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Abstract 7 

Background: The COVID-19 pandemic has highlighted the role of infectious disease 8 

forecasting in informing public policy. However, significant barriers remain for 9 

effectively linking infectious disease forecasts to public health decision making, 10 

including a lack of model validation. Forecasting model performance and accuracy 11 

should be evaluated retrospectively to understand under which conditions models were 12 

reliable and could be improved in the future.  13 

Methods: Using archived forecasts from the California Department of Public Health’s 14 

California COVID Assessment Tool (https://calcat.covid19.ca.gov/cacovidmodels/), we 15 

compared how well different forecasting models predicted COVID-19 hospitalization 16 

census across California counties and regions during periods of Alpha, Delta, and 17 

Omicron variant predominance.  18 

Results: Based on mean absolute error estimates, forecasting models had variable 19 

performance across counties and through time. When accounting for model availability 20 

across counties and dates, some individual models performed consistently better than the 21 

ensemble model, but model rankings still differed across counties. Local transmission 22 

trends, variant prevalence, and county population size were informative predictors for 23 

determining which model performed best for a given county based on a random forest 24 

classification analysis. Overall, the ensemble model performed worse in less populous 25 

counties, in part because of fewer model contributors in these locations.  26 
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Conclusions: Ensemble model predictions could be improved by incorporating 27 

geographic heterogeneity in model coverage and performance. Consistency in model 28 

reporting and improved model validation can strengthen the role of infectious disease 29 

forecasting in real-time public health decision making. 30 

 31 

Keywords: infectious disease modeling, forecasting, model evaluation, COVID-19, 32 

public health   33 
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Background 34 

In public health, forecasting has been used to predict infectious disease dynamics 35 

for a variety of diseases including influenza, dengue fever, Ebola virus disease, Zika 36 

fever, and most recently COVID-19, which has highlighted the importance of infectious 37 

disease modeling to help inform public health decision making (1). Nevertheless, 38 

significant barriers remain for effectively linking infectious disease forecasts with public 39 

health decision making including a lack of model standardization and validation, and 40 

difficulty in successfully communicating model complexity and uncertainty (2). 41 

Moreover, public health practitioners may need different outcomes or indicators than 42 

what forecast models provide (2,3). 43 

In June 2020, as part of the COVID-19 response, the California Department of 44 

Public Health’s (CDPH) COVID Modeling Team launched the California Communicable 45 

diseases Assessment Tool (CalCAT) to compile available COVID-19 models, mostly 46 

from academic groups, to inform policy and public health action (4). CalCAT provides 47 

nowcasts (R-effective estimates), forecasts (short-term predictions for hospitalizations, 48 

ICU admissions, and deaths), and longer-range scenario models for a variety of COVID 49 

indicators at the state, regional, and county scales. Some contributors are national, 50 

forecasting for all states, while others focus only on California and may not be publicly 51 

available elsewhere (Table 1). The models on CalCAT have been used throughout the 52 

COVID-19 pandemic to evaluate current transmission trends and prospective hospital and 53 

intensive care unit capacity. This information combined with other evidence and policy 54 

considerations has helped to inform the implementation of stay-at-home orders and 55 
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statewide mask mandates (e.g., reinstating a mask mandate during the emergence of 56 

Omicron/BA.1). In addition, models combined with other data streams were used to 57 

inform metrics for the Blueprint for a Safer Economy including the nation's first health 58 

equity metric and to support planning for vaccine allocation and distribution  (5). 59 
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Table 1. Constituent models providing county-level hospitalization census predictions that 60 

are archived on CalCAT and included in the analysis. 61 

Model Forecast  
update 
frequency 

Forecast 
horizon 

Methods/Approach  Documentation 

Columbia Weekly Up to 6 
weeks 

County level metapopulation model (6)   

UCSF, 
COVID 
NearTerm 

Daily 2-4 weeks Bootstrap-based method based on an 
autoregressive model  

(7) 

UCB 
LEMMA 

Daily Up to 4 
weeks 

SEIR compartmental model with 
parameters fit using case series data 
of COVID-19 hospital and ICU 
census, hospital admissions, deaths, 
cases and seroprevalence 

(8) 

CDPH 
Simple 
Growth 

Daily Up to 4 
weeks 

Assumes new cases grow 
exponentially according to the rate 
given by the latest ensemble R-
effective. Assumes a fixed severity 
and average length of stay to generate 
hospitalizations 

(4) 

CalCAT 
Ensemble 

Daily Up to 4 
weeks 

The ensemble forecast takes the 
median of all the forecasts available 
on a given date and fits a smoothed 
spline to the trend. 

