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Abstract 

Background: Non-invasive brain stimulation methods for modulating brain activity via transcranial 

technologies like transcranial direct current stimulation (tDCS) are increasingly prevalent to investigate 

the relationship between modulated brain regions and stimulation outcomes. However, the inter-

individual variability of tDCS has made it challenging to detect intervention effects at the group level. 

Collecting multiple modalities of magnetic resonance imaging data (i.e., structural and functional MRI) 

helps to investigate how dose-response ultimately shapes brain function in response to tDCS. Method: 

We collected data in a randomized, triple-blind, sham-controlled trial with two parallel arms. Sixty 

participants with MUD were randomly assigned to sham or active tDCS (n=30 per group, 2 mA, 20 minutes, 

anode/cathode over F4/Fp1). Structural and functional MRI (including high-resolution T1 and T2-weighted 

MRI, resting-state fMRI, and methamphetamine cue-reactivity task with meth versus neutral cues) were 

collected immediately before and after tDCS. T1 and T2-weighted MRI data were used to generate head 

models for each individual to simulate electric fields. Associations between electric fields (dose) and 

changes in brain function (response) were investigated at four different levels: (1) voxel level, (2) regional 

level (atlas-based parcellation), (3) cluster level (active clusters in the contrast of interest), and (4) network 

level (both task-based and resting-state networks). Result: At the (1) voxel-level, (2) regional level, and (3) 

cluster level, our results showed no significant correlation between changes in the functional activity and 

electric fields. However, (4) at the network level, a significant negative correlation was found between the 

electric field and ReHo in the default mode network (r=-0.46 (medium effect size), p corrected=0.018). 

For the network-level analysis of task-based fMRI data, frontoparietal connectivity showed a positive 

significant correlation with the electric field in the frontal stimulation site (r=0.41 (medium effect size), p 

corrected=0.03). Conclusion: The proposed pipeline provides a methodological framework to analyze 

tDCS effects in terms of dose-response relationships at four different levels to directly link the electric 

field (dose) variability to the variability of the neural response to tDCS. The results suggest that network-

based analysis might be a better approach to provide novel insights into the dependency of the 

neuromodulatory effects of tDCS on the brain’s regional current dose in each individual. Dose-response 

integration can be informative for dose optimization/customization or predictive/treatment-response 

biomarker extraction in future brain stimulation studies.  
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Introduction 

Non-invasive brain stimulation methods for modulating brain activity via transcranial technologies are 

increasingly prevalent to investigate the relationship between modulated brain regions and stimulation 

outcomes [1]. As one of the most frequently used technologies, transcranial direct current stimulation 

(tDCS) has shown promising results to modulate brain activity/connectivity in both healthy people and 

those with neurological/psychiatric disorders [2-4]. Most of the previous electrophysiological and 

neuroimaging studies showed encouraging results that the injected current by tDCS can change cortical 

excitability ands brain functions [5, 6].  

By considering that brain regions do not operate in isolation but are functionally connected, more 

researchers have started to investigate the effect of injected current on brain functions in targeted and 

non-target brain areas [7, 8]. However, the inter-individual variability of tDCS has made it challenging to 

detect intervention effects at the group level [9] and the main challenge is that potential effect of tDCS is 

limited by small effect sizes [10-12]. Different sources of variability including anatomical (e.g., fat 

thickness, skull thickness, amount of CSF that affect current flow through the brain) and functional factors 

(e.g., inherent oscillations, ongoing brain activity or connectivity that affect brain responses to the injected 

current) have been identified for tDCS studies [9, 13-15]. On one hand, advances in neuroimaging 

techniques provide new insights into the effects of functional state in response to tDCS [16]. On the other 

hand, as it is impossible to non-invasively measure the strength of tDCS-induced electric field (EFs), the 

EFs are often modeled computationally [17] which are validated repeatedly by intracranial recording [18, 

19], physiological [20], and neuroimaging [21, 22] studies. Computational head models showed that 

delivered dose into the cortical (amount of current reaching the brain) is different from the delivered dose 

into the scalp (e.g., fixed 2 mA current intensity) and varies across the population based on individualized 

haad and brain anatomy. Under the assumption that EF intensity over the cortex relates to the tDCS 

responses at the functional level, the association between stimulation dose and brain responses at a 

cortical target site could explain dose-response relationships in tDCS studies.  

Collecting multiple modalities of magnetic resonance imaging data (i.e., structural and functional MRI) 

helps to investigate dose-response relationship and define how tDCS induced EFs may change underlying 

brain functions. To this end, high resolution structural MRI are commonly used for creating computational 

head models (CHMs) to predict EF distribution patterns over the cortex. Meanwhile, fMRI data aims to 

capture the cortical functional activity in response to the injected current. However, there have been few 
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studies dedicated to investigating the dose-response relationships based on integrating CHMs with fMRI 

data. 

