It is made available under a CC-BY 4.0 International license .

1	Comparison Canal Filling Ratio And Femoral Bone Density Change
2	Between Wedge Taper And Anatomical Stem Design
3	
4	Patcharavit ploynumpon 1¶ ,MD ,Thakrit Chompoosang ${}^{1\P^*}$,MD
5	
6	
7	
8	¹ Department of orthopedics, Faculty of Medicine, Rajavithi Hospital, Bangkok, Thailand
9	
10	
11	
12	
13	*Thakrit Chompoosang, Corresponding author
14	E-mail:tk_ortho@hotmail.com
15	These authors contributed equally to this work

It is made available under a CC-BY 4.0 International license .

16 Abstract

Purpose: comparative the outcome of proximal femoral bone density change in follow-up x-ray film and
proximal filling ratio of stem between anatomical and double taper wedge cementless stem design
Methods: post-operative follow film of up to 1 year of patients who had undergone Total hip arthroplasty
between 2552 -2563, which is match inclusion criteria, was obtained from the radiology department. The
measurement of Canal filling ratio (Lesser trochanter, 2 cm above LT and 7 cm below LT) and Femoral
bone density change using optimal densitometry method to compare between Anatomical and double wedge
taper stem type.

Result: 92 patients,76% female, and 24% male, were match the inclusion criteria for this study. The mean age

was 53.86±13.00 years old. The canal filling ratio in the double wedge taper group (Accolade II) was

significantly higher than the anatomical stem group (ABGII) (p<0.001, p<0.001, p=0.013) in all levels of

27 measurement. There were no significant differences between both types of the stem in femoral bone density

28 change in zone 1,4. However. There were significant differences in femoral bone change, in which bone loss

29 was higher in the anatomical stem group, in zone 7 (-25 VS -17, P=0.010)

Conclusion: Double taper wedge stem design had a significantly higher canal filling ratio than the Anatomical
 stem at all levels and less femoral bone density loss in follow-up post-operative film at Zone 7. However, in
 zone 1.4, There was no significant difference in femoral bone density loss.

Keywords: Bone remodeling, cementless stem, canal filling ratio, comparative bone remodeling in femoral
 stem

35

36

37

38

It is made available under a CC-BY 4.0 International license .

39 Introduction

40	Total hip arthroplasty is one of the most common procedures preforms by orthopedic surgeons. As
41	the number of surgery was raised, The stem design was one of the crucial factors distributed to the longevity
42	of the overall prosthesis and the satisfaction of the patients. The cementless stem, invented in 1950, is one of
43	the stem designs that provided Good results and long-term outcomes [1]. However, the early design was
44	reported in several studies for early loosening and instability due to Proximal femoral osteopenia from the
45	stress shielding effect [2]. Many modern stem designs were developed by promoting proximal engagement, by
46	using HA porous coating and more fitting to the patient proximal femoral dense bone using a taper and
47	anatomical designs, and decreasing the distal engagement of stem, using shorter stem design, which can lead
48	to a decrease in proximal bone loss up to 14 % [3]. And there are many studies was shown that the revolution
49	in stem design lead to less stem subsidence, less thigh pain, and less loosening [4-5]
50	However, there is no previous study comparing the progression of bone integration and proximal
51	bone loss between Double wedge taper stem (Accolade 2 stem, Stryker) and anatomical stem (ABGII,
52	Stryker). So our study aims to compare the difference in proximal femoral filling between both stem designs
53	using immediate post-operative film and comparing proximal femoral bone loss using follow-up film x-ray.
54	which is the result that will lead to a better choice of stem and a decrease in early complications and
55	satisfaction with the total hip replacement operation.
56	
50	
57	
58	
59	
60	
61	

It is made available under a CC-BY 4.0 International license .