(4) 

CA 
Baseline 

Daily Up to 4 
weeks 

Retroactive 7-day rolling average 
mean of past hospitalization values 

Methods 

 62 

During the COVID-19 pandemic response, many California local health 63 

jurisdictions communicated the importance of forecasts focused on the relevant scale of 64 
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decision making (e.g., county- vs. state-level forecasts) because there was significant 65 

geographic heterogeneity in COVID-19 outcomes at regional and local levels (9). A 66 

better understanding of how forecasting models have captured these geographical 67 

heterogeneities could help inform local public health decision making during future 68 

COVID-19 waves and enable local health jurisdictions to employ models judiciously 69 

given proven past performance. Lessons learned from COVID-19 forecasting efforts can 70 

also be applied to future modeling for other diseases including influenza.  71 

We retrospectively evaluated archived forecasting predictions from CalCAT for 72 

models that consistently provided county-level hospitalization census predictions across a 73 

year long period from February 1, 2021 to February 1, 2022 (Table 1). Hereafter, we will 74 

use hospital census to refer to the number of patients currently hospitalized with 75 

confirmed COVID-19 for a given county and date. To explore the effects of COVID-19 76 

variants on model performance within that period, we also compared forecasting model 77 

accuracy during three phases of the COVID-19 pandemic at the county and regional level 78 

in California (Figure 1 A-C) with different variant predominance: Alpha (April 22- June 79 

1, 2021), Delta (June 21 - September 1, 2021), and Omicron (December 21, 2021 - 80 

February 1, 2022). These periods also differed in their hospitalization burden (Figure 1A) 81 

and epidemic growth rates (Figure 1C). 82 
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83 

Figure 1. Time courses of (A) California COVID-19 hospitalization census, (B) variant 84 

prevalence, (C) statewide R-effective estimate, and (D) California health officer regions. The 85 

period displayed for panels A-C corresponds to the complete period of analysis February 1, 2021-86 

February 1, 2022 used for the pairwise tournament and random forest analyses. Shaded regions 87 

for panels A:C correspond to the dates of analysis for the three variant predominant periods: 88 

Alpha, Delta, and Omicron. 89 

 90 

  91 
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Methods 92 

Multiple methods exist for measuring epidemic forecast accuracy including 93 

metrics that evaluate specific point estimates and uncertainty (10). When full predictive 94 

estimates are available, metrics like the logarithmic score or continuous ranked 95 

probability score (CRPS) provide context for probabilistic models’ predictions and 96 

uncertainty. When forecasts are provided in quantile or interval formats, the weighted 97 

interval score (WIS) is a potential alternative (10). Since not all models incorporated into 98 

CalCAT provided full predictive or interval estimates, or did so with different reporting 99 

standards, we focused on the median point estimates (50th percentile) from forecasting 100 

models for hospital census at the county scale. In addition to these models, we 101 

retroactively created a baseline California forecast that projected forward the 7-day 102 

rolling mean from the prior week. Each forecast has the following properties: (1) model 103 

(m): the organization or group issuing the forecast (Table 1); (2) location (j): the 104 

geographic location for which a forecast was issued (in this case, at the county-level): (3) 105 

publication date (�): the date that the forecast was displayed on CalCAT; and (4) target 106 

end date (k): the future forecast horizon date for which the prediction was made. 107 

We utilized mean absolute error (MAE) and relative error at the 7-, 14-, and 21-108 

day forecast horizons to evaluate the accuracy of these point estimates. To better compare 109 

across counties with different population sizes, we normalized both error types by the 110 

median hospital capacity of each county (14-day horizon results are highlighted in the 111 

main text; the remaining forecast horizons are provided in the Supporting Information). 112 