One of the earliest studies in which both EFs and fMRI data were discussed was in Halko et al 2011. In that 

study, a single-subject case study of tDCS with combined visual rehabilitation training after stroke 

revealed that EF intensity obtained from CHMs correlated with task-based fMRI activation in some 

predefined ROIs based on using voxel-wise correlation analysis within the brain regions between two 

maps. In another study, CHMs were generated for a group of participants with left-sided glioma, and the 

averaged EF strength was extracted from the left and right M1 ROIs, and a significant correlation between 

averaged EFs in the right M1 and changes in global connectivity from the right M1 was reported [23]. A 

similar correlational approach was also used by Antonenko et al. to assess the relationship between tES-

induced EFs and neurophysiological outcomes [24]. In that study, three 4 mm spheres were defined 

around the left precentral gyrus. Two different EF components, including tangential and normal 

components, were extracted from each ROI and analyzed separately to test for correlations with tDCS-

induced functional coupling in sensorimotor network and significant negative/positive correlations were 

reported between tangential/normal component of the EF and resting-state functional connectivity [24]. 

Esmielpour et al used atlas-based parcellation for defining ROIs over the CHMs and fMRI data during a 

drug cue reactivity task in a group of participants with methamphetamine use disorder and reported a 

significant correlation between changes in brain activation and averaged EF intensity only in frontal pole 

as the area that received maximum EF compared to other predefined regions [25]. In another study 

conducted by Jamil et al, in order to assess whether cerebral blood flow (CBF) activations across the cortex 

obtained from fMRI agree respectively with EFs obtained from CHMs, a voxel-wise rank correlation was 

used to calculate the relationship between averaged EF distribution patterns in MNI space and the group-

level T-contrast images for each active tDCS intensity obtained from a whole-brain analysis and significant 

correlations between EFs and changes in CBF were reported at the voxel-level in both cathodal and anodal 

stimulation [26]. Recently it has also been shown that current density in the left DLPFC positively 

correlated with changes in functional connectivity between two predefined ROIs (left dorsolateral and left 

ventrolateral PFC) during a working memory task based on using psychophysiological interaction analysis 

and simulating precise computational head models. 

Previous dose-response relationship papers are limited into two major regional levels to examine the 

associations between EFs and brain functions; (1) voxel-based, and (2) ROI-based. However, there are 

other levels of brain response to explore the relationships between dose (EFs) and response (brain 
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functions as measured with fMRI) within brain circuits or networks. Therefore, in this study, we present 

our pre-registered trial data (NCT03382379) on the association between individualized dose (electric 

fields estimated with subject-specific computational head models) and brain response (changes in BOLD 

signals) in a group of participants with methamphetamine use disorders (MUDs) in multiple level. In an 

exploratory approach, here, we propose that the dose-response relationship could be investigated in at 

least 4 different levels. Including (1) voxel-level, (2) region-level, (3) cluster-level, and (4) network-level. 

Considering highly connectedness nature of brain, we anticipated associations between EFs and 

functional changes in the brain would be stronger at the network-level compared to other levels of 

associations. 

Method 

Participants 

Participants included 60 participants (all-male, mean age ± standard deviation (SD) = 35.86 ± 8.47 years 

ranges from 20 to 55) with methamphetamine use disorder (MUD). All participants were recruited during 

their early abstinence from the 12&12 residential drug addiction treatment center in Tulsa, Oklahoma in 

the process of a clinical trial to measure the efficacy of tDCS on methamphetamine craving 

(ClinicalTrials.gov Identifier: NCT03382379). Written informed consent was obtained from all participants 

before the scans and the study was approved by the Western IRB (WIRB Protocol #20171742). This study 

was conducted in accordance with the Declaration of Helsinki and all methods were carried out following 

relevant guidelines and regulations. More details on inclusion and exclusion criteria can be found here 

[27]. 

Data collection procedure 

Data were collected in a randomized, triple-blind, sham-controlled trial with two parallel arms. Sixty 

participants with methamphetamine use disorders (MUDs) were randomly assigned to sham or active 

tDCS (n=30 per group, 2 mA, 20 minutes, anode/cathode over F4/Fp1). Participants in the active group 

received 2 mA stimulation during 1140 sec whereas participants in the sham group received 40 sec of 2 

mA stimulation. Fade out in the sham group followed by 1100 sec without any stimulation (just impedance 

was controlled that average current overtime is not more than 2 𝜇A). Structural and functional MRI 

(including high-resolution T1 and T2-weighted MRI, resting-state fMRI, and methamphetamine cue-

reactivity task with meth versus neutral cues) were collected immediately before and after tDCS. T1 and 
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T2-weighted MRI data were used to generate head models for each individual to simulate electric fields 

(Figure 1). More details on neuroimaging and tDCS parameters can be found here [27]. 