62 Material and method

63 64 Study design 65 This study is a retrospective descriptive-cohort study of immediate and Post-operative follow film up to 1 66 year of Total hip arthroplasty surgery which is performed in Rajavithi hospital during 2017-2019 The Ethics 67 Committee of Rajavithi hospital approved the research protocol in this study 68 69 **Patients** 70 **Inclusion Criteria** 71 With permission from the radiology department of Rajavithi, Patients aged between 18-80 years old who 72 received primary total hip arthroplasty using both types of stem who is performed between 2017-2019 and 73 have follow-up films up to 1 year were included in this study 74 75 **Exclusion Criteria** 76 Patients under 18 years old, revision hip arthroplasty, patients with prior hip dysplasia, any post-operative 77 complication, and patients who have follow-up film less than 1 year were excluded from the study. 78 79 **Data Collection and measurement** 80 After immediate and Post-operative follow film up to 1 year of the patients who had undergone Total hip 81 arthroplasty were obtained from the radiology department, and the data was reviewed and analyzed. 82 Immediate post-operative films were measured using canal filling ratio (Fig 1)[6], By measuring proximal 83 femoral diameter and diameter of the stem in Anteroposterior view in 3 levels, lesser trochanter, 2cm proximal 84 to lesser trochanter and 6 cm distal to lesser trochanter by the orthopedic surgeon of adult hip and knee 85 reconstruction.

Fig 1: Canal filling ratio measurement measuring at lesser trochanter level2cm proximal to lesser trochanter and 6 cm distal to lesser trochanter

It is made available under a CC-BY 4.0 International license .

88	The follow-up film was analyzed for proximal femoral bone density change using optimal
89	densitometry method [7] using digital optical image analysis program which is public domain, ImageJ for
90	window, which measured bone change at zone 1,4,7 according to Gruen zone of fixation [8] (figure2) then
91	all data was collected and recorded using Microsoft Excel
92	Fig 2: Proximal femoral bone density measurement using optimal densitometry method
93	Statically analysis
94	Use descriptive statistics to describe the various patient characteristics of the sample. Use the number,
95	percentage, Mean, Median, Standard deviation, minimum and maximum values. For Comparing category data
96	using the Chi-square test. Comparing independent data such as both type of stem and femoral type by Paired
97	T-test and using student T-test for dependent data such as comparing post-operative film. The level of
98	significance was defined as a p-value <0.05. All statistical analyses were performed using SPSS Version 20
99	
100	
101	
102	
103	
104	
105	
106	
107	

It is made available under a CC-BY 4.0 International license .

108 Results

109 Demographics data

- 110 92 patients were included in this study. 22 patients were male and 70 were female. Mean age
- 111 53.86±13.00 years old. 34 patients were in undergone anatomical stem (ABGII, Stryker) group and 58 were in
- 112 undergone double wedge taper stem (Accolade II, stryker) group
- 113 When comparing the canal-filling ratio between both stems, the double wedge taper stem had a
- significantly higher canal-filling ratio than the anatomical stem group at all 3 measurement levels (p<0.001,
- 115 p < 0.001, p = 0.013) as the result was shown in Table 2.

	A motormical storm	Double wedge taper		
Level	Anatomical stem	stem	Difference (95%CI)	p-value
	(n=34)	(n=58)		
Lesser	81.56	88.13	-6.57 (-9.74 to -3.39)	<0.001*
trochanter				
2cm above LT	85.98	93.49	-7.51 (-10.07 to -4.95)	<0.001*
6cm below LT	78.58	85.64	-7.06 (-12.56 to -1.56)	0.013*

116 Table 2: Comparison of canal filling ratio between 2 types of stem

117 The post-operative film was analyzed in each of the stem designs as shown in Table 3 . both of the

118 stems showed a femoral proximal bone loss from the baseline and every time point.

119 1. Proximal bone density change in anatomical stem

- 120 At 6 months postoperatively, There was a significant difference in femoral bone loss at zone 1,4,7
- 121 (p=0.024, p<0.001, p=0.006 respectively). The most femoral bone loss is at zone 4 (5.74)
- 122 At 1 year postoperatively, There was a significant difference in femoral bone loss at zone 1,4,7
- 123 (p<0.001). The most femoral bone loss is at zone 7 (20.65)

It is made available under a CC-BY 4.0 International license .