From the MAE scores, we computed a standardized ranking score for every forecasted 113 
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observation relative to other models issuing a prediction for that same publication date 114 

and location (11). In addition, we also conducted pairwise tournaments of model 115 

performance to control for the frequency of model participation. Finally, using a 116 

classification regression approach, we explored which county-level epidemiological and 117 

socio-economic covariates could help explain the “winning” model for a given location 118 

and date based on the lowest MAE scores for a given forecast horizon. 119 

County results are grouped by health officer regions, which are contiguous 120 

groupings of 58 counties used for health mandates in California (Figure 1D): Association 121 

of Bay Area Health Officers (ABAHO); Greater Sacramento Region Health Officers 122 

(GSRHO); Rural Association of Northern California Health Officers (RANCHO); San 123 

Joaquin Valley Consortium (SJVC); and Southern California (SCAL). Some counties do 124 

not have major hospitals and therefore lack forecasting predictions, actual numbers of 125 

hospitalizations, or both. For this reason, Alpine, Sierra, and Sutter Counties are not 126 

included in the analyses that follow. 127 

Mean absolute error 128 

The raw mean absolute error (MAE) for each publication date � with associated 129 

target end dates k is calculated as: 
�

�
∑ ���,� � �������

���  where � is the number of days into 130 

the future that the forecast is made, ��,� is the prediction made on publication date i  for 131 

target end date k  and ���  is the actual observed value for a given target end date (11). We 132 

then standardized the MAE by �, the median non-surge hospital capacity of a given 133 

county: 
�	


�
	 100 134 
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Median hospital capacity was chosen for standardization because the hospital capacity for 135 

facilities, and aggregated for counties, changes through time based on staffing and other 136 

factors. Note that not all model forecasts were available for all counties or all dates. A 137 

model only received an MAE score for a given publication date if it had predictions 138 

available for the target end dates of interest (e.g., to receive a 7-day MAE score, a model 139 

must have made predictions for 1-7 days ahead of the publication date). Here we used 140 

CA-state specific data (12) for post-hoc evaluation, whereas many model teams may be 141 

relying on other data sources (e.g., U.S. Department of Health and Human Services) for 142 

fitting or calibration. 143 

Relative error 144 

The relative error for each publication date (�) with associated target end dates k is 145 

calculated as: 
�

�
∑ ���,� � ������

���  where � is the number of days into the future that the 146 

forecast is made, ��,� is the prediction made on publication date i  for target end date k  147 

and ���  is the actual observed value for a given target end date (11). We then standardized 148 

the relative error by �, the median non-surge hospital capacity of a given county: 149 

������ ����

�
	 100 150 

Therefore, a positive relative error corresponds to a model overestimating the hospital 151 

census, while a negative relative error corresponds to an underestimation. 152 
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Standardized ranking score  153 

For each publication date i and location j, we calculated a standardized rank for 154 

every available model m based on its associated MAE: ���,�,� �  1 � ��,�,���

��,� 
 where ��,�,� 155 

is the ranking of the MAE of model m out of the n other models that made predictions for 156 

publication date i and location j (adapted slightly from (11)). Thus, for a given 157 

publication date i and location j, the highest possible standardized ranking score for any 158 

given model is 1 and the lowest is the inverse of the lowest possible ranking �1/��,� . 159 

Models not participating for a given publication date i and location j receive a zero, and 160 

thus, are penalized for lack of coverage.  161 

Pairwise tournament 162 

To conduct a pairwise tournament, we calculated a relative MAE for each pair of 163 

models m and m’: ��,�� �  ������ ��	
��;  �,�,�� 

�	
���; �,�,�� 
� where ��,�� is the median of the ratio 164 

of the simultaneously available MAE scores for model m to model m’ with shared 165 

publication dates i, target end dates k, and locations j (13).  Importantly, the common 166 

locations, publication dates, and observation dates may differ for each pair of models m 167 

and m’. This approach varies slightly from some previous examples, as the order of 168 

operations is scale then aggregate rather than aggregate then scale (11,14).  169 