 

Figure 1. Data acquisition procedure. In a randomized thriple blind sham-controlled clinical trial with a parallel 
deign, 60 participants with methamphetamine use disorders were randomly assigned to the active or sham groups 
to receive 20 minutes of unilateral tDCS over DLPFC (anode/cathode over F4/Fp1 in EEG standard system with thwo 
large 5x7 cm electrode pads). MRI data including structural MRI, resting-state fMRI, and task-based fMRI (a standard 
cureactivity task) were collected immediately before and after active or sham stimulation. Structural MRI were used 
for creating individualized computational head models as an indicator of stimulation dose and fMRI data were 
considered s brain response to the injected curret. 

 

fMRI data preprocessing 

fMRI preprocessing was performed in AFNI. The first three pre-steady state images were removed. The 

preprocessing steps were despiking, slice timing correction, realignment, transformation to MNI space, 

and 4 mm of Gaussian FWHM smoothing. Three polynomial terms and the six motion parameters were 

regressed out. TRs with excessive motion (defined as Euclidian norm of derivative of the six motion 

parameters being greater than 0.3) were censored during regression. 

Computational head modeling 

Gyri-precise CHMs were generated from a combination of high-resolution T1- and T2-weighted MR images 

for 60 participants. Head models were generated for all participants to visualize how current flows 

through the brain using SimNIBS software. Briefly, automated tissue segmentation was performed in 

SPM12. The head volume was assigned to six major head tissues (white matter (WM), gray matter (GM), 

cerebrospinal fluid (CSF), skull, scalp, and eyeballs). The assigned isotropic conductivity values were WM 
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= 0.126 Siemens/meter (S/m), GM = 0.275 S/m, CSF = 1.654 S/m, skull = 0.01 S/m, skin = 0.465 S/m, and 

eyeballs = 0.5 S/m. The results were visualized using Gmsh and MATLAB. 

Association analysis 

A sample size of 30 participants per arm provided 80% power to detect an effect size (Cohen’s d) of 0.74. 

Pearson correlation coefficient with FDR correction was used to investigate the associations. As described 

in the following paragraphs, associations between electric fields (dose) and changes in brain function 

(response) were investigated at four different levels: (1) voxel level, (2) ROI-level, (3) cluster-level, (4) 

network-level (both resting-state and task-based).  

Voxel-level associations: Block design analysis was performed for meth > neutral contrast in pre and post-

stimulation scanning sessions based on general linear models (GLM). Functional map and CHMs were 

transformed to MNI space and non-brain voxels were excluded. EFs were resampled to have identical 

resolution with functional map and final maps contained about 900k (96 x 114 x 82) voxels. Three-

dimensional voxels were vectorized along with the different columns of a matrix for each map where 

participants were stacked along the rows. Let Xi and Yi be the column vectors across all participants for i 

th voxel from EF and fMRI matrices. A whole-brain voxelwise correlation was calculated between each 

corresponding voxel within the brain. Spatial distribution of the correlations (R-values and p-values) was 

used for reconstructing the brain map. 

Region-level associations: For functional activity analysis at the voxel-level, linear mixed-effect model 

(LME) in AFNI package, which accounts for non-independence of observations inherent in repeated 

measure data, was used to study the effects of tDCS on the whole brain functional activation. For ROI-

level analysis, brain activation during the drug cue reactivity task was calculated for meth > neutral 

contrast before and after stimulation in each group (real/sham) separately. For each subject mean beta 

weight values were estimated for all extracted ROIs using Brainnetome atlas (BNA) [28] to show the level 

of changes (post minus pre-stimulation) task-related activity during meth versus neutral condition and 

direction of changes was compared between two groups. Change in the ROI-wise activation over time was 

analyzed with an LME using “nlme” package for linear mixed modeling in R software (v.1.2.5) and included 

fixed effects of time, group, and interaction between group and time. By-subject intercept and ROI terms 

(246 ROIs in BNA) were entered as random effects. 

In order to determine the relationship between induced EF in each brain region and changes in neural 

activation (i.e., functional activity after tDCS compared to before stimulation) in response to cue exposure, 
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the correlation between EF strength and changes in functional activity was calculated in both active and 

sham groups. Statistical results were corrected for multiple comparisons based on false discovery rate 

correction (FDR). 

Cluster-level associations: A linear mixed-effect model was used to study the effects of tDCS on the whole 

brain functional activation during cue exposure. As the fixed effect, time (pre and post-stimulation), group 

(sham and active), and interaction between them were included in the model. The subject was also 

considered as a random effect. Group-level functional t-map was calculated in MNI space. Family-wise 

error (FWE) was found by Monte-Carlo simulation-based (3dClustSim, AFNI) multiple comparison 

correction with alpha > 0.1. P < 0.005 and cluster size > 40 was considered for reporting the results. Our 

results revealed five main significant clusters. Averaged BOLD signals were extracted from each cluster. 