124	At 2 years postoperatively, There was a significant difference in femoral bone loss at zone 1,4,7
125	((p<0.001, p=0.004, p<0.001 respectively). The most femoral bone loss is at zone 1 (34.48)
126	2. Proximal bone density change in double wedge taper stem
127	At 6 months postoperatively, There was a significant difference in femoral bone loss at zone 1,4,7
128	(p<0.001). The most femoral bone loss is at zone 1 (8.28)
129	At 1 year postoperatively, There was a significant difference in femoral bone loss at zone 1,4,7
130	(p<0.001). The most femoral bone loss is at zone 1 (12.48)
131	At 2 years postoperatively, There was a significant difference in femoral bone loss at zone 1,4,7
132	(p<0.001,). The most femoral bone loss is at zone 1 (22.37)

133

	Anatomical stem (n=34)			Double wedge taper stem (n=58)					
Farmer	Post-	6 months	1 years	2 years	Post-	6 months	1 years	2 years	
Femur	operation				operation				
	(Baseline)			(Baseline					
Zone 1									
FBD.	135.59	131.15	117.35	84.74	130.33	122.05	109.57	91.63	
S.D.	12.20	10.53	14.19	7.29	13.30	15.14	12.09	9.06	
% change		-4.44	-13.79	-34.48		-8.28	-12.48	-22.37	
p-value		0.024*	<0.001*	< 0.001*		<0.001*	< 0.001*	< 0.001*	
Zone 4									
FBD.	164.03	158.29	145.74	135.39	152.86	148.14	138.64	129.77	
S.D.	16.41	17.11	16.92	12.74	29.44	24.19	18.49	11.34	
% change		-5.74	-12.56	-13.65		-4.72	-9.50	-16.23	
p-value		0.001*	<0.001*	0.004*		0.098	< 0.001*	<0.001*	

It is made available under a CC-BY 4.0 International license .

Zone 7								
FBD.	157.85	152.71	132.06	107.83	152.29	144.29	135.12	126.87
S.D.	13.84	11.31	12.33	19.79	13.11	14.85	14.89	10.59
% change		-5.15	-20.65	-29.57		-8.00	-9.17	-11.13
p-value		0.006	< 0.001*	<0.001*		<0.001*	< 0.001*	<0.001*

134	Table 3 Femoral bone density change in each stem type in Gruen zone 1,4,7
135	
136	Comparing proximal femoral bone loss between both stem designs, the double wedge-taper stem
137	showed significantly less proximal femoral bone loss in Gruen zone 7(Fig 5). However, There were no
138	significant differences in proximal femoral bone loss in Gruen zone 1,4 as shown in (Fig3-4) and Table 4.
139	

	Stem		
Femoral bone density	Anatomical stem	Double wedge	p-value
	(n=34)	taper stem (n=58)	
Zone 1			
Post-operation (Baseline)	135.59±12.20	130.33±13.30	0.062
6 months	131.15±10.53	122.05±15.14	0.003*
1 years	117.35±14.19	109.57±12.09	0.006*
2 years	84.74±7.29	91.63±9.06	0.004*
Change (1 years – post-operative)	-18.24±20.48	-20.76±9.36	0.501
Zone 4			
Post-operation (Baseline)	164.03±16.41	152.86±29.44	0.022*
6 months	158.29±17.11	148.14±24.19	0.021*
1 years	145.74±16.92	138.64±18.49	0.070
2 years	135.39±12.74	129.77±11.34	0.096
Change (1 years – post-operative)	-18.29±14.79	-14.22±24.22	0.320
Zone 7			
Post-operation (Baseline)	157.85±13.84	152.29±13.11	0.058
6 months	152.71±11.31	144.29±14.85	0.005*

It is made available under a CC-BY 4.0 International license .

132.06±12.33

135.12±14.89

0.314

1 years

	1 years	152.00±12.55	155.12±14.05	0.514
	2 years	107.83±19.79	126.87±10.59	<0.001*
	Change (1 years – post-operative)	-25.79±15.85	-17.17±13.23	0.010*
140				
141	Table 4 Comparison of Femoral bone de	nsity change in each z	one in both types of st	em The table shows
142	a significant difference in femoral bone den	sity change only in zoi	ne 7 between both stems	s (P=0.01)
143				
144	Fig 3 Comparing proximal fem	oral bone density chan	ge in Gruen Zone 1 of t	ooth stem
145	(A=anatomica	al stem ,B=double wed	ge taper stem)	
146				
147	Fig 4 Comparing proximal fem	oral bone density chan	ge in Gruen Zone 4 of b	oth stem
148	(A=anatomica	al stem ,B=double wed	ge taper stem)	
149				
150	Fig.5 Comparing proximal fem	oral bone density chan	ge in Gruen Zone 7 of b	oth stem
151	(A=anatomica	al stem ,B=double wed	ge taper stem)	
152				
153				
154				
155				
156				
157				
158				
159				
160				
161				
162				
163				
164				
165				

It is made available under a CC-BY 4.0 International license .