 An overall performance score of a given model, m is then calculated as the 170 

geometric mean of all relative MAE scores: �� � �∏ ��,��
�
���� ��/�

where M is the 171 

total number of all models available for comparison. At the county level for counties with 172 

smaller hospital capacities, there was a non-trivial probability of certain models achieving 173 
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an MAE of zero, which leads to relative MAE scores of zero or infinity depending on the 174 

order of comparison. To eliminate these irregularities in the pairwise comparisons, we 175 

excluded counties with median non-surge hospital capacities ≤ 25 (i.e., Calaveras, 176 

Lassen, Mariposa, Modoc, Mono, San Benito, and Trinity). 177 

Random forest classification analysis 178 

To explore whether the model with the lowest MAE score for a given location and 179 

observation date could be explained by county-specific epidemiological or 180 

socioeconomic factors, we conducted a random forest classification analysis. Random 181 

forest analysis is a recursive partitioning method that improves classification accuracy by 182 

synthesizing the predictions from many classification trees (15,16). The response variable 183 

(i.e., classification label) was the best performing model for a given county and date 184 

combination based on the lowest MAE score of the available models. We explored the 185 

covariates (i.e., features) of: progressive vaccination coverage at the county level, county-186 

level R-effective, 7-day change in county-level R-effective, variant prevalence at the 187 

health officer region level (17), county population size, percent of county residents in 188 

poverty (2019), percent unemployment (2020), median income (2019), five-year average 189 

percentage completing college (university degree) (2015-2019), and 2013 Rural-Urban 190 

Continuum code. All socioeconomic variables were taken from U.S. Department of 191 

Agriculture Economic Research Service county-level data sets (18). For pre-processing, 192 

data were centered and scaled using the caret package (19). For model training and 193 

tuning, 70% of original data was used with K-fold validation (four-fold, repeated four 194 

times). The final accuracy of the random forest classification models were 61% with mtry 195 
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= 7, 66% with mtry = 7, and 68% with mtry = 7 for 7, 14, and 21 day forecast horizons 196 

respectively. 197 

Data and code availability 198 

The forecasts and R-effective values analyzed in this paper are available from 199 

CalCAT (4). California-specific hospitalization data is available on the California Open 200 

Data Portal (12). Because of reporting delays and backfilling, datasets used in the 201 

analysis may represent a snapshot of what was available at that point in time. All data and 202 

code used for analysis and figure generation is available in the public repository: 203 

https://doi.org/10.5281/zenodo.7851280. Analyses were performed in R (v 3.6.0) (20). 204 

Results 205 

Model performance varied across locations and under different periods of variant 206 

predominance 207 

Model performance was heterogeneous across counties and during different 208 

periods of variant predominance (Figure 2A, 3A, 4A), in part reflecting that the number 209 

of models available for a given publication date and location varied through time; fewer 210 

models were available during the Omicron variant period and for less populous health 211 

officer regions such as RANCHO (Supplementary Figures 3, 11, 15). For example, in 212 

Trinity County – one of California’s least populous counties – the Simple Growth model 213 

had the lowest 14-day normalized MAE for most forecast publication dates during the 214 

Alpha and Omicron predominant periods (Figure 2A, 4A), whereas the Columbia model 215 

had the lowest 14-day normalized MAE during the Delta period (Figure 3A). In San 216 

Diego County, California’s second most populous county, the LEMMA model had the 217 
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lowest 14-day normalized MAE during the Alpha period (Figure 2A), and the COVID 218 

NearTerm model had the lowest 14-day MAE for the most days during Delta and 219 

Omicron periods (Figure 3A & 4A). Overall, the Simple Growth model performed 220 

particularly well in the RANCHO region during the Omicron period as demonstrated by a 221 

lower 14-day MAE for many counties in that region (Figure 4A). The LEMMA model 222 

had the lowest 14-day MAE across many regions during the Omicron period on or after 223 

January 13, 2022 (Figure 4A). In general, the range of the relative error distributions 224 

increased with longer time horizons and during the Omicron period (Supplementary 225 

Figures 1-2). During the Omicron period, most relative error distributions were right 226 

skewed with median relative error values less than zero, indicating a tendency for 227 

underprediction, but a non-zero probability of sizeable overprediction (Supplementary 228 

Figure 1).  229 

The sum of the standardized rank score �����,�,� in each county, j, rewards both 230 

performance (model accuracy) and frequent participation (model coverage). During the 231 

