by Sekar et al.9. 1003 
 1004 
Conclusions 1005 

Our study provides new insights into the genetic and phenotypic correlates of C3 and C4 protein 1006 
concentration and helps unravel the contribution of different C4-related copy numbers and 1007 
haplotypes to C4 protein concentration. Based on convergent evidence, we found no evidence to 1008 
support an association between C4-related measures and risk of SCZ, nor other psychiatric disorders. 1009 
Mindful of the pitfalls of linking genotypes with phenotypes within the MHC region, we encourage 1010 
the research community to continue to actively explore additional candidate loci for schizophrenia 1011 
within this region. In contrast to our findings regarding mental disorders, convergent evidence 1012 
emerged supporting an association between C4 protein concentration and risk of autoimmune 1013 
disorders.  1014 

  1015 
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URLs 1016 

PLINK2: https://www.cog-genomics.org/plink/2.0/ 1017 

GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview/ 1018 

BayesR: https://cnsgenomics.com/software/gctb/#Overview/ 1019 

BOLT-REML: https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html 1020 

FUMA: https://fuma.ctglab.nl/ 1021 

SMR: https://yanglab.westlake.edu.cn/software/smr/ 1022 

GTEx version 8 (SMR format): https://yanglab.westlake.edu.cn/software/smr/#DataResource/ 1023 

Human Protein Atlas: https://www.proteinatlas.org/ 1024 

UCSC: https://genome.ucsc.edu/ 1025 
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