166 Discussion

167	Total hip arthroplasty is one of the most common procedure was performed by orthopedic surgeons.
168	Cementless total hip arthroplasty is one of the popular procedures to be performed, especially for younger
169	patients [9], which can achieve a good long-term outcome, Although There were reported proximal femoral
170	osteopenia and early aseptic loosening in early design [4] due to stress shielding effect and proximal
171	micromotion of the stem. Later, The cementless stem was developed by decreasing distal filling, increasing
172	proximal filling, and improving proximal coating to achieve better osteointegration
470	
173	In our study, we found a significantly higher canal filling ratio in the double wedge taper stem than in
174	the anatomical stem group at all levels (LT,2 cm above LT, 6 cm below LT) and There was significantly
175	higher femoral bone density loss at zone 7 in the anatomical stem than double taper wedge stem (-25 VS -17,
176	P=0.010), however, there was no significant femoral bone density loss in zone 1,4 .which is corresponding
177	with a previous study of Cooper et al. found that increase distal filling ratio which leads to less
178	osteointegration [10]
_	
179	The strength of this study was that it was conducted by a single surgeon and a single center which
180	minimized the confounding factor from surgical technique and post-operative care of the patients.
181	The limitation of our study is that it was retrospective in design, making it difficult to acquire data on
182	some patients. Another limitation was the short follow-up time frame, which could lead to underestimating the
183	complication rate and loss of femoral bone density.
184	
104	
185	
186	
100	
187	
188	

It is made available under a CC-BY 4.0 International license .

189 Conclusion

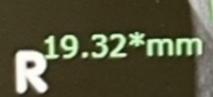
190	Double taper wedge stem design had a significantly higher canal filling ratio than the Anatomical
191	stem at all levels and less femoral bone density loss in follow-up post-operative film at Zone 7. However, in
192	zone 1,4, There were no significant differences in femoral bone density loss.
193	
194	Conflict of interest disclosure
195	
196	There was no conflict of interest in this study
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	

It is made available under a CC-BY 4.0 International license .

209 **Reference**

210	1.	van der Wal BC, de Kramer BJ, Grimm B, Vencken W, Heyligers IC, Tonino AJ. Femoral fit in
211		ABG-II hip stems, influence on clinical outcome and bone remodeling: a radiographic study. Arch
212		Orthop Trauma Surg. 2008;128(10):1065-1072. Engh Jr CA, Young AM, Engh Sr CA, Hopper Jr
213		RH. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop
214		Relat Res. 2003 Dec; (417): 157-63.
215	2.	Herrera A, Canales V, Anderson J, García-Araujo C, Murcia-Mazón A, Tonino AJ. Seven to 10
216		years followup of an anatomic hip prosthesis: an international study. Clin Orthop Relat Res. 2004
217		Jun; (423): 129-37.
218	3.	Juan j, change in periprosthetic bone after redesign anatomical cementless stem, international
219		orthopedic, 2009
220	4.	de Boer FA, Sariali E. Comparison of anatomic vs. straight femoral stem design in total hip
221		replacement - femoral canal fill in vivo. Hip Int. 2017 May 12;27(3):241-244. doi:
222		10.5301/hipint.5000439. Epub 2016 Nov 22. PMID: 27886361.
223	5.	Laine HJ, Puolakka TJ, Moilanen T, Pajamäki KJ, Wirta J, Lehto MU. The effects of cementless
224		femoral stem shape and proximal surface texture on 'fit-and-fill' characteristics and bone
225		remodeling. Int Orthop. 2000;24(4):184-190.
226	6.	Umer M, Sepah YJ, Khan A, et al. Morphology of the proximal femur in a Pakistani population. J
227		Orthop Surg (Hong Kong) 2010;18:27
228	7.	Hernandez-Vaquero D, Garcia-Sandoval MA, Fernandez-Carreira JM, Suarez-Vázquez A, Perez-
229		Hernández D. Measurement of bone mineral density is possible with standard radiographs: a study
230		involving total knee replacement. Acta Orthop. 2005 Dec;76(6):791-5. DOI:
231		10.1080/17453670510045381. PMID: 16470431.
232	8.	Gruen TA, McNeice GM, Amstutz HC. "Modes of failure" of cemented stem-type femoral
233		components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979 Jun;(141):17-27.
234		PMID: 477100.
235	9.	Stea S, Comfort T, Sedrakyan A, et al. Multinational comprehensive evaluation of the fixation
236		method used in hip replacement: interaction with age in context. J Bone Joint Surg Am.
237		2014;96(Suppl 1):42-51.