Alpha period, the LEMMA model had the highest score in 20/55 counties, and the 232 

Ensemble model was a close second with the highest score in 17/55 counties (Figure 2B). 233 

During the Delta period, the Ensemble model had the highest score in 21/55 counties 234 

(Figure 3B). During the Omicron period, the Ensemble model had the highest score in 235 

22/55 counties, and the Simple Growth model was a close second with 20/55 counties 236 

(Figure 4B). 237 

The density distributions of standardized rank ����,�,� allow for comparison of 238 

model performance while controlling for frequency of model participation (Figures 2C, 239 
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3C, 4C).  Although COVID NearTerm did not have the highest sum of the standardized 240 

rank score in any counties, it had the highest median standardized rank score during the 241 

Alpha and Delta periods (Figures 2C, 3C). The LEMMA model had the highest median 242 

standardized. rank score during the Omicron period (Figure 4C). The same pattern of 243 

ranking was present for 7-day MAE (Supplementary Figures 4-6). For 21-day MAE, the 244 

COVID NearTerm model had the highest median standardized rank score during the 245 

Alpha and Omicron periods (Supplementary Figures 16 & 18), while the LEMMA model 246 

had the highest median rank scores during the Delta period (Supplementary Figure 17). 247 
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 248 

Figure 2. Forecasting accuracy results at the county level during the Alpha wave in 249 

California as measured by mean absolute error (MAE). (A) Heat map of the best daily 250 

performing model for a given prediction date as measured by 14-day MAE. Each cell in the heat 251 

map corresponds to a normalized MAE calculated for the day that a model forecast was 252 

published. Counties are grouped into panels by California health officer regions. (B) A summary 253 

map of California where the color of the county corresponds to the model with the highest sum of 254 

the standardized rank score for that period �����,�,��. Note that by using the summation of the 255 

standardized ranking score, models are penalized for lack of participation. (C) A density 256 

distribution of the standardized rank score  ����,�,�� that depicts the median (dashed) and mean 257 
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(solid) as vertical lines for each model distribution. A standardized rank score of one indicates 258 

that a model came in first relative to other participating models for a given date and location, 259 

values closer to zero indicate that a model had a lower ranking compared to other participating 260 

models, and a value of zero corresponds to no participation. 261 

 262 

Figure 3. Forecasting accuracy results at the county level during the Delta wave in 263 

California as measured by mean absolute error (MAE). (A) Heat map of the best daily 264 

performing model for a given prediction date as measured by 14-day MAE. Each cell in the heat 265 

map corresponds to a standardized MAE calculated for the day that a model forecast was 266 
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published. Counties are grouped into panels by California health officer regions. (B) A summary 267 

map of California where the color of the county corresponds to the model with the highest sum of 268 

the standardized rank score for that period �����,�,��. Note that by using the summation of the 269 

standardized ranking score models are penalized for lack of participation. (C) A density 270 

distribution of the standardized rank score  ����,�,�� that depicts the median (dashed) and mean 271 

(solid) as vertical lines for each model distribution. A standardized rank score of one indicates 272 

that a model came in first relative to other participating models for a given date and location, 273 

values closer to zero indicate that a model had a lower ranking compared to other participating 274 

models, and a value of zero corresponds to no participation. 275 

 276 

 277 
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Figure 4. Forecasting accuracy results at the county level during the Omicron wave in 278 

California as measured by mean absolute error (MAE). (A) Heat map of the best daily 279 

performing model for a given prediction date as measured by 14-day MAE. Each cell in the heat 280 

map corresponds to a standardized MAE calculated for the day that a model forecast was 281 

published. Counties are grouped into panels by California health officer regions. (B) A summary 282 

map of California where the color of the county corresponds to the model with the highest sum of 283 

the standardized rank score for that period �����,�,��. Note that by using the summation of the 284 

standardized ranking score models are penalized for lack of participation. (C) A density 285 

distribution of the standardized rank score  ����,�,�� that depicts the median (dashed) and mean 286 