Cluster masks were also applied to the CHMs and averaged EF intensity was extracted from each cluster. 

Correlations between EF and functional map obtained from the LME model and EFs were calculated at 

the cluster level. 

Resting-state network-level associations: CHMs were transformed to MNI space. Regional homogeneity 

(ReHo) was used for integrating CHMs with resting-state fMRI data at the network level. After 

preprocessing the functional maps with a routine pipeline in AFNI, the functional images were realigned 

into the standard MNI space. A bandpass filter (0.01-0.09) was applied and the linear trend was removed. 

Kendall's coefficient of concordance (KCC) value was used to calculate the similarity of the time series of 

a given voxel to its nearest 25 neighbor voxels within a functional cluster (25 nearest neighboring voxels 

were defined as a cluster and a KCC value was given to the voxel at the center of this cluster). ReHo map 

was generated for each individual in pre and post-stimulation scans using AFNI software in a voxel-wise 

fashion. Post minus pre-stimulation map was calculated for each participant in active and sham groups 

and standardized into z score (Z-ReHo). Each map was combined with the MNI mask to ensure analysis 

did not include signals from non-brain or white matter voxels. Finally, Z-ReHo maps were smoothed by a 

Gaussian filter of 4 mm of full width at half maximum (FWHM). A significant threshold was set at corrected  

P < 0.05 (determined by Monte Carlo simulations with the AFNI AlphaSim program). 

Functional atlas parcellation was used for integrating CHMs with Z-ReHo over large-scale brain networks. 

The Yeo7-2011 atlas was used for extracting the topology of the seven resting-state networks, including 

visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default mode 

network. Averaged EF intensity and zReHo values were extracted from each large-scale network. Finally, 
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Pearson’s correlation coefficients were computed between the averaged zReHo signal change (post minus 

pre-stimulation) of large-scale network and EF intensity. 

Task-based network-level associations: In order to perform seed-to whole-brain task-based functional 

connectivity, seed regions were defined based on maximum EF. CHMs were generated for each individual 

and transformed to fsaverage space for calculating averaged EF across the population. 99th percentile of 

the maximum EF was determined over averaged EF map and a 10 mm sphere was defined around its 

location. This sphere was used for seed-to-whole brain generalized psychophysiological interaction (gPPI) 

voxels in the brain that alter their connectivity with a seed region of interest in a given context (here the 

drug cue reactivity task). The averaged BOLD signal was extracted from the seed region and task-

modulated functional connectivity was calculated. For first-level analysis, the design matrix included the 

seed region’s time course, cue exposure task time course, the interaction between task and BOLD signal 

in the seed. For the second-level analysis time (pre vs. post-stimulation) x group (active vs. sham) 

interaction was calculated. Voxel-level threshold was P uncorrected < 0.01 and cluster-level threshold was 

P FDR corrected < 0.05. 

 

Results 

Voxel-level results: At the whole brain voxel-level, block designed analyses have not found any significant 

correlation between electric fields and BOLD signal change—post minus pre-stimulation (p 

corrected>0.05; 9.74% of the voxels with small effect size (0.1<|r|<0.3), 1.36% with medium effect size 

(0.3<|r|<0.5), and only 0.09% with large effect size (0.5<|r|<1), the total number of voxels were 8530021 

and Pearson correlation coefficient (|r|) was considered as a measure of effect size). Because of the large 

number of voxels, FDR correction was applied and none of them survived FDR multiple comparison 

corrections (Figure 2). 
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Figure 2. Dose-Response (EF-fMRI correlation) at the voxel-level in a whole-brain approach. a. Electric field (EF) 
maps were vectorized and placed along the columns and participants in the active group along the rows to construct 
EF matrix. A similar approach was used for generating an fMRI matrix related to the Meth > Neutral contrast. The 
total number of participants was 30 participants in the active group and the total number of voxels was 897408 
voxels. The correlation vector has information about the correlation between each corresponding voxel in EF and 
fMRI matrices. b. Group-level functional map in pre-stimulation is visualized over the MNI space. c. EF distribution 
patterns at the group-level in MNI space. d. The voxel-wise correlation coefficient between -1 (cold colors) and 1 
(hot colors) over the MNI space. e. P values obtained from correlation analysis are mapped over the MNI space. P 
uncorrected < 0.05 (maximum cluster size < 40) is represented in red. 9.74% of the voxels with small effect size (0.1< 
|r| <0.3), 1.36% of the voxels with medium effect size (0.3< |r| <0.5), and only 0.09% of the voxels with large effect 
size (0.5< |r| <1), total number of voxels were 8530021 and r was considered as a measure of effect size. 