It is made available under a CC-BY 4.0 International license .


- 238 10. Cooper HJ, Jacob AP, Rodriguez JA. Distal fixation of proximally coated tapered stems may
- predispose to a failure of osteointegration. J Arthroplasty. 2011;26(6)(Suppl):78-83.

It is made available under a CC-BY 4.0 International license .

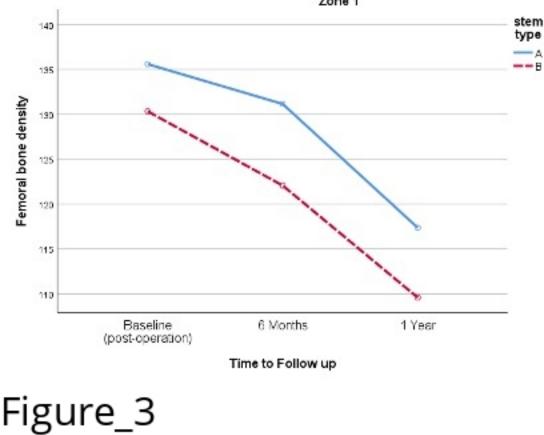
20.64*mm

29.85*mm

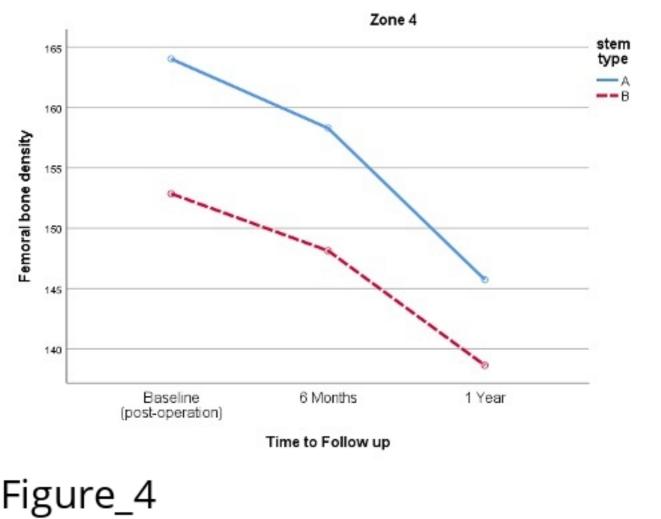
26.78*mm

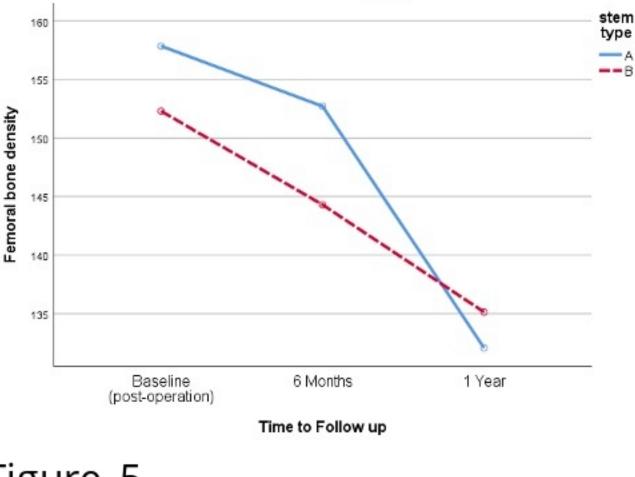
21.95*mm

14.05*mm


9.22*mm

60.14*mm


Figure_1


Figure_2

Zone 1

Figure_5