(solid) as vertical lines for each model distribution. A standardized rank score of one indicates 287 

that a model came in first relative to other participating models for a given date and location, 288 

values closer to zero indicate that a model had a lower ranking compared to other participating 289 

models, and a value of zero corresponds to no participation. 290 

 291 

When controlling for participation, some models outperformed the ensemble, but 292 

pairwise model rankings varied across counties 293 

When matching across all locations and all observation dates, two models– 294 

COVID NearTerm and LEMMA– performed better in pairwise comparisons relative to 295 

the Ensemble model for 14-day MAE (Figure 5A & B). However, pairwise rankings were 296 

quite variable when disaggregated by county and also highlighted the differences in 297 

coverage and availability across locations for different models (Figure 5C). For example, 298 

although the Simple Growth model came fourth in the overall pairwise ranking (Figure 299 

5A), it came first in twelve individual counties. Similarly, the Columbia model came last 300 
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in the overall pairwise ranking (Figure 5A) and generally performed worse than average 301 

��� � 1, but performed better than average ���  1 in Plumas and Inyo counties 302 

(Figure 5C).  303 

Overall pairwise rankings were robust to forecast horizon length for the complete 304 

analysis period (Supplementary Figures 5A & 17A). However, overall pairwise rankings 305 

were more unstable during specific periods of variant predominance, particularly for 306 

shorter forecast horizons (Supplementary Figures 6-8, 10-12, 18-20) and for county-307 

specific rankings (Supplementary Figures 7C-9C, 12C-14C, 19C-21C). 308 

 309 
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Figure 5. Pairwise tournament median rankings of models for the whole analysis period for 310 

14-day MAE. (A) Overall median rankings ���� across all locations and observation dates. (B) 311 

Median pairwise rankings ���,��� comparing each model m relative to every other model m’. 312 

The grid is symmetrical, so the ratio of model m: model m’ is the inverse score of the ratio of 313 

model m’: model m. (C) Overall median rankings for all available observation dates 314 

disaggregated by county.  315 

Epidemiological traits, county population size, and variant traits best predicted 316 

forecast “winners” 317 

For the entire analysis period (February 1, 2021-February 1, 2022), time-varying 318 

vaccine coverage at the county-level, local transmission dynamics (R-effective and 7-day 319 

change in R-effective), county population size, and regional proportion of variants, were 320 

most important in predicting which model had the lowest MAE for a given county on a 321 

given publication date (Supplementary Figure 23). Other static socio-economic variables 322 

like income, percent unemployment, percent of residents with a university degree, and 323 

percent of residents in poverty were less important for predicting model outcomes. These 324 

variable importance rankings were robust to the forecast horizon used for MAE 325 

calculations (Supplementary Figure 23).  326 

Less populated counties have ensemble predictions with higher median MAE and 327 

more variable MAE 328 

When comparing 14-day MAE normalized by hospital capacity, counties with 329 

smaller population sizes typically had a higher median MAE score and more variable 330 
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MAE distributions compared to more populous counties (Supplementary Figure 24B). 331 

Based on a linear regression, the logarithmic of the normalized MAE score was 332 

negatively correlated with county population size (coefficient estimate: 1.7 	 10��; p-333 

value < 2 	 10���). This relationship held true regardless of the forecast horizon used for 334 

MAE calculations (Supplementary Figure 24 A & C). 335 

 336 

Discussion  337 

Ensemble model could be improved by incorporating geographic heterogeneity in 338 

model coverage and performance 339 

Echoing other analyses of COVID-19 forecast performance that have described a 340 

large variation in model accuracy by location (11,21), forecasting models performed 341 

differentially across California counties and regions and for different periods of variant 342 

predominance during the COVID pandemic (Figures 2-4, 5C, Supplementary Figures 4-343 

6, 16-18). Moreover, location-specific features like local transmission dynamics or 344 

county population size helped explain model performance (Supplementary Figure 24). 345 