 

Region-level results: As shown in Figure 3, at the whole brain regional level, no significant correlation 

survived FDR correction (24.29% of the regions with small effect size, and 3.33% with medium effect size, 

the total number of regions were 210 cortical regions). 
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Figure 3. Dose-Response (EF-fMRI correlation) at the Regional-level integration. a. First-level functional maps 
obtained from general linear model (Post minus pre-stimulation) and b. individualized computational head models 
were parcellated using Brainnetome atlas. electric fields (EFs) were calculated only in cortical subregions. c. 
Correlations between all pairs of ROIs were calculated in the active group. After FDR correction, no significant results 
were achieved. 24.29% of the regions with small effect size, 3.33% of the regions with medium effect size, the total 
number of regions were 210 cortical regions obtained from Brainnetome atlas parcellation. 

 

Cluster-level results: At the cluster level (Figure 4), our results showed no significant correlation between 

changes in the functional activity and electric fields within the clusters (p FDR corrected>0.05; 40% of the 

clusters with small and 40% with medium effect size; the total number of clusters were 5). 
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Figure 4. Dose-Response (EF-fMRI correlation) at the Cluster-level integration  .First column: Clusters with 
significant time by group interaction. Second column: BOLD signal within significant clusters before and after 
stimulation in each group separately. Third column: Brainnetome atlas (BNA) sub-regions that overlap with 
significant clusters. Fourth column: BOLD signal within BNA sub-regions overlap with significant clusters before and 
after stimulation in each group separately. Fifth column: Group-level computational head models. Last column: 
correlation between BOLD signal and EFs within clusters as well as BNA subregions were calculated and cluster level 
correlations are represented in the last column. No significant correlation was found at the cluster level however in 
regression analysis significant effect was found for the group. In ROI level correlation significant correlation (without 
any correction) was found in dorsal angular insula only in the active group (active: r = 0.49 and P uncorrected = 
0.0083, sham: r = -0.19 and P uncorrected = 0.33; no significant results after FDR correction). 40% of the clusters 
with small and 40 of the clusters with medium effect size; the total number of clusters were 5 obtained from time 
by group interaction in meth > neutral contrast. 
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Resting-state network-level results: At the network level (Figure 5), a significant negative correlation was 

found between electric field and ReHo only in the default mode network in the active group (r=-0.46 

(medium effect size), p corrected=0.018). Correlation results were not significant in other extracted large-

scale networks. 

 

Figure 5. Dose-Response (EF-fMRI correlation) at the Network-level integration. Scatterplots for the correlation 
between averaged EF intensity and averaged Z-transformed ReHo map within the large scale networks obtained 
from Yeo7-2011 atlas (A: visual (Vis), B: Somatomotor (SomMot), C: Dorsal attention (DorsAttn), D: Ventral attention 
(VentAttn), E: Limbic, F: frontoparietal (ECN), G: Default mode (DMN) network). Pearson correlation coefficients and 
p values for each group are reported above scatterplots. Our results showed significant negative correlation between 
EF and Z-ReHo maps within the default mode network in the active group (active: r = -0.46 and P FDR corrected = 
0.018, sham: r = 0.17 and P FDR corrected = 0.44). Other correlations did not survive FDR correction. 
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Task-based network-level results: Our gPPI results (Figure 6) showed two significant clusters as follows: 

(1) located in bilateral amygdala and hippocamp (cluster size: 1356, (x, y, z) peak coordinate in MNI space: 

(18,-2,-30) and t-value: 6.59), and (2) located in right inferior parietal lobule (IPL) (cluster size: 701, (x, y, 

z) peak coordinate in MNI space: (46,-38,38), and t-value: 5.20). ROI-to-ROI gPPI connectivity was also 

calculated between seed region and each cluster and correlation between averaged EF in seed region and 

seed-to-cluster task-based connectivity was calculated. For the network-level analysis of task-based fMRI 

data, frontoparietal connectivity showed a positive significant correlation with electric field in the frontal 

stimulation site(r=0.41 (medium effect size), p corrected=0.03). 

 

 

Figure 6. Dose-Response (EF-fMRI correlation) at the Network-level integration based on seed-to-whole brain 
generalized psychophysiological interaction (gPPI). a. Brain regions with significant time by group interaction in 
gPPI analysis (two significant clusters in bilateral amygdala and hippocamp, and right inferior parietal lobule (IPL)). 
b. defining seed region based on a 10 mm sphere around maximum electric field (EF) location. c. correlation between 
averaged EF intensity within the 10 mm sphere and PPI connectivity between sphere and IPL cluster in each group 
separately (active: r = 0.41, P corrected = 0.03, sham: r = 0.13, P corrected = 0.52). 