This geographic variation in model performance points to the importance of location-346 

specific model evaluation in order for local health jurisdictions to best employ forecasts 347 

for public health decision making.  348 

 In general, combining multiple models into ensembles allows for better 349 

performance (11,22–25). However, in this case, COVID NearTerm and LEMMA 350 

consistently outperformed the Ensemble model when controlling for frequency of 351 
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participation (Figures 2-4C, Figure 5), although pairwise ranking scores remained 352 

variable at the county level (Figure 5C). The higher performance of individual models 353 

over the Ensemble model combined with the variability in performance at the county-354 

level suggests that the Ensemble model does not have to be applied uniformly across all 355 

locations; public health decision making could benefit from model selection and 356 

ensemble weighting that reflects location-specific past performance as well as local 357 

transmission trends (26). 358 

Lower forecast coverage in less populated counties weakens evidence-based decision 359 

making 360 

One interesting question from a public health decision making context is whether 361 

model coverage (i.e., frequent issuing of forecasts across all potential locations) and 362 

model accuracy should be weighed equally when establishing the criteria for a “winning” 363 

forecast. In this analysis, there was typically a mismatch between raw model performance 364 

based on availability as measured by the sum of standardized ranking (Figures 2-4) and 365 

model performance when controlling for participation via pairwise tournaments (Figure 366 

5). In part, this disagreement reflects that not all models provided estimates for all 367 

counties, especially for less populous regions or counties (Supplementary Figures 1, 9, 368 

13). For example, the COVID NearTerm model ranked first in the pairwise ranking but 369 

provided no coverage for any counties in the less populous RANCHO region (Figure 5C). 370 

In contrast, the Ensemble model came first in the majority of counties during the Delta 371 

and Omicron periods as measured by sum of the standardized rank score for that period 372 

�����,�,� (Figures 3B, 4B), but was generally outperformed in pairwise ranking 373 
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evaluations both overall and for individual counties (Figure 5). Although the Ensemble 374 

model in less populous counties exhibited a higher median normalized MAE and a more 375 

variable normalized MAE regardless of the forecast horizon (Supplementary Figure 22), 376 

this observation may be a direct result of calculating MAE from median point estimates 377 

rather than accounting for forecast uncertainty, since stochastic effects likely contribute 378 

more significantly to the forecast predictions for counties with smaller population sizes.  379 

While maximizing model accuracy is important, a forecast cannot add value if it 380 

is not available for decision making. As county-level contributors are lost to attrition, 381 

ensemble estimates may further decrease in accuracy or may not be possible in these less 382 

populous counties. Policy and public health decision makers should evaluate what 383 

investments or innovations in modeling are needed to improve results for underserved 384 

counties with lower forecast coverage. In addition, decision makers could seek to 385 

incentivize the best-performing models to serve smaller counties that neither have the 386 

resources to do this work in-house nor have academic partners readily available. 387 

The lack of coverage in smaller counties also points to the inherent complexities 388 

of interpreting in hospitalization burden—since hospitalizations are typically recorded via 389 

hospital location rather than patient residency (27). As others have suggested, forecasting 390 

at the geographic unit of hospital referral networks could be another solution to low 391 

model coverage in less populous counties (27). 392 
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Continuity of contributors, forecast structure, and documentation helps real-time 393 

public health decision making and post-hoc analysis 394 

The overall continuity of forecasting contributions has proved challenging for 395 

post-hoc evaluation. Although CalCAT has had roughly ten unique forecast contributors 396 

through time, many of these groups have ceased contributing as the COVID-19 landscape 397 

has increased in complexity (e.g., emerging variants, prior immunity, boosters). Although 398 

less relevant to forecasting hospitalizations, changes in case ascertainment and testing 399 

practices make retrospective analyses more challenging. Interruptions to forecast 400 

continuity can also limit post-hoc evaluation. For example, some modeling groups paused 401 

forecasts in order to reset or recalibrate for new variants like Omicron.  402 

While initiatives like the COVID-19 Forecast Hub have worked to standardize 403 

forecast output and reporting (11), one additional challenge for this analysis was that the 404 

reporting across external forecast contributors differed. For example, across three of the 405 

externally contributed forecasts they all produced interval estimates at different cutoff 406 

points: COVID Nearterm (10, 20, 30, 40, 50, 60, 70, 80, and 90 percentiles), Columbia 407 

(2.5, 25, 50, 75 and 97.5 percentiles), and LEMMA (5, 50, 95 percentiles). This 408 

discrepancy precluded the use of more robust measures like CRPS or WIS and means that 409 

that our results are much more sensitive to the median point estimates (10). Changing 410 

repository structures, file nomenclature, and data formatting can also disrupt the 411 

archiving process necessary for ensemble generation and subsequent post-hoc review. 412 