 

Discussion 

Here we investigated the associations between tDCS-induced EFs (dose) and changes in functional activity 

in response to tDCS based on integrating computational head models and fMRI data. Our results showed 

that (1) at the whole brain voxel-level, block designed analyses have not found any significant correlation 

between electric fields and BOLD signal change—post minus pre stimulation (p corrected>0.05; 9.74% of 
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the voxels with small effect size (0.1<|r|<0.3), 1.36% with medium effect size (0.3<|r|<0.5), and only 

0.09% with large effect size (0.5<|r|<1), total number of voxels were 8530021 and Pearson correlation 

coefficient (|r|) was considered as a measure of effect size). (2) at the whole brain regional level, no 

significant correlation survived FDR correction (24.29% of the regions with small effect size, and 3.33% 

with medium effect size, total number of regions were 210 cortical regions). (3) at the cluster level, our 

results showed no significant correlation between changes in functional activity and electric fields within 

the clusters (p FDR corrected>0.05; 40% of the clusters with small and 40% with medium effect size; total 

number of clusters were 5). (4) at the network level, a significant negative correlation was found between 

electric field and ReHo in default mode network (r=-0.46 (medium effect size), p corrected=0.018). For 

the network-level analysis of task-based fMRI data, frontoparietal connectivity showed a positive 

significant correlation with electric field in the frontal stimulation site(r=0.41 (medium effect size), p 

corrected=0.03). 

Voxel-level integration: Whole brain voxel-wise correlation across the population showed no specific 

pattern of associations over the cortex. There is only one previous study that used voxel-wise correlation 

between EFs and changes in brain functions (using CBF data) and reported a significant correlation 

between EF distribution patterns in a standard brain and group-level functional map [26]. Despite what 

we have done here (computed correlation between individualized EF and BOLD signal for each person 

separately), in that study, one correlation was calculated for all voxels in  a single standard head model in 

MNI space and group-level functional map obtained from group-level analysis of fMRI data. [26].  

Dose-reposne relationship at the voxel-level has several challenges. For example, it would be important 

that two maps be in the same space (subject space or averaged standard space) with the same resolution 

(based on resampling the maps to have the same resolution as suggested by [29]) to calculate 

correlation/regression between all brain corresponding voxels in each map across populaiton. 

Furthermore, integrating results obtained by voxel-wise analysis are inherently limited by the signal-to-

noise ratio (SNR) of individual voxel data, which is typically low [30]. Additionally, voxel-wise integration 

involves a large number of voxels and requires a huge number of testing for any statistical inferencing. 

Therefore, p-values should be adjusted for multiple comparisons and statististical power would be low at 

this level of associations. 

Region-level integration: At the whole brain region-level, although our results showed strong correlations 

in some specific brain regions but no regions survived FDR correction. Almost all of previous dose-

response relationship studies were performed within the predefined regions of interest and significant 
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correlations were reported [1, 8, 24, 29]. Different factors can affect associations at this level. For instance, 

brain regions in CHMs and functional map can be defined based on different approaches, including 

standard anatomical/functional atlas-based parcellation or placing small spheres around specific brain 

coordinates (e.g., a 10 mm sphere around maximum EF or specific anatomical region suggested by 

previous studies according to prior hypothesis and research question). Defining ROIs would be critical to 

find significant associations between dose and response. For example, Esmaielpur et al reported only one 

significant correlation which is located in frontopolar cortex that received highest EFs across ten different 

brain regions. In that study it was shown that parcellation method and defining ROIs is an importan factor 

for finding significant results in dose-response relationship studies [8].  

In dose-response relationship at the region-level features should be extracted from each ROI. In this way, 

estimated parameters (e.g., beta activation map and EF intensity) are extracted by averaging across the 

voxels inside the predefined ROIs to calculate the relationships between fMRI-derived parameters and 

tES-induced EFs. ROI-based integration overcomes the low SNR mentioned in the voxel-wise manner 

based on averaging data from multiple voxels. In the ROI-based approach, since the statistical testing is 

performed on ROIs rather than voxels, the total number of tests is reduced. However, results in brain 

regions other than those already hypothesized and predefined will be lost, and selecting appropriate brain 

regions would be challenging and needs specific knowledge about the problem for defining relevant areas. 

Cluster-based integration: Our results showed no significant correlation between EFs and changes in 

functional activity within the significantly modulated areas with tDCS (activated clusters). However, a 

significant effect of group was found in all five clusters. Although no previous study reported the cluster-

based associations, this approach is a method between voxel-based and ROI-based integration such that 

each voxel has a priority chance of being selected for integration; however, the analysis will be performed 

in contiguous clusters of voxels similar to the ROI-based approach. In cluster-based integration, fMRI 

analysis results (e.g., activated cluster in response to a specific task) are used to define ROI. Cluster mask 

will be applied to CHMs for extracting averaged EF components. This approach is more reliable than atlas-

based anatomical landmarks since currently activated brain regions are more vulnerable to the induced 

EF. 

Network-based integration: With respect to the diffuse current flow in brain stimulation studies, 

stimulation outcomes can be understood as modulation of global networks. Furthermore, brain regions 

do not operate in isolation and many brain regions interact with eachother such that brain is seen as a 

connectom of interacting regions [31]. So, as we hypothesized, we found significant dose-response 
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relationships at the network-level rather than local associations (region-based, voxel-based, or cluster-

based approaches). Our results revealed a significant correlation between EF and fMRI data at the large-

scale resting-state network-level. We calculated the association between dose and changes in the resting-

state networks based on the connectivity within the large scale networks (network atlas based ReHo) and 

a significant negative correlation were found within the default mode network. No significant results were 

found within the other networks. The main resons for finding significant associations only in DMN (and 

not other brain networks) might be related to strong EFs in this network [32]. DMN has a large node in 

the prefrontal cortex between anode and cathode location where maximum EFs is located.  

Since each network covers a widely distributed area, finer sub-regions of the network can be extracted as 

ROIs, and integration can be performed in the main nodes of the large-scale networks. In this context we 

also found significant dose-response relationships within the frontoparietal network (which is also named 

executive control network or ECN). We found a significant positive correlation between task-based 

frontoparietal functional connectivity and EF intensity within the prefrontal cortex. Our result is in line 

with previous findings that reported by Indhastrial et. al. during a working memory task [33]. They showed 

a significant correlation between median and maximum values of the currenct density in DLPFC and 

changes in task-based functional connectivity in the working memory network in a group of older adults 

[33]. 

Two main points should be highlighted based on our results. (1) Our findings showed significant 

associations only at the network-level. It might be related to this fact that the neurobiological effects of 

tDCS is less straightforward at the voxels/regions/clusters level [34] and emphesizes the importance of 

network-level changes during stimulation. Over the past several years there has been a strong movement 

toward network-based effects of brain stimulation technologies [35] and our results suggest that tDCS 

effects may tend to spread across the networks not a restricted local brain region. (2) Furthermore, at the 

network level, we found significant correlations in two different directions; negative correltion during 

resting-state fMRI inside DMN, and positive correlation during task-based fMRI inside ECN. Based on 

previous neuroimaging findings DMN exibits a higher activity at resting-state while ECN is commonly 

active during the goal-oriented tasks [36] we also found significant correltion in DMN during resting-state 

and in ECN while people were exposed to drug vs neutral cues. Furthermore, the opposite direction of 

correlations in ECN and DMN could be related to the direction of the electric field in these networks [37]. 

Furthermore, it could be related to the counterbalance interaction between DMN and ECN 
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activity/connectivity such that reduced functional activity in DMN is associated with increased activation 

in the task-positive regions such as ECN [38, 39].   

Challenges that may affect dose-response results 

Several challenges exist in integrating EF with fMRI data. In the following section, we primarily consider 

potential challenges in combining EF distribution patterns measured with computational head models 

with a functional maps obtained from fMRI data analysis. 

1- Integrating a static model with a dynamic map: . The actual relationship between tES-induced EFs and 

functional brain state is not completely clear. Changes in functional activity depend on how a targeted 

brain region responds to the injected current and how other brain areas interact with the stimulation 

target. Distant brain regions interact with each other through brain networks. With respect to the activity-

selective mechanism of action in tES, activation in one brain region may affect sensitivity to injected 

current in other functionally connected brain regions and because of the complicated mosaic of 

interactions between targeted and non-targeted brain regions, it would be difficult to find a linear 

relationship between EFs and changes in BOLD signals especially in a predefined cortical target such as 

the cortex underlying the active electrode.  

2- Interpretation of the results: Interpretation of the integration results between EF and fMRI would be 

complicated and controversial since the brain regions are structurally and functionally interconnected. 

Interpretation of the positive or negative correlation between EFs and changes in the BOLD signal would 

be complex. For example, if one finds a negative correlation between EFs and changes in fMRI data for a 

group of subjects, it's not clear why individuals with higher induced field strengths showed a reduction in 

connectivity in targeted brain regions during stimulation while those with low induced field strengths 

showed increased connectivity in the same regions. 

3- Selecting an appropriate measure: Different available metrics can be extracted from EF head models 

or fMRI data. For example, both tangential and normal components of the EFs can be calculated over the 

cortex. Each provides different information about EF distribution patterns; the tangential EF component 

is informative of the EF strength while the EF component normal to the cortical surface is informative of 

EF direction. Furthermore, each component requires a decision on if to use maximum, averaged, median, 

or some other measures, which can be integrated with fMRI. Similarly, finding a reliable and accurate fMRI 

measure would be challenging. Any functional map obtained from different resting-state (e.g., functional 

activity or connectivity during rest) or task-based fMRI analysis (based on different approaches such as 
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model-based or data-driven) can be used for the integration. Each measure leads to different integration 

results and interpretation, and with respect to the research question, selecting appropriate indices would 

be challenging. 