This analysis is a snapshot of what was available on CalCAT—and therefore to the 413 

general public and public health decision makers—and may not entirely reflect what 414 
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model contributors would intend to be their contributing forecast at all times. The 415 

CalCAT team updated data and results iteratively as often as possible, but not all model 416 

changes were announced. As the COVID-19 pandemic necessitated rapid changes in data 417 

reporting and data infrastructure, other information technology issues may have 418 

introduced unintended errors. 419 

The current classification regression analysis in this manuscript does not include 420 

model-specific traits. In order to truly evaluate whether underlying model traits and 421 

assumptions help to explain performance for specific locations through time, it would be 422 

necessary to have a larger number of forecasting contributors and consistent metadata on 423 

both the changes in model construction and the timing of those changes. Therefore, 424 

another potential area of documentation might include not just existing model 425 

assumptions and structure but how those characteristics have changed over time. This 426 

analysis may be easier to do at a state or national scale, where more model contributors 427 

are available, and reporting is better standardized through initiatives like the Forecast and 428 

Scenario Hubs. 429 

Reporting and communicating infectious disease forecasting results, with all their 430 

inherent uncertainty and complexity, remain areas for improvement and growth for public 431 

health departments and their academic and industry collaborators to support evidence-432 

based public health policy planning and decision making. Importantly, forecasting 433 

models may also serve as a communication tool to influence behavior change by the 434 

general public. One phenomenon not explored in this analysis is the potential for 435 

forecasts to alter human behavior, and subsequently model accuracy.  436 
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Conclusions 437 

Major progress in infectious disease forecasting has been made during the 438 

COVID-19 pandemic, while ongoing challenges, such as those around data and 439 

communication, have persisted. We retrospectively investigated hospitalization census 440 

forecast model performance at the county level in the state of California. Model 441 

performance and ranking varied through space and time and by metric, highlighting the 442 

difficulty of making blanket recommendations for which models to use for individual 443 

counties, including an ensemble approach. Calibrating based on past model performance 444 

may help improve ensemble forecast generation, and counties may benefit by considering 445 

which individual model contributors have historically served them the best. Going 446 

forward, closer collaboration between forecasters, researchers, and policymakers may 447 

create positive feedback loops that inform the ongoing COVID-19 response and other 448 

future public health action. 449 

  450 
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List of abbreviations 451 

• Association of Bay Area Health Officers (ABAHO) 452 

• California Communicable diseases Assessment Tool (CalCAT) 453 

• Greater Sacramento Region Health Officers (GSRHO) 454 

• Mean absolute error (MAE) 455 

• Rural Association of Northern California Health Officers (RANCHO) 456 

• San Joaquin Valley Consortium (SJVC) 457 

• Southern California (SCAL) 458 
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Table 1. Constituent models providing county-level hospitalization census predictions that are 

archived on CalCAT and included in the analysis. 

Model Forecast  
update 
frequency 

Forecast 
horizon 

Methods/Approach  Documentation 

Columbia Weekly Up to 6 
weeks 

County level metapopulation model (5)   

UCSF, 
COVID 
NearTerm 

Daily 2-4 weeks Bootstrap-based method based on an 
autoregressive model  

(6) 

UCB 
LEMMA 

Daily Up to 4 
weeks 

SEIR compartmental model with 
parameters fit using case series data 
of COVID-19 hospital and ICU 
census, hospital admissions, deaths, 
cases and seroprevalence 

(7) 

CDPH 
Simple 
Growth 

Daily Up to 4 
weeks 

Assumes new cases grow 
exponentially according to the rate 
given by the latest ensemble R-
effective. Assumes a fixed severity 
and average length of stay to generate 
hospitalizations 

(4) 

CalCAT 
Ensemble 

Daily Up to 4 
weeks 

The ensemble forecast takes the 
median of all the forecasts available 
on a given date and fits a smoothed 
spline to the trend. 

(4) 

CA 
Baseline 

Daily Up to 4 
weeks 

Retroactive 7-day rolling average 
mean of past hospitalization values 

Methods 
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