4- Accuracy of the modeling: Another challenge we face in integrating CHMs with fMRI is the importance 

of head model precision. Inappropriate modeling of the head or brain leads to an incorrect distribution of 

the EF in the brain that may alter the results of integration. Any individualized CHM is limited by the 

precision and accuracy of the tissue segmentation and the assigned conductivity [40]. For example, 

previous findings suggest that accurate segmentation (ranges from brain tissue to non-brain tissue) would 

lead to a more accurate personalized brain stimulation [41-44]. In this context, advanced methods were 

proposed recently to increase the accuracy of CHMs by considering more precise segmentation methods 

[45-47]. 

Furthermore, CHMs are commonly generated based on previously established isotropic conductivities for 

tissues. However, previous studies suggest that inter-individual variability in tissue conductivities [48], 

anisotropic conductivities (especially for skull and white matter based on using diffusion tensor imaging 

(DTI)) [49], and nonlinear dynamic changes of tissue-electrode conductivities [50] may affect the accuracy 

of the CHMs. Additionally, multi-scale models that combine MRI-derived CHMs with multi-compartmental 

models of cortical neurons and constructed realistic fiber models using DTI have been developed to 

predict stimulation effects more precisely [51-53]. Taken together, creating CHMs as accurately as 

possible may be beneficial to find more accurate relationships between EFs and fMRI data. 

5- Integration space: Combination can be performed in two different levels as follows: (1) subject space, 

where two maps are based on the subject space coordination and each CHM combined with own 

individual fMRI map and this integration is repeated for each participant, and (2) standard space, where 

CHMs and functional maps are transformed to a standard space (e.g., MNI, Talairach, fsaverage). Although 

group-level integration provides a comparative analysis of the results across the population, the 

normalization to standard space could change the EF as it warps each head to the standard head. Instead 

of generating CHMs for each individual and transformation to standard space that could be a time-

consuming procedure, another alternative way in integrating CHMs with fMRI studies is using a standard 

model such as an arbitrary individual model proposed by Holmes et al. called Collin27 based on 27 MRI 

scans of a single subject or a standard brain proposed by Huang et al [54, 55]. Although these models 

reduce susceptibility to single head anatomy compared to using a single subject head model and decrease 

computational time compared to generating CHMs for each participant, the accuracy of integrating 
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template models with a group-level functional map is lower than the use of personalized models based 

on individual scans, which will be certainly necessary in specific cases with brain damages such as stroke. 

Limitations and future directions 

Although the current and previous dose-response relatrionship studies for determining the associations 

between EFs and brain functions are promising, much work remains to be done. Integrating CHMs with 

fMRI is still new in tES studies, and previous works reported novel findings in this combination. Therefore, 

replication is needed to draw a general conclusion about the relationship between EF distribution patterns 

and changes in BOLD signals. 

Additionally, thanks to the advancement of computational resources and machine learning techniques 

like deep learning, it is becoming increasingly easier to deal with more complex nonlinear/higher-order 

relationships between EFs and functional activity/connectivity at the subject or group level. For example, 

CHMs and fMRI data can be fed into a deep learning model for classification/prediction purposes. With 

regard to sufficient data for training, the machine learning methods can be used to classify the participants 

into two groups; responders and non-responders based on EFs at targeted on non-targeted brain regions 

and the initial state of the brain. This approach may also help to identify multi-modal biomarkers based 

on the predictive role of baseline brain activation and individualized EFs. 

Closed-loop tES-fMRI studies, where fMRI and tES are performed simultaneously, raise the interesting 

possibility of real-time integration of personalized ongoing brain function with EFs. This approach can help 

to optimize stimulation parameters based on how EFs interact with neuronal activity. In the context of 

integrating CHMs with concurrent fMRI, a functional link can be defined between stimulation parameters 

and changes in the functional state of the brain. However, online processing of CHMs and fMRI data is a 

time-consuming procedure. A high-speed algorithm and powerful computational tools are needed to 

implement a closed-loop CHM-fMRI integration in future studies. 

Finally, other types of modalities, including EEG, DTI, or behavioral data, can be integrated with CHMs and 

fMRI in future studies. Integrating multi-sources of information allows us to organize a hybrid activation 

pattern to find putative trait-state relationships that might be much more informative than using a single 

source. 

Conclusion 

The proposed multi-level analytic pipeline provides a methodological framework to analyze tDCS effects 

in terms of dose-response relationships at four different levels to directly link the electric field (received 
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dose) variability to the variability of the neural response to tDCS (response). The exploratory results 

suggest that network-based analysis might be a better approach to provide novel insights into the 

dependency of the neuromodulatory effects of tDCS on the brain’s regional current dose in each 

individual. Dose-response integration can be informative for dose optimization/customization or 

predictive/treatment-response biomarker extraction in future brain stimulation studies.  
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